Problem sheet 1

Integers, modular arithmetic, gcd, Euclid's algorithm

Vocabulary

- (1) Define set, subset and equal sets and give some illustrative examples.
- (2) Define union of sets, intersection of sets, and product of sets and give some illustrative examples.
- (3) Define partition of a set and give some illustrative examples.
- (4) Define relation, symmetric relation, reflexive relation and transitive relation and give some illustrative examples.
- (5) Define equivalence relation and equivalence class and give some illustrative examples.
- (6) Define the order \leq on \mathbb{Z} and give some illustrative examples.
- (7) Define well ordered set and give some illustrative examples.
- (8) Let $d \in \mathbb{Z}$. Define the ideal generated by d and give some illustrative examples.
- (9) Let $d, a \in \mathbb{Z}$ and define
 - (i) d divides a,
 - (ii) d is a factor of a.
 - (iii) a is a multiple of d,
 - and give some illustrative examples.
- (10) Let $a, b \in \mathbb{Z}$. Define greatest common divisor of a and b and give some illustrative examples.
- (11) Define relatively prime integers and give some illustrative examples.
- (12) Define prime integer and give some illustrative examples.
- (13) Let $m \in \mathbb{Z}$. Define congruence modulo m and give some illustrative examples.
- (14) Let $m \in \mathbb{Z}$. Define congruence class modulo m and give some illustrative examples.
- (15) Define $\mathbb{Z}_{>0}$ and give some illustrative examples.
- (16) Define $\mathbb{Z}_{>0}$ and the operations of addition and multiplication on $\mathbb{Z}_{>0}$ and give some illustrative examples.

- (17) Define $\mathbb{Z}_{\geq 0}$ and give some illustrative examples.
- (18) Define $\mathbb{Z}_{\geq 0}$ and the operations of addition and multiplication on $\mathbb{Z}_{\geq 0}$ and give some illustrative examples.
- (19) Define \mathbb{Z} and give some illustrative examples.
- (20) Define \mathbb{Z} and the operations of addition and multiplication on \mathbb{Z} and give some illustrative examples.
- (21) Let $m \in \mathbb{Z}$. Define $\mathbb{Z}/m\mathbb{Z}$ and give some illustrative examples.
- (22) Let $m \in \mathbb{Z}$. Define $\mathbb{Z}/m\mathbb{Z}$ and the operations of addition and multiplication on $\mathbb{Z}/m\mathbb{Z}$ and give some illustrative examples.
- (23) Let $m \in \mathbb{Z}$. Define multiplicative inverse in $\mathbb{Z}/m\mathbb{Z}$ and give some illustrative examples.
- (24) Which sets are the three elements of $\mathbb{Z}/3\mathbb{Z}$?

Results

- (1) (Division with remainder) Show that if $a, d \in \mathbb{Z}$ and d > 0 then there exist unique integers q and r such that $0 \leq r < d$ and a = qd + r.
- (2) Let $a, b, c \in \mathbb{Z}$. Show that if $a \mid b$ and $b \mid c$ then $a \mid c$.
- (3) Let a, b and c be integers. Show that if $a \mid b$ and $a \mid c$ then $a^2 \mid (b^2 + 2c^2)$.
- (4) Show that if a, b, c, d are integers such that $a \mid b$ and $c \mid d$ then $ac \mid bd$.
- (5) Prove that if a, b, c, d, x, y are integers such that $a \mid b$ and $a \mid c$ then $a \mid (xb + yc)$.
- (6) Prove that if a, b are positive integers such that $a \mid b$ and $b \mid a$ then a = b.
- (7) Show that if $a, d \in ZZ$ and $q_1, r_1, q_2, r_2 \in \mathbb{Z}$ and $0 \leq r_1 < d$ and $0 \leq r_2 < d$ and $a = q_1d + r + 1$ and $a = q_2d + r_2$ then $q_1 = q_2$ and $r_1 = r_2$.
- (8) Let $a, b \in \mathbb{Z}$. Show that
 - (a) gcd(a,b) = gcd(b,a) = gcd(-a,b).
 - (b) gcd(a,0) = a,
 - (c) If q and r are integers such that a = bq + r then gcd(a, b) = gcd(b, r).
- (9) Let $a, b \in \mathbb{Z}$ and let d be the greatest common divisor of a and b. Show that there exist integers x and y such that ax + by = d.
- (10) Let $a, b \in \mathbb{Z}$ and let d be the greatest common divisor of a and b. Show that d is the largest integer that divides both a and b.

