MAST20022 Group Theory and Linear Algebra Sample exam 1

Question A1.

(a) Let a, b and c be integers. If $a \mid b$ and $a \mid c$, prove that $a^{2} \mid\left(b^{2}+3 c^{2}\right)$.
(b) i. Use Euclid?s algorithm to find $d=\operatorname{gcd}(323,377)$.
ii. Find integers x, y such that $323 x+377 y=d$.

Question A2. Consider the set $\mathbb{Q}[i]=\{a+b i| | a, b \in \mathbb{Q}\}$, where $i^{2}=1$. Show that $\mathbb{Q}[i]$ forms a field under the usual operations of addition and multiplication of complex numbers.

Question A3. Let $f: V \rightarrow V$ be a linear transformation on an n-dimensional vector space with minimal polynomial $m(X)=X^{n}$.
(a) Show that there is a vector $v \in V$ such that $f^{n-1}(v) \neq 0$.
(b) Show that $\mathcal{B}=\left(f^{n-1}(v), f^{n-2}(v), \ldots, f^{2}(v), f(v), v\right)$ is a basis for V.
(c) Find the matrix of f with respect to the basis \mathcal{B}.

Question A4. Find the minimal polynomials and Jordan normal forms of the matrices:

$$
B=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right], \quad C=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Question A5. Which of the following pairs of matrices (over \mathbb{C}) are similar?
(a) $\left[\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right], \quad\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right], \quad\left[\begin{array}{cc}-1 & 5 \\ 0 & -1\end{array}\right]$
(c) $\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right], \quad\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$

Question A6.

(a) Find the order of each element in $\mathbb{Z} / 10 \mathbb{Z}$.
(b) Hence find all subgroups of $\mathbb{Z} / 10 \mathbb{Z}$.

Question A7. For each pair of groups, determine whether they are isomorphic or not and briefly justify your answer.
(a) $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and D_{4}
(b) $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$ and $\mathbb{Z} / 12 \mathbb{Z}$
(c) $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 6 \mathbb{Z}$.

Question A8. Consider the subgroup $H=\langle(0,2)\rangle$ of $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.
(a) Write down the left cosets of H in G.
(b) Find the order of each element in the quotient group G / H.
(c) Identify the quotient group G / H. (Is it isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ or to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$?)

Question A9. Let V be an inner product space and let W be a subspace of V.
(a) Define the orthogonal complement W^{\perp} of W.
(b) Show that $W \subseteq\left(W^{\perp}\right)^{\perp}$.
(c) Suppose now that V is finite-dimensional. Show that $W=\left(W^{\perp}\right)^{\perp}$.

Question A10. Let $G L_{2}(\mathbb{R})$ act on \mathbb{R}^{2} in the usual way: $A \cdot v=A v$ for $A \in G L_{2}(\mathbb{R})$ and $v \in \mathbb{R}^{2}$. Describe the stabiliser and orbit of:
(a) $0=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
(b) $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Question B1.

(a) State the Jordan normal form theorem.
(b) Give an explicit matrix over \mathbb{F}_{5} that has a Jordan normal form. Justify your answer.
(c) Give an explicit matrix over \mathbb{F}_{5} that does not have a Jordan normal form. Justify your answer.
(d) Let $V=\mathbb{C}[x]_{\leqslant 2}$ and consider a non-diagonalisable linear transformation $f: V \rightarrow V$ satisfying the conditions

$$
\begin{aligned}
\left(f-2 \mathrm{id}_{V}\right)^{3} & =0 \\
f(x-1) & =2 x-2 \\
f\left(x^{2}+1\right) & =2 x^{2}+2
\end{aligned}
$$

Find the Jordan normal form of f. Justify your answer.

Question B2. Let p be a prime number. Recall the groups of 2×2 matrices

$$
\begin{aligned}
G L_{2}\left(\mathbb{F}_{p}\right) & =\left\{A \in M_{2}\left(\mathbb{F}_{p}\right) \mid \operatorname{det}(A) \neq 0\right\} \\
S L_{2}\left(\mathbb{F}_{p}\right) & =\left\{A \in M_{2}\left(\mathbb{F}_{p}\right) \mid \operatorname{det}(A)=1\right\} .
\end{aligned}
$$

(a) Prove that $\# G L_{2}\left(\mathbb{F}_{p}\right)=\left(p^{2}-1\right)\left(p^{2}-p\right)$.
(b) Use the determinant group homomorphism to find the cardinality $\# S L_{2}\left(\mathbb{F}_{p}\right)$.
(c) Consider the subset

$$
H=\left\{\left.\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \right\rvert\, x \in \mathbb{F}_{p}\right\}
$$

Prove that H is a subgroup of $S L_{2}\left(\mathbb{F}_{p}\right)$.
(d) Is H a normal subgroup? Justify your answer.
(e) Prove that H is isomorphic to the group $\left(\mathbb{F}_{p},+\right)$.
(f) Write down an explicit element of order p of $S L_{2}\left(\mathbb{F}_{p}\right)$. Justify your answer.
(g) How many p-Sylow subgroups does $S L_{2}\left(\mathbb{F}_{p}\right)$ have? Justify your answer.

Question B3.

(a) State the Spectral Theorem for complex matrices.
(b) Show that the matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

is normal.
(c) Find a complex matrix square root of A, i.e. a complex matrix B such that $B^{2}=A$.

Question B4.

(a) Consider the action of the group D_{4} on \mathbb{R}^{2} defined by

$$
r \cdot v=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] v, s \cdot v=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] v,
$$

i. What is the vector

$$
\left(s r^{3}\right) \cdot\left[\begin{array}{c}
2 \\
-1
\end{array}\right] ?
$$

ii. What cardinalities can the orbits of this action of D_{4} have? Give an explicit example for each cardinality.
(b) i. State Burnside?s Lemma for the number of orbits of the action of a finite group on a finite set.
ii. Find the number of 3×3 squares containing only 0 ?s and 1 ?s, up to D_{4} symmetry.

