1.8. Bilinear, Sesquilinear and quadratic forms for GTLA

1.8.1. Bilinear forms. — Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. A *bilinear form on* V is a function

$$\begin{array}{cccc} \langle,\rangle\colon & V\times V &\to & \mathbb{F} \\ & (v,w) &\longmapsto & \langle v,w\rangle \end{array} \quad \text{such that}$$

(a) If $v_1, v_2, w \in W$ then $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$,

(b) If $v, w_1, w_2 \in V$ then $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$,

(c) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle cv, w \rangle = c \langle v, w \rangle$,

(d) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle v, cw \rangle = c \langle v, w \rangle$.

A bilinear form $\langle , \rangle \colon V \times V \to \mathbb{F}$ is symmetric if it satsfies:

(S) If $v, w \in V$ then $\langle v, w \rangle = \langle w, v \rangle$.

A bilinear form $\langle , \rangle \colon V \times V \to \mathbb{F}$ is *skew-symmetric* if it satsfies:

(A) If $v, w \in V$ then $\langle v, w \rangle = -\langle w, v \rangle$.

1.8.2. Quadratic forms. — Let \mathbb{F} be a field, V and \mathbb{F} -vector space and $\langle,\rangle: V \times V \to \mathbb{F}$ a bilinear form. The *quadratic form associated to* \langle,\rangle is the function

 $\| \|^2 \colon V \to \mathbb{F}$ given by $\|v\|^2 = \langle v, v \rangle$.

Theorem 1.8.1. — Let V be an inner product space.

(a) (Parallelogram property) If $x, y \in V$ then

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}.$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y \rangle = 0$ and $\langle y, x \rangle = 0$ then

$$||x||^2 + ||y||^2 = ||x+y||^2$$

(c) (Reconstruction) Assume that \langle , \rangle is symmetric and that $2 \neq 0$ in \mathbb{F} . Let $x, y \in V$. Then

$$\langle x, y \rangle = \frac{1}{2} (\|x+y\|^2 - \|x\|^2 - \|y\|^2).$$

1.8.3. Sesquilinear forms. — Let \mathbb{F} be a field and let $\overline{} : \mathbb{F} \to \mathbb{F}$ be a function that satisfies:

if
$$c_1, c_2 \in \mathbb{F}$$
 then $\overline{c_1 + c_2} = \overline{c_1} + \overline{c_2}$, $\overline{c_1 c_2} = \overline{c_2} \overline{c_1}$ and $\overline{1} = 1$.

The favourite example of such a function is complex conjugation. The other favourite example is the identity map $id_{\mathbb{F}}$.

Let V be an \mathbb{F} -vector space. A sesquilinear form on V is a function

(a) If $v_1, v_2, w \in W$ then $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$,

(b) If $v, w_1, w_2 \in V$ then $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$,

(c) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle cv, w \rangle = c \langle v, w \rangle$,

(d) If $c \in \mathbb{F}$ and $v, w \in W$ then $\langle v, cw \rangle = \overline{c} \langle v, w \rangle$.

A sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$ is *Hermitian* if \langle, \rangle satsfies: (H) If $v, w \in V$ then $\langle v, w \rangle = \overline{\langle w, v \rangle}$. **1.8.4.** Gram matrix of \langle, \rangle with respect to a basis B. — Assume $n \in \mathbb{Z}_{>0}$ and $\dim(V) = n$. Let $\langle, \rangle \colon V \times V \to \mathbb{F}$ be a bilinear form and let $B = \{b_1, \ldots, b_n\}$ be a basis of V. The Gram matrix of \langle, \rangle with respect to the basis B is

$$G_B \in M_n(\mathbb{F})$$
 given by $G_B(i,j) = \langle b_i, b_j \rangle.$

Let $C = \{c_1, \ldots, c_n\}$ be another basis of V and let P_{CB} be the change of basis matrix given by

