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1.8. Bilinear, Sesquilinear and quadratic forms for GTLA

1.8.1. Bilinear forms. — Let F be a field and let V be an F-vector space. A bilinear
form on V is a function

h, i : V ⇥ V ! F

(v, w) 7�! hv, wi
such that

(a) If v1, v2, w 2 W then hv1 + v2, wi = hv1, wi+ hv2, wi,
(b) If v, w1, w2 2 V then hv, w1 + w2i = hv, w1i+ hv, w2i,
(c) If c 2 F and v, w 2 W then hcv, wi = chv, wi,
(d) If c 2 F and v, w 2 W then hv, cwi = chv, wi.

A bilinear form h, i : V ⇥ V ! F is symmetric if it satsfies:

(S) If v, w 2 V then hv, wi = hw, vi.

A bilinear form h, i : V ⇥ V ! F is skew-symmetric if it satsfies:

(A) If v, w 2 V then hv, wi = �hw, vi.

1.8.2. Quadratic forms. — Let F be a field, V and F-vector space and h, i : V ⇥V ! F

a bilinear form. The quadratic form associated to h, i is the function

k k
2 : V ! F given by kvk

2 = hv, vi.

Theorem 1.8.1. — Let V be an inner product space.
(a) (Parallelogram property) If x, y 2 V then

kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(b) (Pythagorean theorem) If x, y 2 V and hx, yi = 0 and hy, xi = 0 then

kxk
2 + kyk

2 = kx+ yk
2
.

(c) (Reconstruction) Assume that h, i is symmetric and that 2 6= 0 in F. Let x, y 2 V .
Then

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2).

1.8.3. Sesquilinear forms. — Let F be a field and let : F ! F be a function that
satisfies:

if c1, c2 2 F then c1 + c2 = c1 + c2, c1c2 = c2 c1 and 1 = 1.

The favourite example of such a function is complex conjugation. The other favourite
example is the identity map idF.

Let V be an F-vector space. A sesquilinear form on V is a function

h, i : V ⇥ V ! F

(v, w) 7�! hv, wi
such that

(a) If v1, v2, w 2 W then hv1 + v2, wi = hv1, wi+ hv2, wi,
(b) If v, w1, w2 2 V then hv, w1 + w2i = hv, w1i+ hv, w2i,
(c) If c 2 F and v, w 2 W then hcv, wi = chv, wi,
(d) If c 2 F and v, w 2 W then hv, cwi = chv, wi.

A sesquilinear form h, i : V ⇥ V ! F is Hermitian if h, i satsfies:

(H) If v, w 2 V then hv, wi = hw, vi.
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1.8.4. Gram matrix of h, i with respect to a basis B. — Assume n 2 Z>0 and
dim(V ) = n. Let h, i : V ⇥ V ! F be a bilinear form and let B = {b1, . . . , bn} be a basis
of V . The Gram matrix of h, i with respect to the basis B is

GB 2 Mn(F) given by GB(i, j) = hbi, bji.

Let C = {c1, . . . , cn} be another basis of V and let PCB be the change of basis matrix
given by

ci =
nX

i=1

PBC(j, i)bj, for i 2 {1, . . . , n}.

Since

GC(i, j) = hci, cji =
nX

k,l=1

hPBC(k, i)bk, PBC(l, j)bli =
nX

k,l=1

PBC(k, i)GB(k, l)PBC(l, j),

then
GC = P

t

BC
GBPCB,

1.8.5. Orthogonals, Isotropy and dual bases. — Let W ✓ V be a subspace of V .
The orthogonal to W is

W
? = {v 2 V | if w 2 W then hv, wi = 0}.

The subspace W is nonisotropic if W \W
? = 0.

Proposition 1.8.2. — A sesquilinear form h, i : V ⇥ V ! F satisfies

(no isotropic vectors condition) If v 2 V and hv, vi = 0 then v = 0.

if and only if it satsifies

(no isotropic subspaces condition) If W is a subspace of V then W \W
? = 0.

Let k 2 Z>0 and assume that dim(W ) = k. Let (w1, . . . , wk) be a basis of W . A dual
basis to (w1, . . . , wk) is a basis (w1

, . . . , w
k) of W such that

if i, j 2 {1, . . . , k} then hw
i
, wji = �ij.

