### 1.8. Bilinear, Sesquilinear and quadratic forms for GTLA

1.8.1. Bilinear forms. - Let $\mathbb{F}$ be a field and let $V$ be an $\mathbb{F}$-vector space. A bilinear form on $V$ is a function

$$
\begin{aligned}
\langle,\rangle: \quad V \times V & \rightarrow \mathbb{F} \\
(v, w) & \longmapsto\langle v, w\rangle \quad \text { such that }
\end{aligned}
$$

(a) If $v_{1}, v_{2}, w \in W$ then $\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle$,
(b) If $v, w_{1}, w_{2} \in V$ then $\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$,
(c) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle c v, w\rangle=c\langle v, w\rangle$,
(d) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle v, c w\rangle=c\langle v, w\rangle$.

A bilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ is symmetric if it satsfies:
(S) If $v, w \in V$ then $\langle v, w\rangle=\langle w, v\rangle$.

A bilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ is skew-symmetric if it satsfies:
(A) If $v, w \in V$ then $\langle v, w\rangle=-\langle w, v\rangle$.
1.8.2. Quadratic forms. - Let $\mathbb{F}$ be a field, $V$ and $\mathbb{F}$-vector space and $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ a bilinear form. The quadratic form associated to $\langle$,$\rangle is the function$

$$
\left\|\|^{2}: V \rightarrow \mathbb{F} \quad \text { given by } \quad\right\| v \|^{2}=\langle v, v\rangle .
$$

Theorem 1.8.1. - Let $V$ be an inner product space.
(a) (Parallelogram property) If $x, y \in V$ then

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y\rangle=0$ and $\langle y, x\rangle=0$ then

$$
\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2} .
$$

(c) (Reconstruction) Assume that $\langle$,$\rangle is symmetric and that 2 \neq 0$ in $\mathbb{F}$. Let $x, y \in V$. Then

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right) .
$$

1.8.3. Sesquilinear forms. - Let $\mathbb{F}$ be a field and let ${ }^{-}: \mathbb{F} \rightarrow \mathbb{F}$ be a function that satisfies:

$$
\text { if } c_{1}, c_{2} \in \mathbb{F} \text { then } \quad \overline{c_{1}+c_{2}}=\overline{c_{1}}+\overline{c_{2}}, \quad \overline{c_{1} c_{2}}=\overline{c_{2}} \overline{c_{1}} \quad \text { and } \quad \overline{1}=1 .
$$

The favourite example of such a function is complex conjugation. The other favourite example is the identity map id ${ }_{F}$.
Let $V$ be an $\mathbb{F}$-vector space. A sesquilinear form on $V$ is a function

$$
\begin{array}{rllc}
\langle,\rangle: & V \times V & \rightarrow \mathbb{F} \\
(v, w) & \longmapsto\langle v, w\rangle
\end{array} \quad \text { such that }
$$

(a) If $v_{1}, v_{2}, w \in W$ then $\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle$,
(b) If $v, w_{1}, w_{2} \in V$ then $\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$,
(c) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle c v, w\rangle=c\langle v, w\rangle$,
(d) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle v, c w\rangle=\bar{c}\langle v, w\rangle$.

A sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ is Hermitian if $\langle$,$\rangle satsfies:$
(H) If $v, w \in V$ then $\langle v, w\rangle=\overline{\langle w, v\rangle}$.
1.8.4. Gram matrix of $\langle$,$\rangle with respect to a basis B$. - Assume $n \in \mathbb{Z}_{>0}$ and $\operatorname{dim}(V)=n$. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a bilinear form and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of $V$. The Gram matrix of $\langle$,$\rangle with respect to the basis B$ is

$$
G_{B} \in M_{n}(\mathbb{F}) \quad \text { given by } \quad G_{B}(i, j)=\left\langle b_{i}, b_{j}\right\rangle .
$$

Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be another basis of $V$ and let $P_{C B}$ be the change of basis matrix given by

$$
c_{i}=\sum_{i=1}^{n} P_{B C}(j, i) b_{j}, \quad \text { for } i \in\{1, \ldots, n\}
$$

Since

$$
G_{C}(i, j)=\left\langle c_{i}, c_{j}\right\rangle=\sum_{k, l=1}^{n}\left\langle P_{B C}(k, i) b_{k}, P_{B C}(l, j) b_{l}\right\rangle=\sum_{k, l=1}^{n} P_{B C}(k, i) G_{B}(k, l) P_{B C}(l, j),
$$

then

$$
G_{C}=P_{B C}^{t} G_{B} P_{C B}
$$

1.8.5. Orthogonals, Isotropy and dual bases. - Let $W \subseteq V$ be a subspace of $V$. The orthogonal to $W$ is

$$
W^{\perp}=\{v \in V \mid \text { if } w \in W \text { then }\langle v, w\rangle=0\}
$$

The subspace $W$ is nonisotropic if $W \cap W^{\perp}=0$.
Proposition 1.8.2. - A sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ satisfies
(no isotropic vectors condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
if and only if it satsifies
(no isotropic subspaces condition) If $W$ is a subspace of $V$ then $W \cap W^{\perp}=0$.
Let $k \in \mathbb{Z}_{>0}$ and assume that $\operatorname{dim}(W)=k$. Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of $W$. A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ is a basis $\left(w^{1}, \ldots, w^{k}\right)$ of $W$ such that

$$
\text { if } i, j \in\{1, \ldots, k\} \text { then }\left\langle w^{i}, w_{j}\right\rangle=\delta_{i j}
$$

Proposition 1.8.3. - Let $V$ be a vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Let $W \subseteq V$ be a subspace of $V$. Assume $W$ is finite dimensional and that $\left(w_{1}, \ldots, w_{k}\right)$ is a basis of $W$. The following are equivalent:
(a) A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ exists.
(b) The Gram matrix $G$ of $\langle\rangle:, W \times W \rightarrow \mathbb{F}$ with respect to $\left(w_{1}, \ldots, w_{k}\right)$ is invertible.
(c) $W \cap W^{\perp}=0$.
1.8.6. Orthogonal projections. - Let $\mathbb{F}$ be a field and let $V$ be an $\mathbb{F}$-vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a seqsuilinear form.

Let $k \in \mathbb{Z}_{>0}$ and let $W$ be a subspace of $V$ such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$. Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of $W$ and let $\left(w^{1}, \ldots, w^{k}\right)$ be the dual basis of $W$. The orthogonal projection onto $W$ is the function

$$
P_{W}: V \rightarrow V \quad \text { given by } \quad P_{W}(v)=\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}
$$

The following proposition shows that $P_{W}$ does not depend on which choice of basis of $W$ is used to construct $P_{W}$.

Proposition 1.8.4. - (Characterization of orthogonal projection) Let $n \in \mathbb{Z}_{>0}$ and let $V$ be an inner product space with $\operatorname{dim}(V)=n$. Let $W$ be a subspace of $V$ such that $W \cap W^{\perp}=0$. The orthogonal projection onto $W$ is the unique linear transformation $P: V \rightarrow V$ such that
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$,

The following proposition explains how $P_{W}$ produces the decomposition $V=W \oplus W^{\perp}$.
Theorem 1.8.5. - Let $n \in \mathbb{Z}_{>0}$ and let $V$ be an inner product space with $\operatorname{dim}(V)=n$. Let $W$ be a subspace of $V$ such that $W \cap W^{\perp}=0$. Let $P_{W}$ be the orthogonal projection onto $W$ and let $P_{W^{\perp}}=1-P_{W}$. Then

$$
\begin{gathered}
P_{W}^{2}=P_{W}, \quad P_{W^{\perp}}^{2}=P_{W^{\perp}}, \quad P_{W} P_{W^{\perp}}=P_{W^{\perp}} P_{W}=0, \quad 1=P_{W}+P_{W^{\perp}} \\
\operatorname{ker}\left(P_{W}\right)=W^{\perp}, \quad \operatorname{im}\left(P_{W}\right)=W \quad \text { and } \quad V=W \oplus W^{\perp}
\end{gathered}
$$

