
MAST20022 Group Theory and Linear Algebra Semester 2, 2020

Problem sheet 6

Inner products, adjoints, unitary and normal matrices

Vocabulary

(1) Define Hermitian form and inner product and give some illustrative examples.

(2) Define length, orthogonal and orthonormal and give some illustrative examples.

(3) Define matrix of a Hermitian form with respect to a basis and give some illustrative
examples.

(4) Define orthogonal complement and give some illustrative examples.

(5) Define adjoint of a linear transformation and give some illustrative examples.

(6) Define adjoint of a matrix and give some illustrative examples.

(7) Define symmetric, orthogonal and normal linear transformations and give some illustrative
examples.

(8) Define symmetric, orthogonal and normal matrices and give some illustrative examples.

(9) Define Hermitian, unitary and normal linear transformations and give some illustrative
examples.

(10) Define Hermitian, unitary and normal matrices and give some illustrative examples.

Results

(1) Let W be a finite dimensional inner product space. Show that an orthonormal subset of
W is linearly independent.

(2) Let W be a finite dimensional inner product space. Show that an orthonormal subset of
W can be extended to an orthonormal basis.

(3) (Bessel’s inequality) Let S = {v1, . . . , vn} be an orthonormal subset of an inner product
space V . Let v 2 V and set ai = hv, vii for i = 1, 2, . . . , n. Show that

nX

i=1

kaik
2 6 kvk2.

(4) Let S = {v1, . . . , vn} be an orthonormal subset of an inner product space V . Let v 2 V .
Show that v �

Pn
i=1hv, viivi is orthogonal to each vj.
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(5) Let S = {v1, . . . , vn} be an orthonormal subset of an inner product space V . Let v 2 V
and set ai = hv, vii for i = 1, 2, . . . , n. Show that if S is a basis of V then

v =
nX

i=1

aivi and
nX

i=1

|ai|
2 = kvk2.

(6) (Schwarz’s inequality) Show that if v and w are elements of an inner product space V then

|hv, wi| 6 kvk · kwk.

(7) (Triangle inequality) Show that if v and w are elements of an inner product space V then

kv + wk 6 kvk+ kwk.

(8) Let V be a finite dimensional inner product space and let W be a subspace of V . Show
that

W? is a subspace of V and V = W �W?.

(9) Let f : V ! V be a linear transformation on a finite dimensional inner product space V .
Show that the adjoint f ⇤ exists and is unique.

(10) Assume that f : V ! V and g : V ! V are linear transformations on an inner product
space V such that

if v, w 2 V then hf(v), wi = hg(v), wi.

Show that f = g.

(11) Let V be an inner product space with an orthonormal basis B = {v1, . . . , vn}. Suppose
that a linear transformation f : V ! V has a matrix A with respect to B. Show that the
matrix of f ⇤ with respect to B is the matrix A⇤ given by

(A⇤)ij = Aji.

(12) Let f : V ! V be a linear transformation on an inner product space V . Show that the
following are equivalent:

(a) f ⇤f = 1;

(b) If u, v 2 V then hf(u), f(v)i = hu, vi;

(c) If v 2 V then kf(v)k = kvk.

(13) Let f : V ! V be a linear transformation on an inner product space V . Let W be an
f -invariant subspace of V . Show that W? if F ⇤-invariant.

(14) Let f : V ! V be a linear transformation over a finite dimensional real vector space V .
Show that V has an f -invariant subspace of dimension 6 2.

(15) Let f : V ! V be an orthogonal linear transformation on a finite dimensional real vector
space V . Show that there is an orthonormal basis of V of the form

{u1, v1, u2, v2, . . . , uk, vk, w1, . . . , w`} and ✓1, . . . , ✓k 2 R
so that

f(ui) = (cos ✓i)ui + (sin ✓i)vi, f(vi) = (� sin ✓i)ui + (cos ✓i)vi,

and f(wi) = ±wi.
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(16) (Spectral theorem: first version) Let f : V ! V be a normal linear transformation on a
finite dimensional complex inner product space V . Show that there is an orthonormal
basis for V such that the matrix of f with respect to this basis is diagonal.

(17) Let f : V ! V be a normal linear transformation on a finite dimensional complex inner
product space V . Show that there is a non-zero element of V which is an eigenvector for
both f and f ⇤. Show that the two corresponding eigenvectors are complex conjugates.

(18) (Spectral theorem: second version) Let f : V ! V be a normal linear transformation on
a finite dimensional complex inner product space V . Show that there exist self-adjoint
(Hermitian) linear transformations e1 : V ! V, . . . , ek : V ! V and scalars a1, . . . , ak 2 C
such that

(a) If i 6= j then ai 6= aj,

(b) e2i = ei and ei 6= 0,

(c) e1 + · · ·+ ek = 1,

(d) a1e1 + · · ·+ akek = f .

