MAST20022 Group Theory and Linear Algebra Sample exam 5

Question A1.

1. Let $a(X), b(X) \in \mathbb{R}[X]$. Give the definition of a greatest common divisor of $a(X)$ and $b(X)$.
2. Use the Euclidean algorithm to find the greatest common divisor (in \mathbb{N}) of 836 and 494.

Question A2.

1. For each of the following, find the multiplicative inverse in $\mathbb{Z} / 110 \mathbb{Z}$ or explain why no inverse exists:
a) $[12]_{110}$
b) $[57]_{110}$
2. Find the smallest $m \in \mathbb{N}$ such that the remainder when m is divided by 7 is 4 and the remainder when m is divided by 22 is 14 .

Question A3.

Let $f:\left(\mathbb{F}_{5}\right)^{3} \rightarrow\left(\mathbb{F}_{5}\right)^{3}$ be the linear transformation given by

$$
f\left([x]_{5},[y]_{5},[z]_{5}\right)=\left([3 x-z]_{5},[-x+2 y+z]_{5},[x+z]_{5}\right)
$$

1. Calculate the eigenvalues of f.
2. Find the minimal polynomial of f.

Question A4.

(a) Let V be a vector space over \mathbb{C}. Give the definition of an inner product on V.
(b) Show that $\langle A, B\rangle=\operatorname{tr}\left((\bar{B})^{t} A\right)$ defines an inner product on $M_{2}(\mathbb{C})$.

Question A5.

Let $f: V \rightarrow V$ be a linear transformation of a finite dimensional vector space V. Show that there are bases \mathcal{B} and \mathcal{C} of V such that $[f]_{\mathcal{C}, \mathcal{B}}$ is diagonal and has all non-zero entries equal to 1 .

Question A6.

1. Find the Jordan normal form of the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right] \in M_{3}(\mathbb{C})$.
2. A square complex matrix A has characteristic polynomial $(X-i)^{4}(X-4)^{4}$ and minimal polynomial $(X-i)^{2}(X-4)^{2}$. The eigenspace corresponding to eigenvalue 4 has dimension 3. Write down all possible Jordan normal form matrices that are similar to A. (Up to re-arrangement of the blocks.)

Question A7.

1. Write the following element of S_{5} as a product of disjoint cycles: $(1234)^{-1}(15)$.
2. Calculate the order of $(12)(123)(54)(12) \in S_{5}$.

Question A8.

Let G be a group and $H \leqslant G$ a subgroup of G.

1. What does it mean to say that H is a normal subgroup of G ?

Suppose now that $H=\left\langle\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}\right\rangle \leqslant G$.
2. Show that H is normal.

Question A9.

Consider the subgroup H of D_{8} given by $H=\langle s, t\rangle$ where $s, t \in D_{8}$ are the reflections shown in the figure on the right. The group H acts on the set of vertices $X=\{1,2,3,4,5,6,7,8\}$ of the octagon.

1. List the orbits of the action of H on X.
2. State the Orbit-Stabiliser relation and verify that it holds for each orbit of the action of H on X.

Question A10.

1. State Burnside's orbit counting lemma.
2. The sides of a square are coloured using three colours. Two such colourings are considered equivalent if one can be obtained from the other by rotating the square. How many different (i.e., non-equivalent) colourings are there?

Question B1.

1. Let $a, b \in \mathbb{Z}$ be relatively prime. Show that
a) $\forall c \in \mathbb{Z}, \quad a|b c \Longrightarrow a| c$
b) $\forall c \in \mathbb{Z}, \quad(a|c \wedge b| c) \Longrightarrow a b \mid c$
2. Let K be a field and $f(X) \in K[X]$. Show that $\forall k \in K, \quad f(k)=0 \Longrightarrow(X-k) \mid f(X)$

Question B2.

Let V be a finite dimensional vector space and $f: V \rightarrow V$ a linear transformation. Suppose that $v \in V$ and $n \in \mathbb{N}$ are such that $f^{n}(v)=0$ and $f^{n-1}(v) \neq 0$.

1. Show that the set $S=\left\{v, f(v), \ldots, f^{n-1}(v)\right\}$ is linearly independent.

Let $W=\operatorname{Span}(S) \leqslant V$.
2. Show that W is f-invariant.

Let $g: W \rightarrow W$ be the restriction of f to W.
3. Show that g is nilpotent.
4. Show that there is a basis \mathcal{B} of V and matrices A and B such that $[f]_{\mathcal{B}}=\left[\begin{array}{cc}J(0, n) & A \\ 0 & B\end{array}\right]$.

Question B3.

Let V be an inner product space and $f: V \rightarrow V$ a self-adjoint linear transformation.

1. Show that all eigenvalues of f are real.
2. Suppose that for all $v \in V,\langle f(v), v\rangle=0$. Show that $f=0$.
3. Suppose instead that V is finite dimensional and that $\langle f(v), v\rangle \geqslant 0$ for all $v \in V$. Show that $f=g^{2}$ for some self-adjoint linear transformation $g: V \rightarrow V$.

Question B4.

Let G be a group.

1. Show that if $\forall g \in G, g^{2}=e$, then G is abelian.

Suppose now that G has order 8 .
2. Show that if G is non-abelian, then G has an element of order 4.
3. Show that if G is abelian, then G is isomorphic to one of

$$
\mathbb{Z} / 8 \mathbb{Z} \quad \text { or } \quad \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \quad \text { or } \quad \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

Question B5.

Give two non-isomorphic groups of size 10.
Show that there are only these two possibilities.

Question B6.

1. Show that there is only one group (up to isomorphism) of size 15 .
2. Let G be a group of size 9 .
a) Show that the centre $Z(G)$ has size $|Z(G)|>1$.
b) Show that G is isomorphic to one of $\mathbb{Z} / 9 \mathbb{Z}$ or $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
3. Let H be a group of size 42. Show that H has a normal subgroup $K \triangleleft H$ with $K \neq\{e\}$ and $K \neq H$.