$$c_i = \sum_{i=1}^n P_{BC}(j,i)b_j, \quad \text{for } i \in \{1, \dots, n\}.$$

Since

$$G_{C}(i,j) = \langle c_{i}, c_{j} \rangle = \sum_{k,l=1}^{n} \langle P_{BC}(k,i)b_{k}, P_{BC}(l,j)b_{l} \rangle = \sum_{k,l=1}^{n} P_{BC}(k,i)G_{B}(k,l)P_{BC}(l,j),$$

then

$$G_C = P_{BC}^t G_B P_{CB},$$

1.8.5. Orthogonals, Isotropy and dual bases. — Let $W \subseteq V$ be a subspace of V. The orthogonal to W is

$$W^{\perp} = \{ v \in V \mid \text{if } w \in W \text{ then } \langle v, w \rangle = 0 \}.$$

The subspace W is *nonisotropic* if $W \cap W^{\perp} = 0$.

Proposition 1.8.2. — A sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$ satisfies

(no isotropic vectors condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0.

if and only if it satsifies

(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp} = 0$.

Let $k \in \mathbb{Z}_{>0}$ and assume that $\dim(W) = k$. Let (w_1, \ldots, w_k) be a basis of W. A dual basis to (w_1, \ldots, w_k) is a basis (w^1, \ldots, w^k) of W such that

if $i, j \in \{1, \ldots, k\}$ then $\langle w^i, w_j \rangle = \delta_{ij}$.

Proposition 1.8.3. — Let V be a vector space with a sesquilinear form $\langle, \rangle: V \times V \to \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional and that (w_1, \ldots, w_k) is a basis of W. The following are equivalent:

(a) A dual basis to (w_1, \ldots, w_k) exists.

(b) The Gram matrix G of $\langle, \rangle \colon W \times W \to \mathbb{F}$ with respect to (w_1, \ldots, w_k) is invertible. (c) $W \cap W^{\perp} = 0$.

1.8.6. Orthogonal projections. — Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Let $\langle, \rangle \colon V \times V \to \mathbb{F}$ be a sequilinear form.

Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\dim(W) = k$ and $W \cap W^{\perp} = 0$.

Let (w_1, \ldots, w_k) be a basis of W and let (w^1, \ldots, w^k) be the dual basis of W. The orthogonal projection onto W is the function

$$P_W \colon V \to V$$
 given by $P_W(v) = \sum_{i=1}^k \langle v, w_i \rangle w^i.$

The following proposition shows that P_W does not depend on which choice of basis of W is used to construct P_W .

Proposition 1.8.4. — (Characterization of orthogonal projection) Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\dim(V) = n$. Let W be a subspace of V such that $W \cap W^{\perp} = 0$. The orthogonal projection onto W is the unique linear transformation $P: V \to V$ such that

(1) If
$$v \in V$$
 then $P(v) \in W$.

(2) If $v \in V$ and $w \in W$ then $\langle v, w \rangle = \langle P(v), w \rangle$,

The following proposition explains how P_W produces the decomposition $V = W \oplus W^{\perp}$.

Theorem 1.8.5. — Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\dim(V) = n$. Let W be a subspace of V such that $W \cap W^{\perp} = 0$. Let P_W be the orthogonal projection onto W and let $P_{W^{\perp}} = 1 - P_W$. Then

$$P_W^2 = P_W, \quad P_{W^{\perp}}^2 = P_{W^{\perp}}, \quad P_W P_{W^{\perp}} = P_{W^{\perp}} P_W = 0, \quad 1 = P_W + P_{W^{\perp}},$$
$$\ker(P_W) = W^{\perp}, \quad \operatorname{im}(P_W) = W \quad and \quad V = W \oplus W^{\perp}.$$

1.8.7. Orthonormal bases. — Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\dim(V) = n$. An orthonormal basis of V, or self-dual basis of V, is a basis $\{u_1, \ldots, u_n\}$ such that

if
$$i, j \in \{1, \dots, n\}$$
 then $\langle u_i, u_j \rangle = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$

An orthogonal basis in V is a basis $\{b_1, \ldots, b_n\}$ such that

if
$$i, j \in \{1, \dots, n\}$$
 and $i \neq j$ then $\langle b_i, b_j \rangle = 0$.

