Tutorial 10

Main topics: Adjoints, spectral theorem

1. For each of the following matrices decide if it is: (i) self-adjoint (ii) isometric (iii) normal

$$
A=\left[\begin{array}{cc}
2 & i \\
-i & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & i \\
0 & 1
\end{array}\right] \quad C=\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right] \quad D=\left[\begin{array}{cc}
1 & i \\
1 & 2+i
\end{array}\right]
$$

2. Find a unitary matrix U such that $U^{*} A U$ is diagonal where $A=\left[\begin{array}{cc}2 & i \\ -i & 2\end{array}\right]$.
3. Let $f: V \rightarrow V$ be a linear transformation on an inner product space V. Show that $\operatorname{ker}\left(f^{*}\right)=\operatorname{im}(f)^{\perp}$.
4. Let $f: V \rightarrow V$, where V is a finite-dimensional inner product space.
(a) Show that if f is self-adjoint, then its eigenvalues are real.
(Hint: consider $\langle f(v), v\rangle$ where v is an eigenvector)
(b) Show that if f is an isometry, then its eigenvalues have absolute value 1.
(Hint: consider $\langle f(v), f(v)\rangle$)
5. Show that every normal matrix A has a square root (i.e., there exists a complex matrix B such that $B^{2}=A$).
6. Show that any complex square matrix A can be written uniquely as a sum $A=B+C$ where B is self-adjoint and C is skew self-adjoint (i.e., $C^{*}=-C$). Further, A is normal if and only if B and C commute (i.e., $B C=C B$).