Proposition 1.8.3. — Let V be a vector space with a sesquilinear form h, i : V ⇥V ! F.
Let W ✓ V be a subspace of V . Assume W is finite dimensional and that (w1, . . . , wk) is
a basis of W . The following are equivalent:
(a) A dual basis to (w1, . . . , wk) exists.
(b) The Gram matrix G of h, i : W ⇥W ! F with respect to (w1, . . . , wk) is invertible.
(c) W \W

? = 0.

1.8.6. Orthogonal projections. — Let F be a field and let V be an F-vector space.
Let h, i : V ⇥ V ! F be a seqsuilinear form.

Let k 2 Z>0 and let W be a subspace of V such that dim(W ) = k and W \W
? = 0.

Let (w1, . . . , wk) be a basis of W and let (w1
, . . . , w

k) be the dual basis of W . The
orthogonal projection onto W is the function

PW : V ! V given by PW (v) =
kX

i=1

hv, wiiw
i
.
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The following proposition shows that PW does not depend on which choice of basis of W
is used to construct PW .

Proposition 1.8.4. — (Characterization of orthogonal projection) Let n 2 Z>0 and let
V be an inner product space with dim(V ) = n. Let W be a subspace of V such that
W \ W

? = 0. The orthogonal projection onto W is the unique linear transformation
P : V ! V such that

(1) If v 2 V then P (v) 2 W .
(2) If v 2 V and w 2 W then hv, wi = hP (v), wi,

The following proposition explains how PW produces the decomposition V = W �W
?.

Theorem 1.8.5. — Let n 2 Z>0 and let V be an inner product space with dim(V ) = n.
Let W be a subspace of V such that W \W

? = 0. Let PW be the orthogonal projection
onto W and let PW? = 1� PW . Then

P
2
W

= PW , P
2
W? = PW? , PWPW? = PW?PW = 0, 1 = PW + PW? ,

ker(PW ) = W
?
, im(PW ) = W and V = W �W

?
.

1.8.7. Orthonormal bases. — Let n 2 Z>0 and let V be an inner product space with
dim(V ) = n. An orthonormal basis of V , or self-dual basis of V , is a basis {u1, . . . , un}

such that

if i, j 2 {1, . . . , n} then hui, uji =

(
0, if i 6= j,

1, if i = j.

An orthogonal basis in V is a basis {b1, . . . , bn} such that

if i, j 2 {1, . . . , n} and i 6= j then hbi, bji = 0.

The following theorem guarantees that, in some favourite examples, orthonormal bases
exist.

Theorem 1.8.6. — (Gram-Schmidt) Let F be a field, n 2 Z>0 and let (p1, . . . , pn) be a
basis of an F-vector space V . Let h, i : V ⇥V ! F be a sesquilinear form and assume that
h, i is Hermitian.
(a) Define

b1 = p1, and bn+1 = pn+1 � hpn+1, b1ib1 � · · ·� hpn+1, bnibn.

Then (b1, . . . , bn) is an orthogonal basis of V .
(b) Assume that F is a field in which square roots can be made sense of and that if v 2 V

and v 6= 0 then hv, vi 6= 0. Define

kvk =
p
hv, vi, for v 2 V .

Let (b1, . . . , bn) be an orthogonal basis of V . Define

u1 =
b1

kb1k
, . . . , un =

bn

kbnk
.

Then (u1, . . . , un) is an orthonormal basis of V .
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1.8.8. Adjoints of linear transformations. — Let V be an inner product space and
let f : V ! V be a linear transformation.

• The adjoint of f is the linear transformation f
⇤ : V ! V determined by

if x, y 2 V then hf(x), yi = hx, f
⇤(y)i.

• The linear transformation f is self adjoint if f satisfies:

if x, y 2 V then hf(x), yi = hx, f(y)i.

• The linear transformation f is an isometry if f satisfies:

if x, y 2 V then hf(x), f(y)i = hx, yi.

• The linear transformation f is normal if ff ⇤ = f
⇤
f .

HW: Let V = F
n with basis (e1, . . . , en) and inner product given by

ei =

0

BBBBBBBBBB@

0
.
.
.

0
1
0
.
.
.

0

1

CCCCCCCCCCA

with 1 in the ith row and hei, eji = �ij.