- (11) Let $d, a, b \in \mathbb{Z}$. Show that if $d \mid ab$ and gcd(a, d) = 1 then $d \mid b$.
- (12) Let $p, a, b \in \mathbb{Z}$. Show that if p is prime and $p \mid ab$ then $p \mid a$ or $p \mid b$.
- (13) Give an example of positive integers a, b, c such that $a \mid c$ and $b \mid c$ but $ab \mid c$.
- (14) Let $a, b, c \in \mathbb{Z}$ be integers with gcd(a, b) = 1. Prove that if $a \mid c$ and $b \mid c$ then $ab \mid c$.
- (15) Let $m \in \mathbb{Z}_{\geq 0}$ Prove that congruence mod m is an equivalence relation.
- (16) Let $m \in \mathbb{Z}_{\geq 0}$. Prove that the operation of addition on $\mathbb{Z}/m\mathbb{Z}$ is well defined.
- (17) Let $m \in \mathbb{Z}_{\geq 0}$. Prove that the operation of multiplication on $\mathbb{Z}/m\mathbb{Z}$ is well defined.
- (18) Let $m \in \mathbb{Z}_{\geq 0}$ and let $a \in \mathbb{Z}$. Prove that \bar{a} has a multiplicative inverse in $\mathbb{Z}/m\mathbb{Z}$ if and only if gcd(a, m) = 1.
- (19) Let $p \in \mathbb{Z}$ be prime. Show that every non-zero element of $\mathbb{Z}/p\mathbb{Z}$ has a multiplicative inverse.
- (20) Prove that if $a = b \mod m$ and $b = c \mod m$ then $a = c \mod m$.
- (21) (a) Prove that if a, b, c are integers with $ac = bc \mod m$ and gcd(c, m) = 1 then $a = b \mod m$.
 - (b) Give an example to show that this result fails if we drop the condition that gcd(c, m) = 1.
 - (c) What can you conclude if gcd(c, m) = d?
- (22) (a) Show that if p then p divides the binomial coefficient $\binom{p}{k} = \frac{p!}{p!(p-k)!}$, for 0 < k < p.
 - (b) . Deduce, using induction on n and the binomial theorem, that if p is prime then $n^p = n \mod p$, for all natural numbers n ("Fermat?s Little Theorem").

Examples and calculations

- (1) (a) Find the quotient and remainder when 25 is divided by 3.
 - (b) Find the quotient and remainder when 68 is divided by 7.
 - (c) Find the quotient and remainder when -33 is divided by 7.
 - (d) Find the quotient and remainder when -25 is divided by 3.
- (2) (a) Find the quotient and remainder when 25 is divided by -3.
 - (b) Find the quotient and remainder when -25 is divided by -3.
 - (c) Find the quotient and remainder when 25 is divided by 0.
 - (d) Find the quotient and remainder when 0 is divided by 25.

- (3) Show that gcd(4, 6) = 2.
- (4) Show that gcd(10, ?20) = 10.
- (5) Show that gcd(7,3) = 1.
- (6) Show that gcd(0,5) = 5.
- (7) Show that 12 and 35 are relatively prime.
- (8) Show that 12 and 34 are not relatively prime.
- (9) Find gcd(4163, 8869).
- (10) Solve the equation 131x + 71y = 1. Explain why this question is not well stated. Fix up the question and solve it.
- (11) Using Euclid's Algorithm find gcd(14, 35).
- (12) Using Euclid's Algorithm find gcd(105, 165).
- (13) Using Euclid's Algorithm find gcd(1287, 1144).
- (14) Using Euclid's Algorithm find gcd(1288, 1144).
- (15) Using Euclid's Algorithm find gcd(1287, 1145).
- (16) Find $d = \gcd(27, 33)$ and find integers x and y such that d = 27x + 33y.
- (17) Find $d = \gcd(27, 32)$ and find integers x and y such that d = 27x + 32y.
- (18) Find $d = \gcd(312, 377)$ and find integers x and y such that d = 312x + 377y.

(19) (a) Show that $3 = 1 \mod 2$. (b) Show that $3 = 17 \mod 17$.

