MAST20022 Group Theory and Linear Algebra Sample exam 3

Question 1. Show that the group $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and the group D_{4} are not isomorphic.
Question 2. Describe all group homomorphisms $f: \mathbb{Z} \rightarrow \mathbf{Z}$.
Question 3. Let G be a group and let $g, x, y \in G$. Show that if $g x=g y$ then $x=y$.
Question 4. Let : $V \rightarrow V$ be a linear transformation on a finite dimensional inner product space V. Show that the adjoint f^{*} exists and is unique.

Question 5. Let $a, b, c \in \mathbb{C}$. Find the possible Jordan normal forms (up to reordering the Jordan blocks) of matrices that have characteristic polynomial $(x-a)(x-b)(x-c)$.

Question 6. Let \mathbb{F} be a field and let $d, a \in \mathbb{F}[t]$. Define the ideal generated by d and " d divides $a "$ and give some illustrative examples.

Question 7. Let $f: G \rightarrow H$ be a group homomorphism. Show that f is injective if and only if $\operatorname{ker} f=\{1\}$.

Question 8. Let \mathbb{F} be a field. Define $\mathbb{F}[t]$ and $\mathbb{F}(t)$ and give some illustrative examples.
Question 9. Find the multiplicative inverse of 71 in $\mathbb{Z} / 131 \mathbb{Z}$.
Question 10. Define \mathbb{R}^{2} and \mathbb{E}^{2} and give some illustrative examples.
Question 11. Let G be the group of symmetries of the rectangle X with vertices $(2,1),(2,-1)$, $(-2,1),(-2,-1)$.
(a) Give geometric descriptions of the symmetries in G.
(b) Find the orbit and stabilizer of the point $Q=(2,0)$ under the action of G on X.
(c) Check that your answers to parts (a) and (b) are consistent with the orbit-stabiliser theorem.

Question 12. Let V be the subspace of \mathbb{R}^{3} spanned by the vectors $(1,1,0),(0,1,2)$. Find the orthogonal complement of V, using the dot product as inner product on \mathbb{R}^{3}.

Question 13. Let \mathcal{I} be the group of isometries of \mathbb{E}^{2}. Let P be a point of \mathbb{E}^{2}. Show that every element of \mathcal{I} can be uniquely expressed as an isometry fixing P followed by a translation.

Question 14. Define the dihedral group D_{n} and give some illustrative examples.
Question 15. Let A be an $n \times n$ complex Hermitian matrix. Define a product on \mathbb{C}^{n} by $(X, Y)=X A Y^{*}$, where $X, Y \in \mathbb{C}^{n}$ are written as row vectors. Show that this is an inner product if all the eigenvalues of A are positive real numbers.

Question 16. Show that if $A=B^{*} B$, where B is any invertible $n \times n$ complex matrix, then A is a Hermitian matrix and all the eigenvalues of A are real and positive.