Let f : V ! V be a linear transformation of V and let A be the matrix of f with respect
to the basis (e1, . . . , en). Show that, with respect to the basis (e1, . . . , en),

the matrix of f ⇤ is A
⇤ = A

t

.

1.8.9. The Spectral theorem. — Let A 2 Mn(C) and let V = C
n with inner product

given by

(1.8.1)

*0

B@
x1
.
.
.

xn

1

CA ,

0

B@
y1
.
.
.

yn

1

CA

+
= x1y1 + · · · xnyn.

Let A 2 Mn(C).

• The adjoint of A is the matrix A
⇤
2 Mn(C) given by A

⇤(i, j) = A(j, i).
• The matrix A is self adjoint if A = A

⇤.
• The matrix A is unitary if AA⇤ = 1.
• The matrix A is normal if AA⇤ = A

⇤
A.

Write A
⇤ = A

t

. The unitary group is

Un(C) = {U 2 Mn(C) | UU
⇤ = 1}.

Theorem 1.8.7. — Let V = C
n with inner product given by (1.8.1). The function

n ordered orthonormal bases
(u1, . . . , un) of Cn

o
�! Un(C)

(u1, . . . , un) 7�! U =

0

@
| |

u1 · · · un

| |

1

A
is a bijection.
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The following proposition explains the role of normal matrices.

Proposition 1.8.8. — Let V = C
n with inner product given by (1.8.1). Let

A 2 Mn(C), � 2 C and V� = ker(�� A).

If AA⇤ = A
⇤
A then

V� is A-invariant, V
?
�

is A-invariant, V� is A
⇤-invariant and V

?
�

is A
⇤-invariant.

Theorem 1.8.9. — (Spectral theorem)
Let n 2 Z>0 and V = C

n with inner product given by (1.8.1).
(a) Let n 2 Z>0 and A 2 Mn(C) such that AA

⇤ = A
⇤
A. Then there exists a unitary

U 2 Mn(C) and �1, . . . ,�n 2 C such that

U
�1
AU = diag(�1, . . . ,�n).

(b) Let f : V ! V be a linear transformation such that ff ⇤ = f
⇤
f . Then there exists an

orthonormal basis (u1, . . . , un) of V consisting of eigenvectors of f .

HW: Show that if A 2 Mn(C) is self adjoint then its eigenvalues are real.

HW: Show that if U 2 Mn(C) is unitary then its eigenvalues have absolute value 1.

1.8.10. Some proofs. —

Proposition 1.8.10. — A sesquilinear form h, i : V ⇥ V ! F satisfies

(no isotropic vectors condition) If v 2 V and hv, vi = 0 then v = 0.

if and only if it satsifies

(no isotropic subspaces condition) If W is a subspace of V then W \W
? = 0.

Proof. — (Sketch)
): Assume w 2 W \W

?. Then hw,wi = 0. So w = 0. So W \W
? = 0.

(: Let v 2 V with v 6= 0. Since Fv \ (Fv)? = 0 then hv, vi 6= 0.

Proposition 1.8.11. — Let V be a vector space with a sesquilinear form h, i : V ⇥V !

F. Let W ✓ V be a subspace of V . Assume W is finite dimensional and that (w1, . . . , wk)
is a basis of W . The following are equivalent:
(a) A dual basis to (w1, . . . , wk) exists.
(b) The Gram matrix G of h, i : W ⇥W ! F with respect to (w1, . . . , wk) is invertible.
(c) W \W

? = 0.

Proof. — (Sketch)
(b) , (c): Let w 2 W \W

? and write w = c1w1 + · · ·+ ckwk. Then
0

B@
0
.
.
.

0

1

CA =

0

B@
hw1, wi

.

.

.

hwk, wi

1

CA = G

0

B@
c1
.
.
.

ck

1

CA since 0 = hwi, wi =
kX

l=1

hwi, clwli =
kX

l=1

G(i, l)cl.

So columns of G are linearly independent if and only if W \W
? = 0. So G is invertible

if and only if W \W
? = 0.
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(a) , (b): Define

w
i =

kX

l=1

G
�1(i, l)wl, for i 2 {1, . . . , k}.

Then

hw
i
, wji =

kX

l=1

G
�1(i, l)hwl, wji =

kX

l=1

G
�1(i, l)G(l, j) = �ij.

Thus the dual basis (w1
, . . . , w

k) exists if and only if G is invertible.