1.8.7. Orthonormal bases. - Let $n \in \mathbb{Z}_{>0}$ and let $V$ be an inner product space with $\operatorname{dim}(V)=n$. An orthonormal basis of $V$, or self-dual basis of $V$, is a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ such that

$$
\text { if } i, j \in\{1, \ldots, n\} \quad \text { then } \quad\left\langle u_{i}, u_{j}\right\rangle= \begin{cases}0, & \text { if } i \neq j \\ 1, & \text { if } i=j\end{cases}
$$

An orthogonal basis in $V$ is a basis $\left\{b_{1}, \ldots, b_{n}\right\}$ such that

$$
\text { if } i, j \in\{1, \ldots, n\} \quad \text { and } i \neq j \quad \text { then } \quad\left\langle b_{i}, b_{j}\right\rangle=0
$$

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.

Theorem 1.8.6. - (Gram-Schmidt) Let $\mathbb{F}$ be a field, $n \in \mathbb{Z}_{>0}$ and let $\left(p_{1}, \ldots, p_{n}\right)$ be a basis of an $\mathbb{F}$-vector space $V$. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form and assume that $\langle$,$\rangle is Hermitian.$
(a) Define

$$
b_{1}=p_{1}, \quad \text { and } \quad b_{n+1}=p_{n+1}-\left\langle p_{n+1}, b_{1}\right\rangle b_{1}-\cdots-\left\langle p_{n+1}, b_{n}\right\rangle b_{n} .
$$

Then $\left(b_{1}, \ldots, b_{n}\right)$ is an orthogonal basis of $V$.
(b) Assume that $\mathbb{F}$ is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Let $\left(b_{1}, \ldots, b_{n}\right)$ be an orthogonal basis of $V$. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|} .
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of $V$.
1.8.8. Adjoints of linear transformations. - Let $V$ be an inner product space and let $f: V \rightarrow V$ be a linear transformation.

- The adjoint of $f$ is the linear transformation $f^{*}: V \rightarrow V$ determined by

$$
\text { if } x, y \in V \text { then } \quad\langle f(x), y\rangle=\left\langle x, f^{*}(y)\right\rangle .
$$

- The linear transformation $f$ is self adjoint if $f$ satisfies:

$$
\text { if } x, y \in V \quad \text { then } \quad\langle f(x), y\rangle=\langle x, f(y)\rangle \text {. }
$$

- The linear transformation $f$ is an isometry if $f$ satisfies:

$$
\text { if } x, y \in V \quad \text { then } \quad\langle f(x), f(y)\rangle=\langle x, y\rangle \text {. }
$$

- The linear transformation $f$ is normal if $f f^{*}=f^{*} f$.

HW: Let $V=\mathbb{F}^{n}$ with basis $\left(e_{1}, \ldots, e_{n}\right)$ and inner product given by

$$
e_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad \text { with } 1 \text { in the } i \text { th row and }\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}
$$

Let $f: V \rightarrow V$ be a linear transformation of $V$ and let $A$ be the matrix of $f$ with respect to the basis $\left(e_{1}, \ldots, e_{n}\right)$. Show that, with respect to the basis $\left(e_{1}, \ldots, e_{n}\right)$,

$$
\text { the matrix of } f^{*} \text { is } \quad A^{*}=\bar{A}^{t}
$$

1.8.9. The Spectral theorem. - Let $A \in M_{n}(\mathbb{C})$ and let $V=\mathbb{C}^{n}$ with inner product given by

$$
\left\langle\left(\begin{array}{c}
x_{1}  \tag{1.8.1}\\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)\right\rangle=x_{1} \overline{y_{1}}+\cdots x_{n} \overline{y_{n}} .
$$

Let $A \in M_{n}(\mathbb{C})$.

