Problem sheet 9

Group actions, orbits, stabilizers and conjugacy

Vocabulary

- (1) Define a dihedral group and give some illustrative examples.
- (2) Define a rotation in \mathbb{R}^2 and give some illustrative examples.
- (3) Define a rotation in \mathbb{R}^3 and give some illustrative examples.
- (4) Define a G-action on X and give some illustrative examples.
- (5) Define a G-set and give some illustrative examples.
- (6) Define orbits and stabilizers and give some illustrative examples.
- (7) Define the action of G on itself by left multiplication and the action of G on itself by conjugation and give some illustrative examples.
- (8) Define conjugate, conjugacy class, and centralizer and give some illustrative examples.
- (9) Define the center of a group and give some illustrative examples.

Results

- (1) Let G be a group and let X be a G-set. Let $x \in X$. Show that the stabilizer of x is a subgroup of G.
- (2) Let G be a group and let X be a G-set. Show that the orbits partition G.
- (3) Let G be a group and let X be a G-set. Let $x \in X$ and let H be the stabilizer of x. Show that $\operatorname{Card}(G/H) = \operatorname{Card}(Gx)$ and that

$$Card(G) = Card(Gx)Card(H)$$
.

- (4) Let G be a group. Show that G is isomorphic to a subgroup of a permutation group.
- (5) Let G be a finite group acting on a finite set X. For each $g \in G$ let Fix(g) be the set of elements of X fixed by g.
 - (a) Let $S = \{(g, x) \in G \times X \mid g \cdot x = x\}$. By counting the elements of S in two ways, show that

$$\operatorname{Card}(S) = \sum_{x \in X} \operatorname{Card}(\operatorname{Stab}_G(x)) = \sum_{g \in G} \operatorname{Card}(\operatorname{Fix}(g)).$$

(b) Show that if $g \cdot x = y$ then $g\operatorname{Stab}_G(x)g^{-1} = \operatorname{Stab}_G(y)$, hence $\operatorname{Card}(\operatorname{Stab}_G(x)) = \operatorname{Card}(\operatorname{Stab}_G(y))$.

(c) Prove that the number of distinct orbits is

$$\frac{1}{\operatorname{Card}(G)} \sum_{g \in G} \operatorname{Card}(\operatorname{Fix}(g)),$$

the average number of points fixed by elements of G.

- (6) Let G be a finite group. Show that the number of elements of a conjugacy class is equal to the number of cosets of the centralizer of any element of the conjugacy class.
- (7) Show that the center of a group G is a normal subgroup of G.
- (8) Let p be a prime, let $n \in \mathbb{Z}_{>0}$ and let G be a group of order p^n . Show that $Z(G) \neq \{1\}$.
- (9) Let p be a prime and let G be a group of order p^2 . Show that G is isomorphic to $\mathbb{Z}/p^2\mathbb{Z}$ or $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- (10) Let G be a finite group of order divisible by a prime p. Show that G has an element of order p.
- (11) Let p be an odd prime and let G be a group of order 2p. Show that $G \cong \mathbb{Z}/2p\mathbb{Z}$ or $G \cong D_p$.

Examples and computations

- (1) Let H denote the subgroup of $D_4 = \langle a, b \mid a^4 = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle$ generated by a. Show that H is a normal subgroup of D_4 and write out the multiplication table of D_4/H .
- (2) Let H denote the subgroup of $D_4 = \langle a, b \mid a^4 = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle$ generated by a^2 . Show that H is a normal subgroup of D_4 and write out the multiplication table of D_4/H .
- (3) Find all of the normal subgroups of D_4 .
- (4) The quaternion group is the set $Q_8 = \{\pm U, \pm I, \pm J, \pm K\}$ where

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Show that

$$I^2 = J^2 = K^2 = -U, \quad IJ = K, \quad JK = I, \quad KI = J,$$

and that Q_8 is a subgroup of $GL_2(\mathbb{C})$.

- (5) Find all of the cyclic subgroups of the quaternion group Q_8 .
- (6) Show that every subgroup of the quaternion group Q_8 , except Q_8 itself, is cyclic.
- (7) Determine whether Q_8 and D_4 are isomorphic.
- (8) Let H denote the subgroup of $D_8 = \langle a, b \rangle$ generated by a^4 . Write out the multiplication table of D_8/H .