Proposition 1.8.12. — (Characterization of orthogonal projection) Let n 2 Z>0 and
let V be an inner product space with dim(V ) = n. Let W be a subspace of V such that
W \ W

? = 0. The orthogonal projection onto W is the unique linear transformation
P : V ! V such that

(1) If v 2 V then P (v) 2 W .
(2) If v 2 V and w 2 W then hv, wi = hP (v), wi,

Proof. — (Sketch)
Since PW (v) is a linear combination of basis elements of W then PW (v) 2 W . Assume
v 2 V and w 2 W . Let c1, . . . , ck 2 F such that w = c1w1 + · · ·+ ckwk. Then

hPW (v), wi =
D kX

i=1

hv, wiiw
i
,

kX

j=1

cjwj

E
=

kX

i=1

cihv, wii = hv, wi.

Thus PW (v) satisfies (1) and (2).
Assume Q : V ! V is a linear transformation that satisfies (1) and (2).

To show: If v 2 V then Q(v) = PW (v).
Assume v 2 V .
If w 2 W then, by property (2), hQ(v), wi = hv, wi = hPW (v), wi.
So, if w 2 W then hPW (v)�Q(v), wi = 0.
Combining this with property (1), PW (v)�Q(v) 2 W \W

? = 0.
So PW (v)�Q(v) = 0.
So PW = Q.

Theorem 1.8.13. — Let n 2 Z>0 and let V be an inner product space with dim(V ) = n.
Let W be a subspace of V such that W \W

? = 0. Let PW be the orthogonal projection
onto W and let PW? = 1� PW . Then

P
2
W

= PW , P
2
W? = PW? , PWPW? = PW?PW = 0, 1 = PW + PW? ,

ker(PW ) = W
?
, im(PW ) = W and V = W �W

?
.

Proof. — (Sketch)

(a) Assume v 2 V . Then, by properties (1) and (2),

P
2
W
(v) =

kX

i=1

hPW (v), wi
iwi =

kX

i=1

hv, w
i
iwi = PW (v).

So P
2
W

= PW .
(b) P

2
W? = (1� PW )2 = 1� 2PW + P

2
W

= 1� 2PW + PW = 1� PW = PW? .
(c) PWPW? = PW (1� PW ) = PW � P

2
W

= PW � PW = 0 and
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PW?PW = (1� PW )PW = PW � P
2
W

= PW � PW = 0.
(d) PW + PW? = PW + (1� PW ) = 1.
(e) If v 2 ker(PW ) then hv, wi = hPW (v), wi = h0, wi = 0.

So v 2 W
? and thus ker(PW ) ✓ W

?.
Assume v 2 W

?.
If w 2 W then hPW (v), wi = hv, wi = 0 and so PW (v) 2 W

?.
By property (1), PW (v) 2 W and so PW (v) 2 W \W

? = 0.
So v 2 ker(PW ) and W

?
✓ ker(PW ).

So ker(PW ) = W
?.

(f) By property (1), im(PW ) ✓ W . If w 2 W then PW (w) = w. So im(PW ) = W .
(g) If v 2 V then v = PW (v) + (1� PW )(v) 2 W +W

?. So V = W +W
?.

By assumption W \W
? = 0, and so V = W �W

?.

Theorem 1.8.14. — (Gram-Schmidt) Let F be a field, n 2 Z>0 and let (p1, . . . , pn) be
a basis of an F-vector space V . Let h, i : V ⇥ V ! F be a sesquilinear form and assume
that h, i is Hermitian.
(a) Define

b1 = p1, and bn+1 = pn+1 � hpn+1, b1ib1 � · · ·� hpn+1, bnibn.

Then (b1, . . . , bn) is an orthogonal basis of V .
(b) Assume that F is a field in which square roots can be made sense of and that if v 2 V

and v 6= 0 then hv, vi 6= 0. Define

kvk =
p
hv, vi, for v 2 V .

Let (b1, . . . , bn) be an orthogonal basis of V . Define

u1 =
b1

kb1k
, . . . , un =

bn

kbnk
.

Then (u1, . . . , un) is an orthonormal basis of V .