- The adjoint of $A$ is the matrix $A^{*} \in M_{n}(\mathbb{C})$ given by $A^{*}(i, j)=\overline{A(j, i)}$.
- The matrix $A$ is self adjoint if $A=A^{*}$.
- The matrix $A$ is unitary if $A A^{*}=1$.
- The matrix $A$ is normal if $A A^{*}=A^{*} A$.

Write $A^{*}=\bar{A}^{t}$. The unitary group is

$$
U_{n}(\mathbb{C})=\left\{U \in M_{n}(\mathbb{C}) \mid U U^{*}=1\right\}
$$

Theorem 1.8.7. - Let $V=\mathbb{C}^{n}$ with inner product given by (1.8.1). The function
$\left\{\begin{array}{l}\text { ordered orthonormal bases } \\ \left(u_{1}, \ldots, u_{n}\right) \text { of } \mathbb{C}^{n}\end{array}\right\} \quad \longrightarrow \quad U_{n}(\mathbb{C})$

$$
\left(u_{1}, \ldots, u_{n}\right) \quad \longmapsto U=\left(\begin{array}{ccc}
\mid & & \mid \\
u_{1} & \cdots & u_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { is a bijection. }
$$

The following proposition explains the role of normal matrices.
Proposition 1.8.8. - Let $V=\mathbb{C}^{n}$ with inner product given by (1.8.1). Let

$$
A \in M_{n}(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad \text { and } \quad V_{\lambda}=\operatorname{ker}(\lambda-A)
$$

If $A A^{*}=A^{*} A$ then
$V_{\lambda}$ is $A$-invariant, $\quad V_{\lambda}^{\perp}$ is $A$-invariant, $\quad V_{\lambda}$ is $A^{*}$-invariant and $V_{\lambda}^{\perp}$ is $A^{*}$-invariant.
Theorem 1.8.9. - (Spectral theorem)
Let $n \in \mathbb{Z}_{>0}$ and $V=\mathbb{C}^{n}$ with inner product given by (1.8.1).
(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_{n}(\mathbb{C})$ such that $A A^{*}=A^{*} A$. Then there exists a unitary $U \in M_{n}(\mathbb{C})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

(b) Let $f: V \rightarrow V$ be a linear transformation such that $f f^{*}=f^{*} f$. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of $V$ consisting of eigenvectors of $f$.

HW: Show that if $A \in M_{n}(\mathbb{C})$ is self adjoint then its eigenvalues are real.
HW: Show that if $U \in M_{n}(\mathbb{C})$ is unitary then its eigenvalues have absolute value 1 .

### 1.8.10. Some proofs. -

Proposition 1.8.10. - A sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ satisfies
(no isotropic vectors condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
if and only if it satsifies
(no isotropic subspaces condition) If $W$ is a subspace of $V$ then $W \cap W^{\perp}=0$.
Proof. - (Sketch)
$\Rightarrow$ : Assume $w \in W \cap W^{\perp}$. Then $\langle w, w\rangle=0$. So $w=0$. So $W \cap W^{\perp}=0$.
$\Leftarrow:$ Let $v \in V$ with $v \neq 0$. Since $\mathbb{F} v \cap(\mathbb{F} v)^{\perp}=0$ then $\langle v, v\rangle \neq 0$.
Proposition 1.8.11. - Let $V$ be a vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow$ $\mathbb{F}$. Let $W \subseteq V$ be a subspace of $V$. Assume $W$ is finite dimensional and that $\left(w_{1}, \ldots, w_{k}\right)$ is a basis of $W$. The following are equivalent:
(a) A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ exists.
(b) The Gram matrix $G$ of $\langle\rangle:, W \times W \rightarrow \mathbb{F}$ with respect to $\left(w_{1}, \ldots, w_{k}\right)$ is invertible.
(c) $W \cap W^{\perp}=0$.