- (9) Show that the set of rotations in the dihedral group D_n is a subgroup of D_n .
- (10) Show that the set of reflections in the dihedral group D_n is not a subgroup of D_n .
- (11) Let $n \in \mathbb{Z}_{>0}$. Calculate the order of D_n . Always justify your answers.
- (12) Calculate the orders of the elements of D_6 . Always justify your answers.
- (13) Show that D_3 is isomorphic to S_3 .
- (14) Show that D_3 is nonabelian and noncyclic.
- (15) Prove that D_2 and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ are isomorphic.
- (16) Let $n \in \mathbb{Z}_{>0}$. Determine the orders of the elements in the dihedral group D_n .
- (17) Let $m, n \in \mathbb{Z}_{>0}$ such that m < n. Show that D_m is isomorphic to a subgroup of D_n .
- (18) Determine if the group of symmetries of a rectangle is a cyclic group.
- (19) Show that the group $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and the group D_4 are not isomorphic.
- (20) Determine all subgroups of the dihedral group D_5 .
- (21) Let $n \in \mathbb{Z}_{>0}$. Let $G = D_n$ and $H = C_n$. Compute the cosets of H in G and the index |G:H|.
- (22) Let D_n be the group of symmetries of a regular n-gon. Let a denote a rotation through $2\pi/n$ and let b denote a reflection. Show that

$$a^n = 1,$$
 $b^2 = 1,$ $bab^{-1} = a^{-1}.$

Show that every element of D_n has a unique expression of the form a^i or a^ib , where $i \in \{0, 1, ..., n\}$.

- (23) Determine all subgroups of the dihedral group D_4 as follows:
 - (a) Find all the cyclic subgroups of D_4 by considering the subgroup generated by each element.
 - (b) Find two non-cyclic subgroups of D_4 .
 - (c) Explain why any non-cyclic subgroup of D_4 , other than D_4 itself, must be of order 4 and, in fact, must be one of the two subgroups you have listed in the previous part.
- (24) Let G be the group of rotational symmetries of a regular tetrahedron so that |G| = 12. Show that G has subgroups of order 1, 2, 3, 4 and 12.
- (25) Describe precisely the action of S_n on $\{1, 2, ..., n\}$ and the action of $GL_n(\mathbb{F})$ on \mathbb{F}^n .

- (26) Describe precisely the action of $GL_n(\mathbb{F})$ on the set of bases of the vector space \mathbb{F}^n and prove that this action is well defined.
- (27) Describe precisely the action of $GL_n(\mathbb{F})$ on the set of subspaces of the vector space \mathbb{F}^n and prove that this action is well defined.
- (28) Find the orbits and stabilisers for the action of S_3 on the set $\{1, 2, 3\}$.
- (29) Find the orbits and stabilisers for the action of $G = SO_2(\mathbb{R})$ on the set $X = \mathbb{R}^2$.
- (30) Find the orbits and stabilisers for the action of $G = SO_3(\mathbb{R})$ on the set $X = \mathbb{R}^3$.
- (31) The dihedral group D_6 acts on a regular hexagon. Color two opposite sides blue and the other four sides red and let G be the subgroup of D_6 which preserves the colours. Let $X = \{A, B, C, D, E, F\}$ be the set of vertices of the hexagon. Determine the stabilizers and orbits for the action of G on X.
- (32) Since S_4 acts on $X = \{1, 2, 3, 4\}$ any subgroup G acts on $X = \{1, 2, 3, 4\}$. Let $G = \langle (123) \rangle$. Describe the orbits and stabilizers for the action of G on X.
- (33) Since S_4 acts on $X = \{1, 2, 3, 4\}$ any subgroup G acts on $X = \{1, 2, 3, 4\}$. Let $G = \langle (1234) \rangle$. Describe the orbits and stabilizers for the action of G on X.
- (34) Since S_4 acts on $X = \{1, 2, 3, 4\}$ any subgroup G acts on $X = \{1, 2, 3, 4\}$. Let $G = \langle (12), (34) \rangle$. Describe the orbits and stabilizers for the action of G on X.
- (35) Since S_4 acts on $X = \{1, 2, 3, 4\}$ any subgroup G acts on $X = \{1, 2, 3, 4\}$. Let $G = S_4$. Describe the orbits and stabilizers for the action of G on X.
- (36) Since S_4 acts on $X = \{1, 2, 3, 4\}$ any subgroup G acts on $X = \{1, 2, 3, 4\}$. Let $G = \langle (1234), (13) \rangle$ (isomorphic to a dihedral group of order 8). Describe the orbits and stabilizers for the action of G on X.
- (37) Let $G = \mathbb{R}$ (with operation addition) and let $X = \mathbb{R}^3$. Let $v \in \mathbb{R}^3$. Show that

$$\alpha \cdot x = x + \alpha v,$$

defines an action of G on X and give a geometric description of the orbits.

(38) Let G be the subgroup of S_{15} generated by the three permutations

$$(1,12)(3,10)(5,13)(11,15),$$
 $(2,7)(4,14)(6,10)(9,13)$ and $(4,8)(6,10)(7,12)(9,11).$

Find the orbits of G acting on $X = \{1, 2, ..., 15\}$ and prove that G has order which is a multiple of 60.

(39) Let G be a group of order 5 acting on a set X with 11 elements. Determine whether the action of G on X has a fixed point.