Proof. — (Sketch) The proof is by induction on n.
For the base case, there is only one vector b1 and so there is nothing to show.
Induction step: Assume (b1, . . . , bn) are orthogonal.
Let j 2 {1, . . . , n}. Then

hbn+1, bji = hpn+1 � hpn+1, b1ib1 � · · ·� hpn+1, bnibn, bji

= hpn+1, bji � hpn+1, b1ihb1, bji � · · ·� hpn+1, bnihbn, bji

= hpn+1, bji � hpn+1, bjihbj, bji = hpn+1, bji � hpn+1, bji = 0 and

hbj, bn+1i = hbj, pn+1 � hpn+1, b1ib1 � · · ·� hpn+1, bnibni

= hbj, pn+1i � hpn+1, b1ihbj, b1i � · · ·� hpn+1, bnihbj, bni

= hbj, pn+1i � hpn+1, bjihbj, bji = hbj, pn+1i � hpn+1, bji = 0,

where the last equality follows from the assumption that h, i is Hermitian.
So (b1, . . . , bn+1) are orthogonal.
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Proposition 1.8.15. — Let V = C
n with inner product given by (1.8.1). Let

A 2 Mn(C), � 2 C and V� = ker(�� A).

If AA⇤ = A
⇤
A then

V� is A-invariant, V
?
�

is A-invariant, V� is A
⇤-invariant and V

?
�

is A
⇤-invariant.

Proof. —

(a) Let p 2 V�. Then Ap = �p 2 V�. So V� is A invariant.
(b) Let p 2 V�. Since A(A⇤

p) = A
⇤
Ap = �A

⇤
p then A

⇤
p 2 V�. So V� is A⇤ invariant.

(c) Let z 2 V
?
�
.

To show Az� 2 V
?
�
.

To show: If u 2 V� then hAz, ui = 0.
Assume u 2 V�.
To show: hAz, ui = 0.
By (b), A⇤

u 2 V�, and so hAz, ui = hz, A
⇤
ui = 0.

So Az 2 V
?
�
.

So V
?
�

is A-invariant.
(d) Let z 2 V

?
�
.

To show: If u 2 V� then hA
⇤
z, ui = 0.

hA
⇤
z, ui = hz, Aui = 0, since Au 2 V�.

So A
⇤
z 2 V

?
�
. So V

?
�

is A⇤-invariant.

Theorem 1.8.16. — (Spectral theorem)
Let n 2 Z>0 and V = C

n with inner product given by (1.8.1).
(a) Let n 2 Z>0 and A 2 Mn(C) such that AA

⇤ = A
⇤
A. Then there exists a unitary

U 2 Mn(C) and �1, . . . ,�n 2 C such that

U
�1
AU = diag(�1, . . . ,�n).

(b) Let f : V ! V be a linear transformation such that ff ⇤ = f
⇤
f . Then there exists an

orthonormal basis (u1, . . . , un) of V consisting of eigenvectors of f .

Proof. — The two statements are equivalent via the relation between A and f given by

f : V �! V

v 7�! Av.

The proof is by induction on n.
The base case is when dim(V ) = 1. In this case A 2 M1(C) is diagonal.
The induction step:
For µ 2 C let Vµ = ker(µ� f), the µ-eigenspace of f .
Since C is algebraically closed, there exists � 2 C which is a root of the characteristic
polynomial det(x� A).
So there exists � 2 C such that det(�� A) = 0.
So there exists � 2 C such that V� = ker(�� A) 6= 0.
Let k = dim(V�) and let (p1, . . . , pk) be a basis of V�.
Use Gram-Schmidt to convert (p1, . . . , pk) to an orthogonal basis (u1, . . . , uk) of V�.
By definition of V�, the basis vectors (u1, . . . , uk) are all eigenvectors of f (of eigenvalue
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�.
By Theorem 1.8.5 (orthogonal decomposition) and Proposition 1.8.8,

V = V� � (V�)
? and V

?
�

is A-invariant and A
⇤-invariant.

Let
f1 : V

?
�

! V
?
�

v 7! Av
and

g1 : V
?
�

! V
?
�

v 7! A
⇤
v

Then g1 = f
⇤
1 and f1f

⇤
1 = f

⇤
1 f1.

Thus, by induction, there exists an orthonormal basis (uk+1, . . . , un) of V ?
�

consisting of
eigenvectors of f1.
By definition of f1, eigenvectors of f1 are eigenvectors of f .
So (u1, . . . , uk, uk+1, . . . , un) is an orthonormal basis of eigenvectors of f .


