Problem sheet 4

Eigenvectors, minimal and characteristic polynomials

Vocabulary

- (1) Define eigenvalue, eigenvector and eigenspace and give some illustrative examples.
- (2) Define generalised eigenspace and give some illustrative examples.
- (3) Define f-invariant subspace and restriction of f and give some illustrative examples.
- (4) Define complement (to a subspace) and give some illustrative examples.
- (5) Define monic polynomial and give some illustrative examples.
- (6) Define minimal polynomial and characteristic polynomial and give some illustrative examples.
- (7) Define invertible matrix and give some illustrative examples.
- (8) Define define diagonal matrix, upper triangular matrix, strictly upper triangular matrix, and unipotent upper triangular matrix and give some illustrative examples.
- (9) Let \mathbb{F} be a field and let $d, a \in \mathbb{F}[t]$. Define the ideal generated by d and "d divides a" and give some illustrative examples.
- (10) Let \mathbb{F} be a field and let $x, m \in \mathbb{F}[t]$. Define the greatest common divisor of x and m and give some illustrative examples. Let \mathbb{F} be a field and let $p \in \mathbb{F}[t]$. Define the degree of p and monic polynomial and give some illustrative examples.

Results

- (1) Let \mathbb{F} be a field and let $a, b \in \mathbb{F}[t]$. Show that there exist $q, r \in \mathbb{F}[t]$ such that
 - (a) a = bq + r,
 - (b) r = 0 or $\deg(r) < \deg(b)$.
- (2) Let $a, b \in \mathbb{Z}$. Show that there exist $q, r \in \mathbb{Z}$ such that
 - (a) a = bq + r, and
 - (b) 0 < r < |b|.
- (3) Let $a, b \in \mathbb{F}[t]$ and let $d = \gcd(a, b)$. Show that
 - (a) There exists a monic polynomial $\ell \in \mathbb{F}[t]$ such that $\ell \mathbb{F}[t] = a \mathbb{F}[t] + b \mathbb{F}[t]$, and
 - (b) $d = \ell$.

- (4) Let $a, b \in \mathbb{Z}$ and let $d = \operatorname{gcd}(a, b)$. Show that
 - (a) There exists a $\ell \in \mathbb{Z}$ such that $\ell \mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$, and
 - (b) $d = \ell$.
- (5) Let $f: V \to V$ be a linear transformation and let W be an f-invariant subspace with $\dim(V) = n$ and $\dim(W) = m$. Let $\mathcal{B}_1 = \{w_1, \ldots, w_m\}$ be a basis for W and extend it to a basis Let $\mathcal{B} = \{w_1, \ldots, w_m, w_{m+1}, \ldots, w_n\}$ for V. Show that the matrix of f with respect to \mathcal{B} is of the block form

$$\begin{pmatrix} A & B \\ 0 & D \end{pmatrix},$$

where A, B, D are matrices and A is the $m \times n$ matrix of f_W with respect to the basis \mathcal{B}_1 .

- (6) Let V be a finite dimensional vector space and let U and W be subspaces of V. Show that the following are equivalent.
 - (1) U is a complement of W.
 - (2) There is a basis \mathcal{B} of V of the form $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$, where \mathcal{B}_1 is a basis of U, \mathcal{B}_2 is a basis of W and $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$.
 - (3) $U \cap W = \{0\}$ and $\dim(U) = \dim(V) \dim(W)$,
 - (4) V = U + W and $\dim(U) = \dim(V) \dim(W)$.
- (7) Let V be a vector space and let f be a linear transformation on V. Let U and W be complementary subspaces of V. Suppose that both U and W are are f-invariant. Choose an ordered basis \mathcal{B} of V of the form $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ where \mathcal{B}_1 is a basis of U and \mathcal{B}_2 is a basis of W. Show that the matrix of f with respect to \mathcal{B} is of the "block diagonal" form:

$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$$

where A is the matrix of f_U and D is the matrix of f_W .