- (21) (a) Show that 3 = -15 mod 9.
 (b) Show that 4 = 0 mod 2.
- (21) Show that $6 \neq 1 \mod 4$.
- (22) Explain the most efficient way to calculate 29^4 modulo 12.
- (23) Show that 3 + 4 = 1, $3 \cdot 5 = 3$ and 3 5 = 4 in $\mathbb{Z}/6\mathbb{Z}$.
- (24) Write down the addition and multiplication tables for $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$.
- (25) Show that 2 has no multiplicative inverse in $\mathbb{Z}/4\mathbb{Z}$

- (26) Find the multiplicative inverse of 71 in $\mathbb{Z}/131\mathbb{Z}$.
- (27) (a) Decide whether $3 = 42 \pmod{13}$.
 - (b) Decide whether $2 = -20 \pmod{11}$.
 - (c) Decide whether $26 = 482 \pmod{14}$.
- (28) (a) Decide whether $-2 = 933 \pmod{5}$.
 - (b) Decide whether $-2 = 933 \pmod{11}$.
 - (c) Decide whether $-2 = 933 \pmod{55}$.
- (29) (a) Simplify $482 \pmod{14}$.
 - (b) Simplify $511 \pmod{9}$.
 - (c) Simplify $-374 \pmod{11}$.
- (30) (a) Simplify 933 (mod 55).
 - (b) Simplify 102725 (mod 10).
 - (c) Simplify 57102725 (mod 9).
- (31) Calculate $24 \cdot 25 \pmod{21}$.
- (32) Calculate $84 \cdot 125 \pmod{210}$.
- (33) Calculate $25^2 + 24 \cdot 3 6 \pmod{9}$.
- (34) Calculate $36^3 3 \cdot 19 + 2 \pmod{11}$.
- (35) Calculate $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \pmod{7}$.
- (36) Calculate $1 \cdot 2 \cdot 3 \cdots 20 \cdot 21 \pmod{22}$.
- (37) Use congruences modulo 9 to show that the following multiplication in \mathbb{Z} is incorrect: $326 \cdot 4471 = 1357546.$
- (38) Determine the multiplicative inverses in $\mathbb{Z}/7\mathbb{Z}$.
- (39) Determine the multiplicative inverses in $\mathbb{Z}/8\mathbb{Z}$.
- (40) Determine the multiplicative inverses in $\mathbb{Z}/12\mathbb{Z}$.
- (41) Determine the multiplicative inverses in $\mathbb{Z}/13\mathbb{Z}$.
- (42) Determine the multiplicative inverses in $\mathbb{Z}/15\mathbb{Z}$.
- (43) If it exists, find the multiplicative inverse of 32 in $\mathbb{Z}/27\mathbb{Z}$.

- (44) If it exists, find the multiplicative inverse of 32 in $\mathbb{Z}/39\mathbb{Z}$.
- (45) If it exists, find the multiplicative inverse of 17 in $\mathbb{Z}/41\mathbb{Z}$.
- (46) If it exists, find the multiplicative inverse of 18 in $\mathbb{Z}/33\mathbb{Z}$.
- (47) If it exists, find the multiplicative inverse of 200 in Z/911Z. Write down all the common divisors of 56 and 72.
- (49) (a) Use Euclid?s algorithm to find d = gcd(323, 377).
 (b) Find integers x, y such that 323x + 377y = d.
- (50) Simplify the following, giving your answers in the form $a \mod m$, where $0 \le a < m$.
 - (a) $14 \cdot 13 67 + 133 \pmod{10}$,
 - (b) 53 (mod 7),
 - (c) $53 + 2 \cdot 4 \pmod{7}$.
 - (d) $21 \cdot 22 \cdot 23 \cdot 24 \cdot 25 \pmod{20}$.
- (51) For the following, write your answers in the form $0, 1, \ldots, 18 \pmod{19}$.
 - (a) Calculate 3^2 , 3^4 , 3^8 , 3^{16} , $3^{32}3^{64}$, 3^{128} and 3^{256} modulo 19.
 - (b) Use (a) to calculate $3^{2}65$ modulo 19. (Hint: 265 = 256 + 8 + 1.)
- (52) (A test for divisibility by 11.) Let $n = a_d a_{d-1} \cdots a_2 a_1 a_0$ be a positive integer written in base 10, i.e. $n = a_0 + 10a_1 + 10^2a_2 + \cdots + 10^da_d$, where a_0, a_1, \ldots, a_d , are the digits of the number n read from right to left.
 - (a) Show that $n = a_0 a_1 + a_2 a_3 + \dots + (-1)^d a_d \mod 11$. Hence *n* is divisible by 11 exactly when $a_0 a_1 + a_2 a_3 + \dots + (-1)^d a_d$ is divisible by 11.
 - (b) Use this test to decide if the following numbers are divisible by 11: (i) 123537,
 (ii) 30639423045.
- (53) (a) Write down the addition and multiplication tables for $\mathbb{Z}/7\mathbb{Z}$.
 - (b) Find the multiplicative inverse of 2 in $\mathbb{Z}/7\mathbb{Z}$.
- (54) Find the smallest positive integer in the set $\{6u + 15v \mid u, v \in \mathbb{Z}\}$. Always justify your answers.