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.

Theorem 1.8.6. — (Gram-Schmidt) Let \mathbb{F} be a field, $n \in \mathbb{Z}_{>0}$ and let (p_1, \ldots, p_n) be a basis of an \mathbb{F} -vector space V. Let $\langle, \rangle \colon V \times V \to \mathbb{F}$ be a sesquilinear form and assume that \langle, \rangle is Hermitian.

(a) Define

$$b_1 = p_1,$$
 and $b_{n+1} = p_{n+1} - \langle p_{n+1}, b_1 \rangle b_1 - \dots - \langle p_{n+1}, b_n \rangle b_n.$

Then (b_1, \ldots, b_n) is an orthogonal basis of V.

(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v \rangle \neq 0$. Define

$$||v|| = \sqrt{\langle v, v \rangle}, \quad for \ v \in V.$$

Let (b_1, \ldots, b_n) be an orthogonal basis of V. Define

$$u_1 = \frac{b_1}{\|b_1\|}, \quad \dots, \quad u_n = \frac{b_n}{\|b_n\|}.$$

Then (u_1, \ldots, u_n) is an orthonormal basis of V.

1.8.8. Adjoints of linear transformations. — Let V be an inner product space and let $f: V \to V$ be a linear transformation.

• The *adjoint* of f is the linear transformation $f^* \colon V \to V$ determined by

if
$$x, y \in V$$
 then $\langle f(x), y \rangle = \langle x, f^*(y) \rangle.$

• The linear transformation f is *self adjoint* if f satisfies:

if
$$x, y \in V$$
 then $\langle f(x), y \rangle = \langle x, f(y) \rangle$.

• The linear transformation f is an *isometry* if f satisfies:

if
$$x, y \in V$$
 then $\langle f(x), f(y) \rangle = \langle x, y \rangle$.

• The linear transformation f is normal if $ff^* = f^*f$.

HW: Let $V = \mathbb{F}^n$ with basis (e_1, \ldots, e_n) and inner product given by

$$e_{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{with 1 in the ith row and } \langle e_{i}, e_{j} \rangle = \delta_{ij}.$$

Let $f: V \to V$ be a linear transformation of V and let A be the matrix of f with respect to the basis (e_1, \ldots, e_n) . Show that, with respect to the basis (e_1, \ldots, e_n) ,

the matrix of f^* is $A^* = \overline{A}^t$.

1.8.9. The Spectral theorem. — Let $A \in M_n(\mathbb{C})$ and let $V = \mathbb{C}^n$ with inner product given by

(1.8.1)
$$\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = x_1 \overline{y_1} + \cdots x_n \overline{y_n}$$

Let $A \in M_n(\mathbb{C})$.

- The adjoint of A is the matrix $A^* \in M_n(\mathbb{C})$ given by $A^*(i, j) = \overline{A(j, i)}$.
- The matrix A is self adjoint if $A = A^*$.
- The matrix A is unitary if $AA^* = 1$.
- The matrix A is normal if $AA^* = A^*A$.

Write $A^* = \overline{A}^t$. The unitary group is

$$U_n(\mathbb{C}) = \{ U \in M_n(\mathbb{C}) \mid UU^* = 1 \}.$$

Theorem 1.8.7. — Let $V = \mathbb{C}^n$ with inner product given by (1.8.1). The function

$$\left\{ \begin{array}{l} \text{ordered orthonormal bases} \\ (u_1, \dots, u_n) \text{ of } \mathbb{C}^n \end{array} \right\} \longrightarrow U_n(\mathbb{C}) \\ (u_1, \dots, u_n) \longmapsto U = \begin{pmatrix} | & | \\ u_1 & \cdots & u_n \\ | & | \end{pmatrix} \text{ is a bijection.}$$

The following proposition explains the role of normal matrices.

