MAST20022 Group Theory and Linear Algebra Sample exam 4

Question A1.

- 1. Find the multiplicative inverse of $[9]_{14}$ in $\mathbb{Z}/14\mathbb{Z}$.
- 2. What can be said about the multiplicative inverse of $[6]_{14}$ in $\mathbb{Z}/14\mathbb{Z}$?
- 3. Using the Euclidean Algorithm, find gcd(299, 377).

Question A2.

- 1. Show that $\mathbb{Q}(i) = \{a + bi \mid a, b, \in \mathbb{Q}\} \subset \mathbb{C}$ is a field (using the usual operations on \mathbb{C}). (Hint: You may use that \mathbb{C} is a field.)
- 2. a) Give the definition of what it means to say that a field is *algebraically closed*.
 - b) Show that the field $\mathbb{Q}(i)$ is not algebraically closed.

Question A3.

Consider the matrix $M = \begin{bmatrix} i & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & i \end{bmatrix} \in M_3(\mathbb{C}).$

- 1. Find the minimal polynomial of M.
- 2. Use your answer for part (a) to determine whether M is diagonalizable. (Be sure to give a justification.)

Question A4.

Find all possible Jordan normal forms (up to permutation of Jordan blocks) for a matrix whose characteristic polynomial is $(X + 2)^2 (X - 5)^3$

Question A5.

Let V be an inner product space and $f: V \to V$ a linear transformation.

- 1. Give the definition of the adjoint f^* .
- 2. Show that if $f = f^*$, then all eigenvalues of f are real.

Question A6.

Let V be a vector space and $U, W \leq V$ two subspaces of V.

- 1. Give the definition of what it means to say that $V = U \oplus W$.
- 2. Suppose that $V = U \oplus W$. Show that for all $v \in V$ there exist unique vectors $u \in U$ and $w \in W$ such that v = u + w.

Question A7.

- 1. Write the following element of S_5 as a product of disjoint cycles: $(1234)^{-1}(15)$
- 2. Calculate the order of $(12)(123)(54)(12) \in S_5$.

Question A8.

Let G be a group and $H, K \leq G$ two subgroups.

- 1. Prove that $H \cap K$ is a subgroup of G.
- 2. Give and example to show that $H \cup K$ need not be a subgroup of G.

Question A9.

For each of the following pairs decide whether or not the two groups are isomorphic. You should justify your answers.

1.	$(\mathbb{F}_5^{\times}, \times)$ and $(\mathbb{Z}/5\mathbb{Z}, +)$	3.	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ and D_5
2.	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$	4.	$\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$ and $\mathbb{Z} \times (\mathbb{Z}/4\mathbb{Z})$

Question A10.

- 1. Let G be a finite group and $\varphi : G \to H$ a homomorphism. Prove that the order of $\varphi(G)$ divides the order of G.
- 2. How many homomorphisms are there from $\mathbb{Z}/3\mathbb{Z}$ to $S_3 \times \mathbb{Z}$? Be careful to justify your answer.

Question A11.

Let $s, r \in D_6$ be the symmetries of a regular hexagon corresponding to reflection across the line shown and rotation by $2\pi/3$ respectively. Consider the subgroup $H \leq D_6$ generated by $\{s, r\}$.

- 1. Find the orbit and stabilizer of the vertex A under the action of H. (Label the vertices of the hexagon A, B, C, D, E, F clockwise from the vertex A shown.)
- 2. Is the action of H transitive?

Question B1.

- 1. State the Orbit-Stabilizer relation.
- 2. Let G be a group of size 16 and X a set having 25 elements. Show that every action of G on X has a fixed point.
- 3. Suppose that a finite group G acts non-trivially on a finite set X. Let n = |G| and r = |X|. Prove that if n > r! then G has a normal subgroup $N \triangleleft G$ satisfying both $N \neq \{e\}$ and $N \neq G$.

Question B2.

Let V be a K-vector space and let $f: V \to V$ be a linear transformation.

- 1. Give the definition of an f-invariant subspace of V.
- 2. Let $p(X) \in K[X]$. Prove that $W = \ker(p(f))$ is an f-invariant subspace of V.
- 3. Suppose now that p(f) = 0 and that $p(X) = q_1(X)q_2(X)$ for some relatively prime $q_1(X), q_2(X) \in K[X]$. Show that $V = (\ker(q_1(f))) \oplus (\ker(q_2(f)))$.

Question B3.

- 1. Let V be an inner product space. Show that if $f: V \to V$ is a normal linear transformation, then f(v) = 0 if and only if $f^*(v) = 0$.
- 2. State the Spectral Theorem for linear transformations on a finite dimensional inner product space.
- 3. Let $A = \begin{bmatrix} 2 & i \\ i & 2 \end{bmatrix}$.
 - a) Show that A is normal.
 - b) Find a unitary matrix U such that U^*AU is diagonal.
 - c) Show that there exists a matrix B such that $B^2 = A$.

Question B4.

The set

$$Q = \{1, -1, i, -i, j, -j, k, -k\}$$

has the structure of a group in which 1 is the identity element and the multiplication satisfies:

$$\begin{split} i^2 &= j^2 = k^2 = -1, \quad (-1)^2 = 1\\ ij &= k, \quad jk = i, \quad ki = j\\ -i &= (-1)i, \quad -j = (-1)j, \quad -k = (-1)k \end{split}$$

(You do not have to prove that this is a group.)

- 1. Show that ji = -k in Q.
- 2. Find the order of each element in Q.
- 3. Is Q isomorphic to D_4 ? Justify your answer.
- 4. Calculate the centre Z(Q) of Q.
- 5. Determine which of the following groups is isomorphic to the quotient Q/Z(Q):
 - a) $\mathbb{Z}/2\mathbb{Z}$ c) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 - b) $\mathbb{Z}/4\mathbb{Z}$ d) $\mathbb{Z}/8\mathbb{Z}$