(19) Let f : V ! V be a linear transformation on a finite dimensional complex inner product
space V . Show that

(a) If f is unitary then the eigenvalues of f are of absolute value 1.

(b) If f is self-adjoint then the eigenvalues of f are real.

(20) Let f : V ! V be a linear transformation on a finite dimensional complex inner product
space V . Show that the following are equivalent:

(a) f is self adjoint and all eigenvalues of f are nonnegative,

(b) There exists a self-adjoint g : V ! V such that f = g2,

(c) There exists h : V ! V such that f = hh⇤,

(d) f is self adjoint and if v 2 V then hf(v), vi > 0.

(21) Let f : V ! V be a linear transformation on a finite dimensional complex inner product
space V . Show that there exists a nonnegative linear transformation p : V ! V and a
unitary linear transformation u : V ! V such that f = pu.

(22) Let f : V ! V and g : V ! V be linear transformations on a finite dimensional complex
inner product space V . Assume that fg = gf . Show that there exists an orthonormal
basis B of V such that the matrices of f and g with respect to the basis B are diagonal.

(23) Let f : V ! V and g : V ! V be linear transformations on a finite dimensional complex
inner product space V . Show that fg = gf if and only if there exists a normal linear
transformation h : V ! V and polynomials p, q 2 C[x] such that f = p(h) and g = q(h).

Examples and computations

(1) Let V = Rn and define h, i : V ⇥ V ! R by

h(a1, a2, . . . , an, (b1, b2, . . . , bni = a1b1 + a2b2 + · · ·+ anbn.

Show that h, i is a positive definite Hermitian form.
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(2) Let V = Cn and define h, i : V ⇥ V ! C by

h(a1, a2, . . . , an, (b1, b2, . . . , bni = a1b1 + a2b2 + · · ·+ anbn.

Show that h, i is a positive definite Hermitian form.

(3) Let V be any n-dimensional vector space over R and let {v1, v2, . . . , vn} be a basis of V .
Define h, i : V ⇥ V ! R by

ha1v1 + a2v2 + · · ·+ anvn, b1v1 + b2v2 + · · ·+ bnvni = a1b1 + a2b2 + · · ·+ anbn.

Show that h, i is a positive definite Hermitian form.

(4) Let V be any n-dimensional vector space over C and let {v1, v2, . . . , vn} be a basis of V .
Define h, i : V ⇥ V ! C by

ha1v1 + a2v2 + · · ·+ anvn, b1v1 + b2v2 + · · ·+ bnvni = a1b1 + a2b2 + · · ·+ anbn.

Show that h, i is a positive definite Hermitian form.

(5) Let V = Mn⇥n(C). Define h, i : V ⇥ V ! C by

hA,Bi = trace(AB
t
),

where trace(C) for a square matrix C, is the sum of the diagonal entries. Show that h, i is
a positive definite Hermitian form.

(6) Let V = C[x] be the vector space of polynomials with coe�cients in C. Define h, i : V ⇥V !

C by

hp(x), q(x)i =

Z 1

0

f(t)g(t)dt.

Show that h, i is a positive definite Hermitian form.

(7) Let V = C([a, b],C) be the vector space of continuous functions f : [a, b] ! C, where [a, b]
is the closed interval {t 2 R | a 6 t 6 b}. Define h, i : V ⇥ V ! C by

hf, gi =

Z b

a

f(t)g(t)dt.

Show that h, i is a positive definite Hermitian form.

(8) Using the standard inner product on R3 (as in Problem (1)) apply the Gram-Schmidt
algorithm to the basis

�
1p
2
(1, 1, 0), 1p

3
(1,�1, 1), (0, 0, 1)

 
of R3 to obtain an orthonormal

basis of R3.

(9) Using the standard inner product on polynomials (as in Problem (6)) apply the Gram-
Schmidt algorithm to the basis {1, x} of P1(R) = {a0 + a1x | a0, a1 2 R} to obtain an
orthonormal basis of P1(R).

(10) Show that the orthogonal complement to a plane through the origin in R3 is the normal
through the origin.
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(11) Show that the orthogonal complement to a line through the origin in R3 is the plane
through the origin to which it is normal.

(12) Show that the orthogonal complement to the set of diagonal matrices in Mn⇥n(R) is the
set of matrices with zero entries on the diagonal.

(13) Let A be an m⇥n matrix with real entries. Show that the row space of A is the orthogonal
complement of the nullspace of A.