Proposition 1.8.8. — Let $V = \mathbb{C}^n$ with inner product given by (1.8.1). Let

 $A \in M_n(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad and \quad V_\lambda = \ker(\lambda - A).$

If $AA^* = A^*A$ then

 V_{λ} is A-invariant, V_{λ}^{\perp} is A-invariant, V_{λ} is A^{*}-invariant and V_{λ}^{\perp} is A^{*}-invariant.

Theorem 1.8.9. — (Spectral theorem) Let $n \in \mathbb{Z}_{>0}$ and $V = \mathbb{C}^n$ with inner product given by (1.8.1). (a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_n(\mathbb{C})$ such that $AA^* = A^*A$. Then there exists a unitary $U \in M_n(\mathbb{C})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

(b) Let $f: V \to V$ be a linear transformation such that $ff^* = f^*f$. Then there exists an orthonormal basis (u_1, \ldots, u_n) of V consisting of eigenvectors of f.

HW: Show that if $A \in M_n(\mathbb{C})$ is self adjoint then its eigenvalues are real. **HW**: Show that if $U \in M_n(\mathbb{C})$ is unitary then its eigenvalues have absolute value 1.

1.8.10. Some proofs. —

Proposition 1.8.10. — A sesquilinear form $\langle, \rangle: V \times V \to \mathbb{F}$ satisfies

(no isotropic vectors condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0.

if and only if it satsifies

(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp} = 0$.

Proof. — (Sketch) ⇒: Assume $w \in W \cap W^{\perp}$. Then $\langle w, w \rangle = 0$. So w = 0. So $W \cap W^{\perp} = 0$. \Leftarrow : Let $v \in V$ with $v \neq 0$. Since $\mathbb{F}v \cap (\mathbb{F}v)^{\perp} = 0$ then $\langle v, v \rangle \neq 0$.

Proposition 1.8.11. — Let V be a vector space with a sesquilinear form $\langle, \rangle: V \times V \rightarrow \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional and that (w_1, \ldots, w_k) is a basis of W. The following are equivalent:

(a) A dual basis to (w_1, \ldots, w_k) exists.

(b) The Gram matrix G of $\langle, \rangle \colon W \times W \to \mathbb{F}$ with respect to (w_1, \ldots, w_k) is invertible. (c) $W \cap W^{\perp} = 0$.

Proof. — (Sketch) (b) \Leftrightarrow (c): Let $w \in W \cap W^{\perp}$ and write $w = c_1 w_1 + \dots + c_k w_k$. Then

$$\begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix} = \begin{pmatrix} \langle w_1, w \rangle\\ \vdots\\ \langle w_k, w \rangle \end{pmatrix} = G \begin{pmatrix} \overline{c_1}\\ \vdots\\ \overline{c_k} \end{pmatrix} \quad \text{since} \quad 0 = \langle w_i, w \rangle = \sum_{l=1}^k \langle w_i, c_l w_l \rangle = \sum_{l=1}^k G(i, l)\overline{c_l}.$$

So columns of G are linearly independent if and only if $W \cap W^{\perp} = 0$. So G is invertible if and only if $W \cap W^{\perp} = 0$.

(a) \Leftrightarrow (b): Define

$$w^{i} = \sum_{l=1}^{k} G^{-1}(i,l)w_{l}, \quad \text{for } i \in \{1,\dots,k\}.$$

Then

$$\langle w^i, w_j \rangle = \sum_{l=1}^k G^{-1}(i, l) \langle w_l, w_j \rangle = \sum_{l=1}^k G^{-1}(i, l) G(l, j) = \delta_{ij}.$$

Thus the dual basis (w^1, \ldots, w^k) exists if and only if G is invertible.

