MAST20022 Group Theory and Linear Algebra Sample exam 5

Question A1.

- 1. Let $a(X), b(X) \in \mathbb{R}[X]$. Give the definition of a greatest common divisor of a(X) and b(X).
- 2. Use the Euclidean algorithm to find the greatest common divisor (in \mathbb{N}) of 836 and 494.

Question A2.

- 1. For each of the following, find the multiplicative inverse in $\mathbb{Z}/110\mathbb{Z}$ or explain why no inverse exists:
 - a) $[12]_{110}$ b) $[57]_{110}$
- 2. Find the smallest $m \in \mathbb{N}$ such that the remainder when m is divided by 7 is 4 and the remainder when m is divided by 22 is 14.

Question A3.

Let $f: (\mathbb{F}_5)^3 \to (\mathbb{F}_5)^3$ be the linear transformation given by

 $f([x]_5, [y]_5, [z]_5) = ([3x - z]_5, [-x + 2y + z]_5, [x + z]_5)$

- 1. Calculate the eigenvalues of f.
- 2. Find the minimal polynomial of f.

Question A4.

- (a) Let V be a vector space over \mathbb{C} . Give the definition of an inner product on V.
- (b) Show that $\langle A, B \rangle = \operatorname{tr}((\overline{B})^t A)$ defines an inner product on $M_2(\mathbb{C})$.

Question A5.

Let $f: V \to V$ be a linear transformation of a finite dimensional vector space V. Show that there are bases \mathcal{B} and \mathcal{C} of V such that $[f]_{\mathcal{C},\mathcal{B}}$ is diagonal and has all non-zero entries equal to 1.

Question A6.

- 1. Find the Jordan normal form of the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \in M_3(\mathbb{C}).$
- 2. A square complex matrix A has characteristic polynomial $(X i)^4 (X 4)^4$ and minimal polynomial $(X i)^2 (X 4)^2$. The eigenspace corresponding to eigenvalue 4 has dimension 3. Write down all possible Jordan normal form matrices that are similar to A. (Up to re-arrangement of the blocks.)

Question A7.

- 1. Write the following element of S_5 as a product of disjoint cycles: $(1234)^{-1}(15)$.
- 2. Calculate the order of $(12)(123)(54)(12) \in S_5$.

Question A8.

Let G be a group and $H \leq G$ a subgroup of G.

1. What does it mean to say that H is a *normal* subgroup of G?

Suppose now that $H = \langle \{aba^{-1}b^{-1} \mid a, b \in G\} \rangle \leq G$.

2. Show that H is normal.

Question A9.

Consider the subgroup H of D_8 given by $H = \langle s, t \rangle$ where $s, t \in D_8$ are the reflections shown in the figure on the right. The group Hacts on the set of vertices $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ of the octagon.

- 1. List the orbits of the action of H on X.
- 2. State the Orbit-Stabiliser relation and verify that it holds for each orbit of the action of H on X.

Question A10.

- 1. State Burnside's orbit counting lemma.
- 2. The sides of a square are coloured using three colours. Two such colourings are considered equivalent if one can be obtained from the other by rotating the square. How many different (i.e., non-equivalent) colourings are there?

Question B1.

- 1. Let $a, b \in \mathbb{Z}$ be relatively prime. Show that
 - a) $\forall c \in \mathbb{Z}, a \mid bc \implies a \mid c$
 - b) $\forall c \in \mathbb{Z}, (a \mid c \land b \mid c) \implies ab \mid c$
- 2. Let K be a field and $f(X) \in K[X]$. Show that $\forall k \in K$, $f(k) = 0 \implies (X k) \mid f(X)$

Question B2.

Let V be a finite dimensional vector space and $f: V \to V$ a linear transformation. Suppose that $v \in V$ and $n \in \mathbb{N}$ are such that $f^n(v) = 0$ and $f^{n-1}(v) \neq 0$.

1. Show that the set $S = \{v, f(v), \dots, f^{n-1}(v)\}$ is linearly independent.

Let $W = \text{Span}(S) \leq V$.

2. Show that W is f-invariant.

Let $g: W \to W$ be the restriction of f to W.

- 3. Show that g is nilpotent.
- 4. Show that there is a basis \mathcal{B} of V and matrices A and B such that $[f]_{\mathcal{B}} = \begin{bmatrix} J(0,n) & A \\ 0 & B \end{bmatrix}$.

Question B3.

Let V be an inner product space and $f: V \to V$ a self-adjoint linear transformation.

- 1. Show that all eigenvalues of f are real.
- 2. Suppose that for all $v \in V$, $\langle f(v), v \rangle = 0$. Show that f = 0.
- 3. Suppose instead that V is finite dimensional and that $\langle f(v), v \rangle \ge 0$ for all $v \in V$. Show that $f = g^2$ for some self-adjoint linear transformation $g: V \to V$.

Question B4.

Let G be a group.

1. Show that if $\forall g \in G$, $g^2 = e$, then G is abelian.

Suppose now that G has order 8.

- 2. Show that if G is non-abelian, then G has an element of order 4.
- 3. Show that if G is abelian, then G is isomorphic to one of

 $\mathbb{Z}/8\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Question B5.

Give two non-isomorphic groups of size 10. Show that there are only these two possibilities.

Question B6.

- 1. Show that there is only one group (up to isomorphism) of size 15.
- 2. Let G be a group of size 9.
 - a) Show that the centre Z(G) has size |Z(G)| > 1.
 - b) Show that G is isomorphic to one of $\mathbb{Z}/9\mathbb{Z}$ or $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- 3. Let H be a group of size 42. Show that H has a normal subgroup $K \triangleleft H$ with $K \neq \{e\}$ and $K \neq H$.