(14) Show that if a linear transformation is represented by a symmetric matrix with respect to
an orthonormal basis then it is self-adjoint.

(15) Show that the matrices

A =

✓
1 2
1 5

◆
and B =

✓
1 2� i

1 + i 3

◆

are self adjoint (Hermitian).

(16) A skew-symmetric matrix is a square matrix A with real entries such that A = �At.
Show that a skew-symmetric matrix is normal. Determine which skew symmetric matrices
are self adjoint.

(17) Show that the matrix

✓
1 1
i 3 + 2i

◆
is normal but is not self-adjoint or skew-symmetric or

unitary.

(18) Show that in dimension 2, the possibilities for orthogonal matrices up to similarity are

✓
1 0
0 �1

◆
and

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

for some ✓ 2 [0, 2⇡].

(19) Find the length of (2 + i, 3� 2i,�1) with respect to the standard inner product on C3.

(20) Find the length of x2
� 3x+ 1 with respect to the standard inner product on polynomials.

(21) Find the length of

✓
3 2
1 4

◆
with respect to the standard inner product on matrices.

(22) An exercise (from an anonymous textbook) claims that, if V is an inner product space
and u, v 2 V then ku + vk + ku � vk = 2kuk + 2kvk. Prove that this is false. Explain
what was intended.

(23) Let f : V ! V and g : V ! V be linear transformations on a finite dimensional inner
product space V . Show that (f + g)⇤ = f ⇤ + g⇤.

(24) Let A be a transition matrix between orthonormal bases. Show that A is an isometry.
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(25) Let f : V ! V be a linear transformation on an inner product space V . Show that if f is
self adjoint then the eigenvalues of f are real.

(26) Let f : V ! V be a linear transformation on an inner product space V . Show that if f is
an isometry then eigenvalues of f have absolute value 1.

(27) Let f : V ! V be a linear transformation on a finite dimensional inner product space V .
Show that im f ⇤ is the orthogonal complement of ker f . Deduce that the rank of f is
equal to the rank of f ⇤.

(28) Show that the linear transformation d : C[x] ! C[x] given by di↵erentiation with respect
to x has no adjoint with respect to the standard inner product on polynomials. (Hint:
Try to find what d⇤(1) should be.)

(29) Show that a triangular matrix which is self-adjoint is diagonal.

(30) Show that a triangular matrix which is unitary is diagonal.

(31) Let f : V ! V be a linear transformation on an inner product space V . Assume that
f ⇤ : V ! V is a function which satisfies

if u, w 2 V then hf(u), wi = hu, f ⇤(w)i.

Show that f ⇤ is a linear transformation.

(32) Explain why

hz, wi = z1w1 + 4z2w2, for z = (z1, z2) and w = (w1, w2),

does not define an inner product on C2.

(33) Explain why

hz, wi = z1w1 � z2w2, for z = (z1, z2) and w = (w1, w2),

does not define an inner product on C2.

(34) Explain why
hz, wi = z1w1, for z = (z1, z2) and w = (w1, w2),

does not define an inner product on C2.

(35) Find the length of (1� 2i, 2 + 3i) using the complex dot product on C2.

(36) Let W be the subspace of R4 spanned by (0, 1, 0, 1) and (2, 0,�3,�1). Find a basis for
the orthogonal complement W? using the dot product as inner product.

(37) Let f : V ! V and g : V ! V be linear transformations on a finite dimensional inner
product space V . Show that (fg)⇤ = g⇤f ⇤.
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(38) Which of the following matrices are (i) Hermitian, (ii) unitary, (iii) normal?

A =

✓
2 i
�i 3

◆
, B =

✓
1 i
0 1

◆
, C =

✓
0 i
�i 0

◆
, D =

✓
1 i
1 2 + i

◆
.

(39) Find an orthonormal basis for C2 containing a multiple of (1 + i, 1� i).

(40) Let W be a subspace of an inner product space V . Show that W ✓ (W?)?.

(41) Let W be a subspace of an inner product space V . Show that if dim(V ) is finite then
W = (W?)?.

(42) Let f : V ! V be a linear transformation on an inner product space V . Show that
ker f ⇤ = (im f)?.

(43) Let V be a vector space with a complex inner product h, i. Show that if u, v 2 V then

4hu, vi = ku+ vk2 � ku� vk2 + i|u+ ivk2 � iku� ivk2.

(44) Let `2 be the vector space of sequences ~a = (a1, a2, . . .) with ai 2 C such that
P1

i=1 |ai|
2 <

1. Let h, i be the inner product on `2 given by

h~a,~bi =
1X

i=1

aibi.