Proposition 1.8.12. — (Characterization of orthogonal projection) Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\dim(V) = n$. Let W be a subspace of V such that $W \cap W^{\perp} = 0$. The orthogonal projection onto W is the unique linear transformation $P: V \to V$ such that

(1) If $v \in V$ then $P(v) \in W$.

(2) If $v \in V$ and $w \in W$ then $\langle v, w \rangle = \langle P(v), w \rangle$,

Proof. — (Sketch)

Since $P_W(v)$ is a linear combination of basis elements of W then $P_W(v) \in W$. Assume $v \in V$ and $w \in W$. Let $c_1, \ldots, c_k \in \mathbb{F}$ such that $w = c_1 w_1 + \cdots + c_k w_k$. Then

$$\langle P_W(v), w \rangle = \left\langle \sum_{i=1}^k \langle v, w_i \rangle w^i, \sum_{j=1}^k c_j w_j \right\rangle = \sum_{i=1}^k \overline{c_i} \langle v, w_i \rangle = \langle v, w \rangle$$

Thus $P_W(v)$ satisfies (1) and (2).

Assume $Q: V \to V$ is a linear transformation that satisfies (1) and (2). To show: If $v \in V$ then $Q(v) = P_W(v)$. Assume $v \in V$. If $w \in W$ then, by property (2), $\langle Q(v), w \rangle = \langle v, w \rangle = \langle P_W(v), w \rangle$. So, if $w \in W$ then $\langle P_W(v) - Q(v), w \rangle = 0$. Combining this with property (1), $P_W(v) - Q(v) \in W \cap W^{\perp} = 0$. So $P_W(v) - Q(v) = 0$. So $P_W = Q$.

Theorem 1.8.13. — Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with dim(V) = n. Let W be a subspace of V such that $W \cap W^{\perp} = 0$. Let P_W be the orthogonal projection onto W and let $P_{W^{\perp}} = 1 - P_W$. Then

$$P_W^2 = P_W, \quad P_{W^{\perp}}^2 = P_{W^{\perp}}, \quad P_W P_{W^{\perp}} = P_{W^{\perp}} P_W = 0, \quad 1 = P_W + P_{W^{\perp}}, \\ \ker(P_W) = W^{\perp}, \quad \operatorname{im}(P_W) = W \quad and \quad V = W \oplus W^{\perp}.$$

Proof. — (Sketch)

(a) Assume $v \in V$. Then, by properties (1) and (2),

$$P_W^2(v) = \sum_{i=1}^k \langle P_W(v), w^i \rangle w_i = \sum_{i=1}^k \langle v, w^i \rangle w_i = P_W(v).$$

So $P_W^2 = P_W$.

(b)
$$P_{W^{\perp}}^2 = (1 - P_W)^2 = 1 - 2P_W + P_W^2 = 1 - 2P_W + P_W = 1 - P_W = P_{W^{\perp}}.$$

(c) $P_W P_{W^{\perp}} = P_W (1 - P_W) - P_W = P^2 = P_W - P_W = 0$ and

(c) $P_W P_{W^{\perp}} = P_W (1 - P_W) = P_W - P_W^2 = P_W - P_W = 0$ and

 $P_{W^{\perp}}P_W = (1 - P_W)P_W = P_W - P_W^2 = P_W - P_W = 0.$

- (d) $P_W + P_{W^{\perp}} = P_W + (1 P_W) = 1.$
- (e) If $v \in \ker(P_W)$ then $\langle v, w \rangle = \langle P_W(v), w \rangle = \langle 0, w \rangle = 0$. So $v \in W^{\perp}$ and thus $\ker(P_W) \subseteq W^{\perp}$. Assume $v \in W^{\perp}$. If $w \in W$ then $\langle P_W(v), w \rangle = \langle v, w \rangle = 0$ and so $P_W(v) \in W^{\perp}$. By property (1), $P_W(v) \in W$ and so $P_W(v) \in W \cap W^{\perp} = 0$. So $v \in \ker(P_W)$ and $W^{\perp} \subseteq \ker(P_W)$. So $\ker(P_W) = W^{\perp}$.
- (f) By property (1), $\operatorname{im}(P_W) \subseteq W$. If $w \in W$ then $P_W(w) = w$. So $\operatorname{im}(P_W) = W$.
- (g) If $v \in V$ then $v = P_W(v) + (1 P_W)(v) \in W + W^{\perp}$. So $V = W + W^{\perp}$. By assumption $W \cap W^{\perp} = 0$, and so $V = W \oplus W^{\perp}$.