Proof. - (Sketch)
(b) $\Leftrightarrow(\mathrm{c}):$ Let $w \in W \cap W^{\perp}$ and write $w=c_{1} w_{1}+\cdots+c_{k} w_{k}$. Then

$$
\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
\left\langle w_{1}, w\right\rangle \\
\vdots \\
\left\langle w_{k}, w\right\rangle
\end{array}\right)=G\left(\begin{array}{c}
\overline{c_{1}} \\
\vdots \\
\overline{c_{k}}
\end{array}\right) \quad \text { since } \quad 0=\left\langle w_{i}, w\right\rangle=\sum_{l=1}^{k}\left\langle w_{i}, c_{l} w_{l}\right\rangle=\sum_{l=1}^{k} G(i, l) \overline{c_{l}} .
$$

So columns of $G$ are linearly independent if and only if $W \cap W^{\perp}=0$. So $G$ is invertible if and only if $W \cap W^{\perp}=0$.
$(\mathrm{a}) \Leftrightarrow(\mathrm{b}):$ Define

$$
w^{i}=\sum_{l=1}^{k} G^{-1}(i, l) w_{l}, \quad \text { for } i \in\{1, \ldots, k\} .
$$

Then

$$
\left\langle w^{i}, w_{j}\right\rangle=\sum_{l=1}^{k} G^{-1}(i, l)\left\langle w_{l}, w_{j}\right\rangle=\sum_{l=1}^{k} G^{-1}(i, l) G(l, j)=\delta_{i j} .
$$

Thus the dual basis $\left(w^{1}, \ldots, w^{k}\right)$ exists if and only if $G$ is invertible.
Proposition 1.8.12. - (Characterization of orthogonal projection) Let $n \in \mathbb{Z}_{>0}$ and let $V$ be an inner product space with $\operatorname{dim}(V)=n$. Let $W$ be a subspace of $V$ such that $W \cap W^{\perp}=0$. The orthogonal projection onto $W$ is the unique linear transformation $P: V \rightarrow V$ such that
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$,

Proof. - (Sketch)
Since $P_{W}(v)$ is a linear combination of basis elements of $W$ then $P_{W}(v) \in W$. Assume $v \in V$ and $w \in W$. Let $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $w=c_{1} w_{1}+\cdots+c_{k} w_{k}$. Then

$$
\left\langle P_{W}(v), w\right\rangle=\left\langle\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}, \sum_{j=1}^{k} c_{j} w_{j}\right\rangle=\sum_{i=1}^{k} \overline{c_{i}}\left\langle v, w_{i}\right\rangle=\langle v, w\rangle .
$$

Thus $P_{W}(v)$ satisfies (1) and (2).
Assume $Q: V \rightarrow V$ is a linear transformation that satisfies (1) and (2).
To show: If $v \in V$ then $Q(v)=P_{W}(v)$.
Assume $v \in V$.
If $w \in W$ then, by property $(2),\langle Q(v), w\rangle=\langle v, w\rangle=\left\langle P_{W}(v), w\right\rangle$.
So, if $w \in W$ then $\left\langle P_{W}(v)-Q(v), w\right\rangle=0$.
Combining this with property (1), $P_{W}(v)-Q(v) \in W \cap W^{\perp}=0$.
So $P_{W}(v)-Q(v)=0$.
So $P_{W}=Q$.
Theorem 1.8.13. - Let $n \in \mathbb{Z}_{>0}$ and let $V$ be an inner product space with $\operatorname{dim}(V)=n$. Let $W$ be a subspace of $V$ such that $W \cap W^{\perp}=0$. Let $P_{W}$ be the orthogonal projection onto $W$ and let $P_{W^{\perp}}=1-P_{W}$. Then

$$
\begin{gathered}
P_{W}^{2}=P_{W}, \quad P_{W^{\perp}}^{2}=P_{W^{\perp}}, \quad P_{W} P_{W^{\perp}}=P_{W^{\perp}} P_{W}=0, \quad 1=P_{W}+P_{W^{\perp}}, \\
\operatorname{ker}\left(P_{W}\right)=W^{\perp}, \quad \operatorname{im}\left(P_{W}\right)=W \quad \text { and } \quad V=W \oplus W^{\perp} .
\end{gathered}
$$