Prove that this series is absolutely convergent and defines an inner product on `2.

(45) Let (, ) be the inner product on a complex inner product space V . Further

hv, wi = Re
�
(v, w)

�

defines a real inner product on V regarded as a real vector space. Show that

(v, w) = hv, wi+ ihv, iwi.

Deduce that (v, w) = 0 if and only if hv, wi = 0 and hv, iwi = 0.

(46) Find a unitary matrix U such that U⇤AU is diagonal where A =

✓
1 i
�i 1

◆
.

(47) Show that every normal matrix A has a square root.

(48) Prove that if A is Hermitian then A+ i is invertible.

(49) Prove that if Q is orthogonal then Q+ 1
2 is invertible.

(50) Show that any square matrix A can be written uniquely as a sum A = B + C, where B
is Hermitian and C satisfies C⇤ = �C. Show that A is normal if and only if B and C
commute.
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(51) Let F be the n⇥ n “Fourier matrix” with Fjk = 1p
n!

jk, where ! = e2⇡i/n. Show that F is

unitary. (This arises in the theory of the ”Fast Fourier transform”.)

(52) Show that if A = UDU⇤ where D is a diagonal matrix and U is unitary, then A is a
normal matrix.

(53) Show that a linear transformation f : V ! V on a complex inner product space V is
normal if and only if f satisfies hf(u), f(v)i = hf ⇤(u), f ⇤(v)i for all u, v 2 V .

(54) Show that every normal matrix A has a square root; that is, there exists a matrix B such
that B2 = A.

(55) Must every complex matrix have a square root? Explain thoroughly.

(56) Two linear transformations f and g on a finite dimensional complex inner product space
are unitarily equivalent if there is a unitary linear transformation u such that g = u�1fu.
Two matrices are unitarily equivalent if their linear transformations, with respect to some
fixed orthonormal basis, are unitarily equivalent. Decide whether the matrices

✓
1 1
0 1

◆
and

✓
0 0
1 0

◆

are unitarily equivalent. Always explain your reasoning.

(57) Decide whether the matrices
0

@
0 0 2
0 0 0
2 0 0

1

A and

0

@
1 1 0
1 1 0
0 0 �1

1

A

are unitarily equivalent. Always explain your reasoning.

(58) Decide whether the matrices
0

@
0 1 0
�1 0 0
0 0 �1

1

A and

0

@
�1 0 0
0 i 0
0 0 �i

1

A

are unitarily equivalent. Always explain your reasoning.

(59) Let f : V ! V be a linear transformation on an inner product space V . Are f and f ⇤

always unitarily equivalent?

(60) If f is a normal linear transformation on a finite dimensional inner product space, and if
f 2 = f 3, show that f = f 2. Show also that f is self adjoint.

(61) If f is a normal linear transformation on a finite dimensional inner product space show
that f ⇤ = p(f) for some polynomial p.

(62) If f and g are normal linear transformations on a finite dimensional inner product space,
and fg = gf , show that f ⇤g = gf ⇤.
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(63) Let V be an inner product space, let g : V ! V be a linear transformation and let
f : V ! V be a normal linear transformation. Show that if fg = gf then f ⇤g = gf ⇤.

(64) Let V be an inner product space and let f : V ! V be a linear transformation. Assume
that f(f ⇤f) = (f ⇤f)f .

(a) Show that f ⇤f is normal.

(b) Choose an orthonormal basis so that the matrix of f ⇤f takes the block diagonal form
diag(A1, . . . , Am), where Ai = �iImi and �i = �j only if i = j.

(c) Show that f has matrix, with respect to this basis, of the block diagonal form
diag(B1, . . . , Bm), for some mi ⇥mi matrices Bi.

(d) Deduce that B⇤
iBi = Ai and that B⇤

iBi = BiB⇤
i .

(e) Show that f is normal.

(65) The following is a question (unedited) submitted to an Internet news group:

Hello,

I have a question hopefully any of you can help.

As you all know:

If we have a square matrix A, we can always find another

square matrix X such that

X(-1) * A * X = J

where J is the matrix with Jordan normal form. Column

vectors of X are called principal vectors of A.

(If J is a diagonal matrix, then the diagonal memebers are

the eigenvalues and column vectors of X are eigenvectors.)

It is also known that if A is real and symmetric matrix,

then we can find X such that X is "orthogonal" and J is

diagonal.

The question:

Are there any less strict conditions of A so that we can

guarantee X orthogonal, with J not necessarily a diagonal?

I would appreciate any answers and/or pointers to any

references.

Can you help?
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