- (40) Let G be a group of order 15 acting on a set X with 8 elements. Determine whether the action of G on X has a fixed point.
- (41) Give an explicit isomorphism between D_2 and a subgroup of S_4 .
- (42) Find the conjugacy classes of D_4 .
- (43) Find the center of D_4 .
- (44) Let G be a group. Show that $\{1\} \subseteq Z(G)$.
- (45) Show that $Z(S_3) = \{1\}.$
- (46) Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$. Determine the centre of $GL_n(\mathbb{F})$.
- (47) Find the conjugacy classes in the quaternion group.
- (48) Find the conjugates of (123) in S_3 and find the conjugates of (123) in S_4 .
- (49) Find the conjugates of (1234) in S_4 and find the conjugates of (1234) in S_n , for $n \ge 4$.
- (50) Find the conjugates of (12?m) in S_n , for $n \ge m$.
- (51) Describe the conjugacy classes in the symmetric group S_n .
- (52) Suppose that g and h are conjugate elements of a group G. Show that $C_G(g)$ and $C_G(h)$ are conjugate subgroups of G.
- (53) Determine the centralizer in $GL_3(\mathbb{R})$ of the following matrices:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

(54) Determine the centralizer in $GL_3(\mathbb{R})$ of the following matrices:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

(55) Determine the centralizer in $GL_3(\mathbb{R})$ of the following matrices:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(56) Determine the centralizer in $GL_3(\mathbb{R})$ of the following matrices:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (57) Let G be a group and assume that G/Z(G) is a cyclic group. Show that G is abelian.
- (58) Describe the finite groups with exactly one conjugacy class.
- (59) Describe the finite groups with exactly two conjugacy classes.
- (60) Describe the finite groups with exactly three conjugacy classes.
- (61) Let p be a prime. Show that a group of order p^2 is abelian.
- (62) Let p be a prime and let G be a group of order p^2 . Show that $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ or $G \cong \mathbb{Z}/p^2\mathbb{Z}$.
- (63) Let p be a prime and let G be a group of order 2p. Show that G has a subgroup of order p and that this subgroup is a normal subgroup.
- (64) Let p be a prime. Show that, up to isomorphism, there are exactly two groups of order 2p.
- (65) Prove that every nonabelian group of order 8 is isomorphic to the dihedral group D_4 or to the quaternion group Q_8 .
- (66) Show that each group G acts on X = G by right multiplication: $g \cdot x = xg^{-1}$, for $g \in G$ and $x \in X$.
- (67) Let $G = D_2$ act as symmetries of a rectangle. Determine the stabilizer and orbit of a vertex, and the stabilizer and orbit of the midpoint of an edge.
- (68) Let $GL2(\mathbb{R})$ act on \mathbb{R}^2 in the usual way: $A \cdot \vec{x} = A\vec{x}$, for $A \in GL_2(\mathbb{R})$ and \vec{x} a column vector in \mathbb{R}^2 . Determine the stabilizer and orbit of (0,0) and the stabilizer and orbit of (1,0).
- (69) Let G be the group of rotational symmetries of a regular tetrahedron T.
 - (a) For the action of G on T, describe the stabilizer and orbit of a vertex, and describe the stabilizer and orbit of the midpoint of an edge.
 - (b) Use the results of (a) to calculate the order of G in two different ways.
 - (c) By considering the action of G on the set of vertices of T, find a subgroup of S_4 isomorphic to G.
- (70) A group G of order 9 acts on a set X with 16 elements. Show that there must be at least one point in X fixed by all elements of G (i.e. an orbit consisting of a single element).
- (71) Find the conjugacy class and centralizer of (12) and (123) in S_3 . Check that |conjugacy class|-|centralizer| = $|S_3|$ in each case.
- (72) Let τ be a permutation in S_m .
 - (a) Let σ be an n-cycle $\sigma = (a_1 a_2 \cdots a_n)$ in S_m . Show that $\tau \sigma \tau^{-1}$ takes $\tau(a_1) \mapsto \tau(a_2), \tau(a_1) \mapsto \tau(a_2), \ldots, \tau(a_n) \mapsto \tau(a_1)$. Hence $\tau \sigma \tau^{-1}$ is the n-cycle $(\tau(a_1)\tau(a_2)\ldots\tau(a_n))$.

- (b) Use the previous result to find all conjugates of (123) in S_4 .
- (c) Find a permutation τ in S_4 conjugating $\sigma = (1234)$ to $\tau \sigma \tau^{-1} = (2413)$.
- (d) If $\sigma = \sigma_1 \cdots \sigma_k$, show that $\tau \sigma \tau^{-1} = \tau \sigma_1 \tau^{-1} \cdots \tau \sigma_k \tau^{-1}$.
- (e) Use the previous results to find all conjugates of (12)(34) in S_4 .
- (73) Find the number of conjugacy classes in each of S_3 , S_4 and S_5 and write down a representative from each conjugacy class. How many elements are in each conjugacy class?
- (74) Let H be a subgroup of G. Show that H is a normal subgroup of G if and only if H is a union of conjugacy classes in G.
- (75) Find normal subgroups of S_4 of order 4 and of order 12.
- (76) Find the centralizer in $GL_2(\mathbb{R})$ of the matrix $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.
- (77) Show that $SL_2(\mathbb{R})$ acts on the upper half plane $H = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}.$$

Prove that this action is well defined and describe the orbit and stabiliser of i.