- (8) Let \mathbb{F} be a field and let V be a vector space over \mathbb{F} . Let $f: V \to V$ be a linear transformation and let m(x) be the minimal polynomial of f. Show that if q(x) is a polynomial with coefficients in \mathbb{F} such that q(f) = 0 then m(x) divides q(x).
- (9) Let \mathbb{F} be a field and let V be a vector space over \mathbb{F} . Let $f: V \to V$ be a linear transformation and let m(x) be the minimal polynomial of f. Show that the roots of m(x) are exactly the eigenvalues of f.
- (10) Let \mathbb{F} be a field and let V be a vector space over \mathbb{F} Let $f: V \to V$ be a linear transformation and let $p(x) \in \mathbb{F}[x]$. Show that the null space of p(f) is an f-invariant subspace of V.
- (11) Let \mathbb{F} be a field and let V be a vector space over \mathbb{F} . Let $f: V \to V$ be a linear transformation and let m(x) be the minimal polynomial of f. Suppose that m(x) can be factored as m(x) = p(x)q(x), where p(x) and q(x) are polynomials with coefficients in \mathbb{F} which have no common factor. Show that V is a direct sum of f-invariant subspaces

$$V = W_p \oplus W_q,$$

where W_p and W_q are the nulspaces of p(f) and q(f), respectively. Show that the restrictions f_{W_p} and f_{W_q} have minimal polynomials p(x) and q(x), respectively.

(12) Let \mathbb{F} be a field and let V be a vector space over \mathbb{F} . Let $f: V \to V$ be a linear transformation and let m(x) be the minimal polynomial of f. Suppose that $m(x) = q_1(x)q_2(x)\cdots q_k(x)$, where $q_i(x)$ has no common factor with $q_j(x)$ if $i \neq j$. Let W_i be the nullspace of $q_i(f)$. Suppose that \mathcal{B}_i is an ordered basis of W_i . Show that $\mathcal{B} = (\mathcal{B}_1, \ldots, \mathcal{B}_k)$ is an ordered basis for V and the matrix of f with respect to \mathcal{B} is

$$\begin{pmatrix} A_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & A_k \end{pmatrix},\,$$

where A_i is the matrix of f_{W_i} with respect to \mathcal{B}_i .

Examples and computations

- (1) Let $b = t^3 10t^2 + 23t 14$ and $a = t^4 3t^2 + 3t^2 3t + 2$. Find $d = \gcd(a, b)$ and find $x, y \in \mathbb{Q}[t]$ such that d = ax + by.
- (2) Let $b = t^3 6t^2 + t + 4$ and $a = t^5 6t + 1$. Find $d = \gcd(a, b)$ and find $x, y \in \mathbb{Q}[t]$ such that d = ax + by.
- (3) The eigenvalues of the (linear transformation corresponding to the) matrix

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & 0 \end{pmatrix}$$

satisfy $det(A - \lambda I) = 0$. Determine the eigenvalues and show that the corresponding eigenspaces are dimension 1 and are generated by the eigenvectors

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \qquad \begin{pmatrix} 1\\-3\\0 \end{pmatrix}, \qquad \begin{pmatrix} -7\\8\\2 \end{pmatrix},$$

- (4) Let $C^{\infty}(\mathbb{R})$ be the space of functions $f : \mathbb{R} \to \mathbb{R}$ which are differentiable infinitely often. Show that the eigenvectors of differentiation are the functions e^{ax} for $a \in \mathbb{R}$. Determine the eigenvalues.
- (5) Suppose that a linear transformation on \mathbb{R}^3 has matrix

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

with respect to the basis $\{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$. Show that the subspace $W = \text{span}\{e_1, e_2\}$ is *f*-invariant and that the matrix of f_W with respect to the basis $\{e_1, e_2\}$ is

$$\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}.$$

(6) Show that, in ℝ³, a complement to a plane through the origin is any line through the origin which does not lie in the plane.