Proof. - (Sketch)
(a) Assume $v \in V$. Then, by properties (1) and (2),

$$
P_{W}^{2}(v)=\sum_{i=1}^{k}\left\langle P_{W}(v), w^{i}\right\rangle w_{i}=\sum_{i=1}^{k}\left\langle v, w^{i}\right\rangle w_{i}=P_{W}(v) .
$$

So $P_{W}^{2}=P_{W}$.
(b) $P_{W^{\perp}}^{2}=\left(1-P_{W}\right)^{2}=1-2 P_{W}+P_{W}^{2}=1-2 P_{W}+P_{W}=1-P_{W}=P_{W^{\perp}}$.
(c) $P_{W} P_{W^{\perp}}=P_{W}\left(1-P_{W}\right)=P_{W}-P_{W}^{2}=P_{W}-P_{W}=0$ and

$$
P_{W^{\perp}} P_{W}=\left(1-P_{W}\right) P_{W}=P_{W}-P_{W}^{2}=P_{W}-P_{W}=0 .
$$

(d) $P_{W}+P_{W^{\perp}}=P_{W}+\left(1-P_{W}\right)=1$.
(e) If $v \in \operatorname{ker}\left(P_{W}\right)$ then $\langle v, w\rangle=\left\langle P_{W}(v), w\right\rangle=\langle 0, w\rangle=0$.

So $v \in W^{\perp}$ and thus $\operatorname{ker}\left(P_{W}\right) \subseteq W^{\perp}$.
Assume $v \in W^{\perp}$.
If $w \in W$ then $\left\langle P_{W}(v), w\right\rangle=\langle v, w\rangle=0$ and so $P_{W}(v) \in W^{\perp}$.
By property (1), $P_{W}(v) \in W$ and so $P_{W}(v) \in W \cap W^{\perp}=0$.
So $v \in \operatorname{ker}\left(P_{W}\right)$ and $W^{\perp} \subseteq \operatorname{ker}\left(P_{W}\right)$.
So $\operatorname{ker}\left(P_{W}\right)=W^{\perp}$.
(f) By property (1), $\operatorname{im}\left(P_{W}\right) \subseteq W$. If $w \in W$ then $P_{W}(w)=w$. So $\operatorname{im}\left(P_{W}\right)=W$.
(g) If $v \in V$ then $v=P_{W}(v)+\left(1-P_{W}\right)(v) \in W+W^{\perp}$. So $V=W+W^{\perp}$.

By assumption $W \cap W^{\perp}=0$, and so $V=W \oplus W^{\perp}$.

Theorem 1.8.14. - (Gram-Schmidt) Let $\mathbb{F}$ be a field, $n \in \mathbb{Z}_{>0}$ and let $\left(p_{1}, \ldots, p_{n}\right)$ be a basis of an $\mathbb{F}$-vector space $V$. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form and assume that $\langle$,$\rangle is Hermitian.$
(a) Define

$$
b_{1}=p_{1}, \quad \text { and } \quad b_{n+1}=p_{n+1}-\left\langle p_{n+1}, b_{1}\right\rangle b_{1}-\cdots-\left\langle p_{n+1}, b_{n}\right\rangle b_{n} .
$$