Theorem 1.8.14. — (Gram-Schmidt) Let \mathbb{F} be a field, $n \in \mathbb{Z}_{>0}$ and let (p_1, \ldots, p_n) be a basis of an \mathbb{F} -vector space V. Let $\langle, \rangle \colon V \times V \to \mathbb{F}$ be a sesquilinear form and assume that \langle, \rangle is Hermitian. (a) Define

$$b_1 = p_1,$$
 and $b_{n+1} = p_{n+1} - \langle p_{n+1}, b_1 \rangle b_1 - \dots - \langle p_{n+1}, b_n \rangle b_n$

Then (b_1, \ldots, b_n) is an orthogonal basis of V. (b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v \rangle \neq 0$. Define

$$||v|| = \sqrt{\langle v, v \rangle}, \quad for \ v \in V.$$

Let (b_1, \ldots, b_n) be an orthogonal basis of V. Define

$$u_1 = \frac{b_1}{\|b_1\|}, \quad \dots, \quad u_n = \frac{b_n}{\|b_n\|}.$$

Then (u_1, \ldots, u_n) is an orthonormal basis of V.

Proof. — (Sketch) The proof is by induction on n. For the base case, there is only one vector b_1 and so there is nothing to show. Induction step: Assume (b_1, \ldots, b_n) are orthogonal. Let $j \in \{1, \ldots, n\}$. Then

$$\begin{split} \langle b_{n+1}, b_j \rangle &= \langle p_{n+1} - \langle p_{n+1}, b_1 \rangle b_1 - \dots - \langle p_{n+1}, b_n \rangle b_n, b_j \rangle \\ &= \langle p_{n+1}, b_j \rangle - \langle p_{n+1}, b_1 \rangle \langle b_1, b_j \rangle - \dots - \langle p_{n+1}, b_n \rangle \langle b_n, b_j \rangle \\ &= \langle p_{n+1}, b_j \rangle - \langle p_{n+1}, b_j \rangle \langle b_j, b_j \rangle = \langle p_{n+1}, b_j \rangle - \langle p_{n+1}, b_j \rangle = 0 \quad \text{and} \\ \langle b_j, b_{n+1} \rangle &= \langle b_j, p_{n+1} - \langle p_{n+1}, b_1 \rangle b_1 - \dots - \langle p_{n+1}, b_n \rangle b_n \rangle \\ &= \langle b_j, p_{n+1} \rangle - \overline{\langle p_{n+1}, b_1 \rangle} \langle b_j, b_1 \rangle - \dots - \overline{\langle p_{n+1}, b_n \rangle} \langle b_j, b_n \rangle \\ &= \langle b_j, p_{n+1} \rangle - \overline{\langle p_{n+1}, b_j \rangle} \langle b_j, b_j \rangle = \langle b_j, p_{n+1} \rangle - \overline{\langle p_{n+1}, b_j \rangle} = 0, \end{split}$$

where the last equality follows from the assumption that \langle , \rangle is Hermitian. So (b_1, \ldots, b_{n+1}) are orthogonal.