- Semester 2, 2020
- (7) Show that, in \mathbb{R}^4 , the subspaces span{(1, 0, 0, 0), (0, 1, 0, 0)} and span{(0, 0, 1, 0), (0, 0, 0, 1)} are complementary.
- (8) Show that, in $\mathbb{R}[x]$, the subspaces span $\{2, 1+x, 1+x+x^3\}$ and span $\{x^2+3x^4, x^4, x^5, x^6, \ldots\}$ are complementary.
- (9) Let f be a linear transformation with matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Show that the minimal polynomial of f is (x-2)(x-3)x.
- (10) Find the minimal polynomial of the matrix $\begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$.
- (11) Find the minimal polynomial of the matrix $\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$.
- (12) Find the minimal polynomial of the matrix $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- (13) Find the minimal polynomial of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$.
- (14) Show that the matrices

(2)	0	0	0)		2	0	0	$0 \rangle$
0	1	0	0	and	0	1	0	0
0	0	2	0		0	0	1	0
0	0	0	1/		$\left(0 \right)$	0	0	1/

have the same minimal polynomial and different characteristic polynomial.

(15) Show that the matrix

$$A = \begin{pmatrix} 1 & -3 & 3\\ 3 & -5 & 3\\ 6 & -6 & 4 \end{pmatrix}$$

has minimal polynomial $x^2 - 2x - 8$. Use this to determine the inverse of A.

- (16) Show that a linear transformation f is invertible if and only if its minimal polynomial has non-zero constant term. Assuming f is invertible, how can the inverse be calculated if the minimal polynomial is known?
- (17) Suppose that A is an $n \times n$ upper triangular matrix with zeroes on the diagonal. Prove that $A^n = 0$.
- (18) Let f be a linear transformation on a vector space V with minimal polynomial $x^2 1$. Suppose that $2 \neq 0$ in the field of scalars. (Thus, for example, $\mathbb{Z}/2\mathbb{Z}$ is not allowed as the

field of scalars.) Show directly that the subspaces

$$\{v \in V \mid f(v) = v\} \quad \text{and} \quad \{v \in V \mid f(v) = -v\}$$

are complementary subspaces of V. Find a diagonal matrix representing f.

- (19) Let $\mathcal{P}_n(\mathbb{R})$ be the vector space of polynomials in $\mathbb{R}[x]$ of degree $\leq n$. Show that the linear transformation $\mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ given by differentiation with respect to x cannot be represented by a diagonal matrix.
- (20) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y) = (x + 2y, -x, 0). Find the matrix of T with respect to the (ordered) bases $B = \{(1,3), (-2,4)\}$ for \mathbb{R}^2 and $C = \{(1,1,1), (2,2,0), (4,0,0)\}$ for \mathbb{R}^3 .
- (21) Let V be the subspace of functions from \mathbb{R} to \mathbb{R} spanned by $\{e^{2t}, te^{2t}, t^2e^{2t}\}$. Show that differentiation with respect to t is well defined linear transformation D on V and find the matrix of D with respect to the basis $\{e^{2t}, te^{2t}, t^2e^{2t}\}$ of V.
- (22) Find the minimal polynomial of the matrix $\begin{pmatrix} -3 & 2 \\ -2 & 1 \end{pmatrix}$.
- (23) Find the minimal polynomial of the matrix $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{pmatrix}$.
- (24) Find the minimal polynomial of the matrix $\begin{pmatrix} 2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{pmatrix}$.
- (25) Let W_1 and W_2 be subspaces of a vector space V. Show that V is the direct sum of W_1 and W_2 if and only if every vector $v \in V$ can be written uniquely in the form $v = w_1 + w_2$, where $w_1 \in W_1$ and $w_2 \in W_2$.
- (26) (i) Show that the complex numbers C is a vector space over the field of real numbers R.
 (ii) Show that {1, i} is a basis for C over R.
 - (iii) Let $\alpha = a + ib$ be a complex number. Show that multiplication by α is a linear transformation $f: \mathbb{C} \to \mathbb{C}$. Find the matrix of f with respect to the basis $\{1, i\}$.
- (27) Let $f: V \to V$ be a linear transformation on an *n*-dimensional vector space with minimal polynomial $m(x) = x^n$.
 - (i) Show that there is a vector $v \in V$ such that $f^{n-1}(v) \neq 0$.
 - (ii) Show that $B = \{f^{n-1}(v), f^{n-2}(v), \dots, f^2(v), f(v), v\}$ is a basis for V.
 - (iii) Find the matrix for f with respect to the basis B.
- (28) Find a linear transformation $f: V \to V$ on an infinite dimensional vector space V which satisfies no monic polynomial equation p(f) = 0.