Then $\left(b_{1}, \ldots, b_{n}\right)$ is an orthogonal basis of $V$.
(b) Assume that $\mathbb{F}$ is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Let $\left(b_{1}, \ldots, b_{n}\right)$ be an orthogonal basis of $V$. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|} .
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of $V$.
Proof. - (Sketch) The proof is by induction on $n$.
For the base case, there is only one vector $b_{1}$ and so there is nothing to show.
Induction step: Assume $\left(b_{1}, \ldots, b_{n}\right)$ are orthogonal.
Let $j \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
\left\langle b_{n+1}, b_{j}\right\rangle & =\left\langle p_{n+1}-\left\langle p_{n+1}, b_{1}\right\rangle b_{1}-\cdots-\left\langle p_{n+1}, b_{n}\right\rangle b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\left\langle p_{n+1}, b_{1}\right\rangle\left\langle b_{1}, b_{j}\right\rangle-\cdots-\left\langle p_{n+1}, b_{n}\right\rangle\left\langle b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\left\langle p_{n+1}, b_{j}\right\rangle\left\langle b_{j}, b_{j}\right\rangle=\left\langle p_{n+1}, b_{j}\right\rangle-\left\langle p_{n+1}, b_{j}\right\rangle=0 \quad \text { and } \\
\left\langle b_{j}, b_{n+1}\right\rangle & =\left\langle b_{j}, p_{n+1}-\left\langle p_{n+1}, b_{1}\right\rangle b_{1}-\cdots-\left\langle p_{n+1}, b_{n}\right\rangle b_{n}\right\rangle \\
& =\left\langle b_{j}, p_{n+1}\right\rangle-\overline{\left\langle p_{n+1}, b_{1}\right\rangle}\left\langle b_{j}, b_{1}\right\rangle-\cdots-\overline{\left\langle p_{n+1}, b_{n}\right\rangle}\left\langle b_{j}, b_{n}\right\rangle \\
& =\left\langle b_{j}, p_{n+1}\right\rangle-\overline{\left\langle p_{n+1}, b_{j}\right\rangle}\left\langle b_{j}, b_{j}\right\rangle=\left\langle b_{j}, p_{n+1}\right\rangle-\overline{\left\langle p_{n+1}, b_{j}\right\rangle}=0,
\end{aligned}
$$

where the last equality follows from the assumption that $\langle$,$\rangle is Hermitian.$
So ( $b_{1}, \ldots, b_{n+1}$ ) are orthogonal.

Proposition 1.8.15. - Let $V=\mathbb{C}^{n}$ with inner product given by (1.8.1). Let

$$
A \in M_{n}(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad \text { and } \quad V_{\lambda}=\operatorname{ker}(\lambda-A) .
$$

If $A A^{*}=A^{*} A$ then
$V_{\lambda}$ is $A$-invariant, $\quad V_{\lambda}^{\perp}$ is $A$-invariant, $\quad V_{\lambda}$ is $A^{*}$-invariant and $V_{\lambda}^{\perp}$ is $A^{*}$-invariant.
Proof. -
(a) Let $p \in V_{\lambda}$. Then $A p=\lambda p \in V_{\lambda}$. So $V_{\lambda}$ is $A$ invariant.
(b) Let $p \in V_{\lambda}$. Since $A\left(A^{*} p\right)=A^{*} A p=\lambda A^{*} p$ then $A^{*} p \in V_{\lambda}$. So $V_{\lambda}$ is $A^{*}$ invariant.
(c) Let $z \in V_{\lambda}^{\perp}$.

To show $A z_{\lambda} \in V_{\lambda}^{\perp}$.
To show: If $u \in V_{\lambda}$ then $\langle A z, u\rangle=0$.
Assume $u \in V_{\lambda}$.
To show: $\langle A z, u\rangle=0$.
By (b), $A^{*} u \in V_{\lambda}$, and so $\langle A z, u\rangle=\left\langle z, A^{*} u\right\rangle=0$.
So $A z \in V_{\lambda}^{\perp}$.
So $V_{\lambda}^{\perp}$ is $A$-invariant.
(d) Let $z \in V_{\lambda}^{\perp}$.

