Tutorial 1

Main topics: Greatest common divisors, Euclid's algorithm, arithmetic modulo m.

1. Write down all the common divisors of 56 and 72 .
2. Let a, b, and c be integers. If $a \mid b$ and $a \mid c$, prove that $a^{2} \mid b^{2}+3 c^{2}$.
3. (a) Use Euclid's algorithm to find $d=\operatorname{gcd}(323,377)$.
(b) Find integers x, y such that $323 x+377 y=d$.
4. Simplify the following, giving your answers in the form $a(\bmod m)$ where $0 \leq a<m$.
(a) $14 \times 13-67+13^{3}(\bmod 10)$
(b) $5^{3}(\bmod 7)$
(c) $5^{3}+2 \times 4(\bmod 7)$
(d) $21 \times 22 \times 23 \times 24 \times 25(\bmod 20)$
5. (a) Calculate $3^{2}, 3^{4}, 3^{8}, 3^{16}, 3^{32}, 3^{64}, 3^{128}$ and 3^{256} modulo 19.
(b) Use these to calculate 3^{265} modulo 19. (Hint: $265=256+8+1$.)
[Write your answers in the form $0,1, \ldots, 18(\bmod 19)$.]
6. (A test for divisibility by 11.)

Let $n=a_{d} a_{d-1} \ldots a_{2} a_{1} a_{0}$ be a positive integer written in base 10 , i.e.

$$
n=a_{0}+10 a_{1}+10^{2} a_{2}+\ldots+10^{d} a_{d}
$$

where $a_{0}, a_{1}, \ldots a_{d}$, are the digits of the number n read from right to left.
(a) Show that $n \equiv a_{0}-a_{1}+a_{2}-a_{3} \ldots+(-1)^{d} a_{d}(\bmod 11)$. Hence n is divisible by 11 exactly when $a_{0}-a_{1}+a_{2}-a_{3} \ldots+(-1)^{d} a_{d}$ is divisible by 11 .
(b) Use this test to decide if the following numbers are divisible by 11:
(i) 123537
(ii) 30639423045 .
7. Prove that if $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.
8. Write down the addition and multiplication tables for $\mathbb{Z} / 7 \mathbb{Z}$.

Hence write down the multiplicative inverse of 2 in $\mathbb{Z} / 7 \mathbb{Z}$.
(Note: Here we use a as an abbreviation for $[a]_{m}$ to simplify notation.)
9. Find the smallest positive integer in the set $\{6 u+15 v \mid u, v \in \mathbb{Z}\}$. Justify your answer.
10. Prove that if a, b, c are integers with $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(c, m)=1$ then $a \equiv b$ $(\bmod m)$. Give an example to show that this result fails if we drop the condition that $\operatorname{gcd}(c, m)=1$. What can you conclude if $\operatorname{gcd}(c, m)=d$?
11. (a) Show that if p is prime, then p divides the binomial coefficient

$$
\binom{p}{k}=\frac{p!}{k!(p-k)!} \quad \text { for } \quad 0<k<p
$$

(b) Deduce, using induction on n and the binomial theorem, that if p is prime then $n^{p} \equiv n(\bmod p)$ for all natural numbers n ("Fermat's Little Theorem").

