MAST20022 Group Theory and Linear Algebra

Assignment 2

Due: 4pm Wednesday 16 September 2020

1. Consider the matrix
$$M = \begin{bmatrix} i & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & i \end{bmatrix} \in M_3(\mathbb{C}).$$

_

- (a) Find the minimal polynomial of M.
- (b) Use your answer for part (a) to determine whether M is diagonalizable.
- (c) Find the Jordan normal form of M.
- 2. Let $A \in M_n(\mathbb{C})$ and suppose that $A^3 = A^2$. Show that A^2 is diagonalisable and $A^2 A$ is nilpotent.
- 3. Let $A \in M_3(\mathbb{R})$ be given by

$$A = \begin{bmatrix} 5 & 5 & -3 \\ -2 & -3 & 2 \\ 4 & 2 & -1 \end{bmatrix}$$

- (a) Show that X 1 and $X^2 + 1$ are relatively prime in $\mathbb{R}[X]$.
- (b) Given that the characteristic polynomial of A is $(X 1)(X^2 + 1)$, find the minimal polynomial $m(X) \in \mathbb{R}[X]$ of A.
- (c) Find matrices $B \in M_1(\mathbb{R}), C \in M_2(\mathbb{R})$, and $P \in M_3(\mathbb{R})$ such that P is invertible and

$$P^{-1}AP = B \oplus C$$

- 4. Suppose $f: \mathbb{C}^5 \to \mathbb{C}^5$ is a linear transformation such that $f^5 = f^4$ and $\dim(\ker(f)) = 3$.
 - (a) Describe all the possibilities for the Jordan normal form of f that are compatible with these conditions.
 - (b) Suppose that, in addition to the above conditions, f satisfies dim $(\ker(f^2)) = 5$. What now are the possibilities for the Jordan normal form of f?

5. Let

$$\mathbb{A} = \{ c + d\sqrt{-5} \mid c, d \in \mathbb{Z} \} \quad \text{and} \quad \mathbb{F} = \{ c + d\sqrt{-5} \mid c, d \in \mathbb{Q} \}.$$

- (a) Let $c, d \in \mathbb{Z}$, not both 0. Find the inverse of $c + d\sqrt{-5}$ in \mathbb{F} .
- (b) Show that the only invertible elements of A are 1 and -1.
- (c) Show that 2 cannot be factored in \mathbb{A} (without using an invertible element).
- (d) Check that, in A, $6 = (1 + \sqrt{-5})(1 \sqrt{-5})$ and $6 = 2 \cdot 3$ and then show that 2 is not a factor of $1 + \sqrt{-5}$ and 2 is not a factor of $1 \sqrt{-5}$.