MAST20022 Group Theory and Linear Algebra

Assignment 3

Due: 4pm Wednesday October 21, 2020

1. Determine whether the matrix $A = \begin{pmatrix} 3 & 4i \\ 4i & 3 \end{pmatrix}$ is (i) Hermitian, (ii) unitary, (iii) normal, (iv) diagonalizable. Always justify your answers.

- 2. Let V be a complex finite dimensional inner product space and let $f: V \to V$ be a linear transformation satisfying $f^*f = ff^*$.
 - (a) State the spectral theorem and deduce that there is an orthonormal basis of V consisting of eigenvectors of f.
 - (b) Show that there is a linear transformation $g: V \to V$ so that $f = g^2$.
 - (c) Show that if every eigenvalue of f has absolute value 1, then $f^* = f^{-1}$.
 - (d) Give an example to show that the result in (a) can fail if V is a real inner product space. (Hint: Consider the case $V = \mathbb{R}^2$.)
- 3. First Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $\operatorname{Card}(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that G has a p-Sylow subgroup by completing the following steps.
 - (a) Let $\Lambda^{p^a}(G)$ be the set of subsets of G of cardinality p^a . Show that if $j \in \{1, \ldots, p^a\}$ and p^i divides $p^a b - j$ then p^i divides $p^a - j$. Conclude that

$$\operatorname{Card}(\Lambda^{p^a}(G)) = \begin{pmatrix} p^a b \\ p^a \end{pmatrix}$$
 is not divisible by p .

(b) Consider the action of G on $\Lambda^{p^a}(G)$ by left multiplication and use

$$\operatorname{Card}(\Lambda^{p^a}(G)) = \sum_{\text{distinct orbits}} \operatorname{Card}(GS),$$

to conclude that there exists $S \in \Lambda^{p_a}(G)$ such that the cardinality of the orbit of S is not divisible by p.

- (c) Let $P = \operatorname{Stab}_G(S)$ and show that $\operatorname{Card}(P) = p^a$.
- 4. Second Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $\operatorname{Card}(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that all p-Sylow subgroups of G are conjugate by completing the following steps.
 - (a) Let P and H be p-Sylow subgroups of G. Let H act on G/P by left multiplication. Use

$$\operatorname{Card}(G/P) = \sum_{\text{distinct orbits}} \operatorname{Card}(HgP),$$

to show that there is an orbit HgP with Card(HgP) = 1.

- (b) Show that $H \subseteq gPg^{-1}$ and conclude that $H = gPg^{-1}$.
- 5. Third Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $\operatorname{Card}(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that the number of p-Sylow subgroups of G is 1 mod p by completing the following steps.
 - (a) Let P be a p-Sylow subgroup of G. Let P act on the set S of p-Sylow subgroups of G by conjugation. Show that if P * Q is an orbit under this action then Card(P * Q) = 1 or p divides Card(P * Q).
 - (b) Assume $\operatorname{Card}(P * Q) = 1$ and let N(Q) be the normalizer of Q. Show that both P and Q are both p-Sylow subgroups of N(Q).
 - (c) Assume $\operatorname{Card}(P * Q) = 1$. Use the second Sylow theorem and part (b) to show that P = Q.
 - (d) Use part (a) and (c) and

$$\operatorname{Card}(\mathcal{S}) = \sum_{\text{distinct orbits}} \operatorname{Card}(P * Q)$$

to conclude that $Card(\mathcal{S}) = 1 \mod p$.

- 6. Fourth Sylow theorem. Let G be a finite group. Let $p \in \mathbb{Z}_{\geq 0}$ be a prime. Write $\operatorname{Card}(G) = p^a b$ where b is not divisible by p. A p-Sylow subgroup of G is a subgroup of G of cardinality p^a . Show that the number of p-Sylow subgroups divides $\operatorname{Card}(G)$ by completing the following steps.
 - (a) Let G act on the set \mathcal{P} of p-Sylow subgroups of G by conjugation. Use the second Sylow theorem to conclude that there is only one orbit under this action.
 - (b) Conclude, from (a), that the number of p-Sylow subgroups divides Card(G).