To show: If $u \in V_{\lambda}$ then $\left\langle A^{*} z, u\right\rangle=0$.

$$
\left\langle A^{*} z, u\right\rangle=\langle z, A u\rangle=0, \quad \text { since } A u \in V_{\lambda} .
$$

So $A^{*} z \in V_{\lambda}^{\perp}$. So $V_{\lambda}^{\perp}$ is $A^{*}$-invariant.

Theorem 1.8.16. - (Spectral theorem)
Let $n \in \mathbb{Z}_{>0}$ and $V=\mathbb{C}^{n}$ with inner product given by (1.8.1).
(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_{n}(\mathbb{C})$ such that $A A^{*}=A^{*} A$. Then there exists a unitary $U \in M_{n}(\mathbb{C})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

(b) Let $f: V \rightarrow V$ be a linear transformation such that $f f^{*}=f^{*} f$. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of $V$ consisting of eigenvectors of $f$.

Proof. - The two statements are equivalent via the relation between $A$ and $f$ given by

$$
\begin{aligned}
f: & \\
V & \longrightarrow \\
v & \longmapsto A v .
\end{aligned}
$$

The proof is by induction on $n$.
The base case is when $\operatorname{dim}(V)=1$. In this case $A \in M_{1}(\mathbb{C})$ is diagonal.
The induction step:
For $\mu \in \mathbb{C}$ let $V_{\mu}=\operatorname{ker}(\mu-f)$, the $\mu$-eigenspace of $f$.
Since $\mathbb{C}$ is algebraically closed, there exists $\lambda \in \mathbb{C}$ which is a root of the characteristic polynomial $\operatorname{det}(x-A)$.
So there exists $\lambda \in \mathbb{C}$ such that $\operatorname{det}(\lambda-A)=0$.
So there exists $\lambda \in \mathbb{C}$ such that $V_{\lambda}=\operatorname{ker}(\lambda-A) \neq 0$.
Let $k=\operatorname{dim}\left(V_{\lambda}\right)$ and let $\left(p_{1}, \ldots, p_{k}\right)$ be a basis of $V_{\lambda}$.
Use Gram-Schmidt to convert $\left(p_{1}, \ldots, p_{k}\right)$ to an orthogonal basis $\left(u_{1}, \ldots, u_{k}\right)$ of $V_{\lambda}$.
By definition of $V_{\lambda}$, the basis vectors $\left(u_{1}, \ldots, u_{k}\right)$ are all eigenvectors of $f$ (of eigenvalue
$\lambda$.
By Theorem 1.8.5 (orthogonal decomposition) and Proposition 1.8.8,

$$
V=V_{\lambda} \oplus\left(V_{\lambda}\right)^{\perp} \text { and } V_{\lambda}^{\perp} \text { is } A \text {-invariant and } A^{*} \text {-invariant. }
$$

Let

$$
\begin{aligned}
f_{1}: \quad V_{\lambda}^{\perp} & \rightarrow V_{\lambda}^{\perp} \\
v & \mapsto A v
\end{aligned} \quad \text { and } \quad g_{1}: \begin{array}{rll}
V_{\lambda}^{\perp} & \rightarrow V_{\lambda}^{\perp} \\
v & \mapsto & A^{*} v
\end{array}
$$

Then $g_{1}=f_{1}^{*}$ and $f_{1} f_{1}^{*}=f_{1}^{*} f_{1}$.
Thus, by induction, there exists an orthonormal basis $\left(u_{k+1}, \ldots, u_{n}\right)$ of $V_{\lambda}^{\perp}$ consisting of eigenvectors of $f_{1}$.
By definition of $f_{1}$, eigenvectors of $f_{1}$ are eigenvectors of $f$.
So $\left(u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right)$ is an orthonormal basis of eigenvectors of $f$.