Proposition 1.8.15. — Let $V = \mathbb{C}^n$ with inner product given by (1.8.1). Let

$$A \in M_n(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad and \quad V_\lambda = \ker(\lambda - A).$$

If $AA^* = A^*A$ then

 V_{λ} is A-invariant, V_{λ}^{\perp} is A-invariant, V_{λ} is A^{*}-invariant and V_{λ}^{\perp} is A^{*}-invariant. *Proof.* —

- (a) Let $p \in V_{\lambda}$. Then $Ap = \lambda p \in V_{\lambda}$. So V_{λ} is A invariant.
- (b) Let $p \in V_{\lambda}$. Since $A(A^*p) = A^*Ap = \lambda A^*p$ then $A^*p \in V_{\lambda}$. So V_{λ} is A^* invariant.
- (c) Let $z \in V_{\lambda}^{\perp}$. To show $Az_{\lambda} \in V_{\lambda}^{\perp}$. To show: If $u \in V_{\lambda}$ then $\langle Az, u \rangle = 0$. Assume $u \in V_{\lambda}$. To show: $\langle Az, u \rangle = 0$. By (b), $A^*u \in V_{\lambda}$, and so $\langle Az, u \rangle = \langle z, A^*u \rangle = 0$. So $Az \in V_{\lambda}^{\perp}$. So V_{λ}^{\perp} is A-invariant.
 - (d) Let $z \in V_{\lambda}^{\perp}$. To show: If $u \in V_{\lambda}$ then $\langle A^*z, u \rangle = 0$. $\langle A^*z, u \rangle = \langle z, Au \rangle = 0$, since $Au \in V_{\lambda}$.

So
$$A^*z \in V_{\lambda}^{\perp}$$
. So V_{λ}^{\perp} is A^* -invariant.

Theorem 1.8.16. — (Spectral theorem)

Let $n \in \mathbb{Z}_{>0}$ and $V = \mathbb{C}^n$ with inner product given by (1.8.1). (a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_n(\mathbb{C})$ such that $AA^* = A^*A$. Then there exists a unitary $U \in M_n(\mathbb{C})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

(b) Let $f: V \to V$ be a linear transformation such that $ff^* = f^*f$. Then there exists an orthonormal basis (u_1, \ldots, u_n) of V consisting of eigenvectors of f.

Proof. — The two statements are equivalent via the relation between A and f given by

$$\begin{array}{ccccc} f \colon & V & \longrightarrow & V \\ & v & \longmapsto & Av. \end{array}$$

The proof is by induction on n.

The base case is when $\dim(V) = 1$. In this case $A \in M_1(\mathbb{C})$ is diagonal.

The induction step:

For $\mu \in \mathbb{C}$ let $V_{\mu} = \ker(\mu - f)$, the μ -eigenspace of f.

Since \mathbb{C} is algebraically closed, there exists $\lambda \in \mathbb{C}$ which is a root of the characteristic polynomial det(x - A).

So there exists $\lambda \in \mathbb{C}$ such that $\det(\lambda - A) = 0$.

So there exists $\lambda \in \mathbb{C}$ such that $V_{\lambda} = \ker(\lambda - A) \neq 0$.

Let $k = \dim(V_{\lambda})$ and let (p_1, \ldots, p_k) be a basis of V_{λ} .

Use Gram-Schmidt to convert (p_1, \ldots, p_k) to an orthogonal basis (u_1, \ldots, u_k) of V_{λ} .

By definition of V_{λ} , the basis vectors (u_1, \ldots, u_k) are all eigenvectors of f (of eigenvalue

 λ .

40

By Theorem 1.8.5 (orthogonal decomposition) and Proposition 1.8.8,

 $V = V_{\lambda} \oplus (V_{\lambda})^{\perp}$ and V_{λ}^{\perp} is A-invariant and A*-invariant.

Let

Then $g_1 = f_1^*$ and $f_1 f_1^* = f_1^* f_1$. Thus, by induction, there exists an orthonormal basis (u_{k+1}, \ldots, u_n) of V_{λ}^{\perp} consisting of eigenvectors of f_1 .

By definition of f_1 , eigenvectors of f_1 are eigenvectors of f.

So $(u_1, \ldots, u_k, u_{k+1}, \ldots, u_n)$ is an orthonormal basis of eigenvectors of f.