MAST20022 Group Theory and Linear Algebra Sample exam 4

Question A1.

1. Find the multiplicative inverse of $[9]_{14}$ in $\mathbb{Z} / 14 \mathbb{Z}$.
2. What can be said about the multiplicative inverse of $[6]_{14}$ in $\mathbb{Z} / 14 \mathbb{Z}$?
3. Using the Euclidean Algorithm, find $\operatorname{gcd}(299,377)$.

Question A2.

1. Show that $\mathbb{Q}(i)=\{a+b i \mid a, b, \in \mathbb{Q}\} \subset \mathbb{C}$ is a field (using the usual operations on \mathbb{C}). (Hint: You may use that \mathbb{C} is a field.)
2. a) Give the definition of what it means to say that a field is algebraically closed.
b) Show that the field $\mathbb{Q}(i)$ is not algebraically closed.

Question A3.

Consider the matrix $M=\left[\begin{array}{ccc}i & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & i\end{array}\right] \in M_{3}(\mathbb{C})$.

1. Find the minimal polynomial of M.
2. Use your answer for part (a) to determine whether M is diagonalizable. (Be sure to give a justification.)

Question A4.

Find all possible Jordan normal forms (up to permutation of Jordan blocks) for a matrix whose characteristic polynomial is $(X+2)^{2}(X-5)^{3}$

Question A5.

Let V be an inner product space and $f: V \rightarrow V$ a linear transformation.

1. Give the definition of the adjoint f^{*}.
2. Show that if $f=f^{*}$, then all eigenvalues of f are real.

Question A6.

Let V be a vector space and $U, W \leqslant V$ two subspaces of V.

1. Give the definition of what it means to say that $V=U \oplus W$.
2. Suppose that $V=U \oplus W$. Show that for all $v \in V$ there exist unique vectors $u \in U$ and $w \in W$ such that $v=u+w$.

Question A7.

1. Write the following element of S_{5} as a product of disjoint cycles: $(1234)^{-1}(15)$
2. Calculate the order of $(12)(123)(54)(12) \in S_{5}$.

Question A8.

Let G be a group and $H, K \leqslant G$ two subgroups.

1. Prove that $H \cap K$ is a subgroup of G.
2. Give and example to show that $H \cup K$ need not be a subgroup of G.

Question A9.

For each of the following pairs decide whether or not the two groups are isomorphic. You should justify your answers.

1. $\left(\mathbb{F}_{5}^{\times}, \times\right)$and $(\mathbb{Z} / 5 \mathbb{Z},+)$
2. $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 6 \mathbb{Z}$
3. $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ and D_{5}
4. $\mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})$ and $\mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})$

Question A10.

1. Let G be a finite group and $\varphi: G \rightarrow H$ a homomorphism.

Prove that the order of $\varphi(G)$ divides the order of G.
2. How many homomorphisms are there from $\mathbb{Z} / 3 \mathbb{Z}$ to $S_{3} \times \mathbb{Z}$?

Be careful to justify your answer.

Question A11.

Let $s, r \in D_{6}$ be the symmetries of a regular hexagon corresponding to reflection across the line shown and rotation by $2 \pi / 3$ respectively. Consider the subgroup $H \leqslant D_{6}$ generated by $\{s, r\}$.

1. Find the orbit and stabilizer of the vertex A under the action of H.
(Label the vertices of the hexagon A, B, C, D, E, F clockwise from the vertex A shown.)
2. Is the action of H transitive?

Question B1.

1. State the Orbit-Stabilizer relation.
2. Let G be a group of size 16 and X a set having 25 elements. Show that every action of G on X has a fixed point.
3. Suppose that a finite group G acts non-trivially on a finite set X. Let $n=|G|$ and $r=|X|$. Prove that if $n>r$! then G has a normal subgroup $N \triangleleft G$ satisfying both $N \neq\{e\}$ and $N \neq G$.

Question B2.

Let V be a K-vector space and let $f: V \rightarrow V$ be a linear transformation.

1. Give the definition of an f-invariant subspace of V.
2. Let $p(X) \in K[X]$. Prove that $W=\operatorname{ker}(p(f))$ is an f-invariant subspace of V.
3. Suppose now that $p(f)=0$ and that $p(X)=q_{1}(X) q_{2}(X)$ for some relatively prime $q_{1}(X), q_{2}(X) \in K[X]$. Show that $V=\left(\operatorname{ker}\left(q_{1}(f)\right)\right) \oplus\left(\operatorname{ker}\left(q_{2}(f)\right)\right)$.

Question B3.

1. Let V be an inner product space. Show that if $f: V \rightarrow V$ is a normal linear transformation, then $f(v)=0$ if and only if $f^{*}(v)=0$.
2. State the Spectral Theorem for linear transformations on a finite dimensional inner product space.
3. Let $A=\left[\begin{array}{ll}2 & i \\ i & 2\end{array}\right]$.
a) Show that A is normal.
b) Find a unitary matrix U such that $U^{*} A U$ is diagonal.
c) Show that there exists a matrix B such that $B^{2}=A$.

Question B4.

The set

$$
Q=\{1,-1, i,-i, j,-j, k,-k\}
$$

has the structure of a group in which 1 is the identity element and the multiplication satisfies:

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1, \quad(-1)^{2}=1 \\
i j=k, \quad j k=i, \quad k i=j \\
-i=(-1) i, \quad-j=(-1) j, \quad-k=(-1) k
\end{gathered}
$$

(You do not have to prove that this is a group.)

1. Show that $j i=-k$ in Q.
2. Find the order of each element in Q.
3. Is Q isomorphic to D_{4} ? Justify your answer.
4. Calculate the centre $Z(Q)$ of Q.
5. Determine which of the following groups is isomorphic to the quotient $Q / Z(Q)$:
a) $\mathbb{Z} / 2 \mathbb{Z}$
b) $\mathbb{Z} / 4 \mathbb{Z}$
c) $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
d) $\mathbb{Z} / 8 \mathbb{Z}$
