Tutorial 3

Main topics: Bases, linear transformations, eigenvalues, direct sums, invariant subspaces

1. Consider the subset $S=\left\{\left([1]_{5},[3]_{5}\right),\left([3]_{5},[4]_{5}\right),\left([2]_{5},[3]_{5}\right)\right\}$ of \mathbb{F}_{5}^{2}.
(a) Does S span \mathbb{F}_{5}^{2} ?
(b) Is S linearly independent?
(c) Find a subset of S that is a basis for \mathbb{F}_{5}^{2}.
2. Are the following sets of functions from \mathbb{R} to \mathbb{R} linearly independent?
(a) $\left\{1, \sin ^{2} x, \cos ^{2} x\right\}$
(b) $\{1, \sin (2 x), \cos (2 x)\}$
3. Show that $\{1, \sqrt{2}, \sqrt{3}\}$ is linearly independent over the field of scalars \mathbb{Q}. (Hint: Is $\sqrt{6}$ rational?)
4. We can regard the complex numbers \mathbb{C} as a vector space V over the field of real numbers \mathbb{R}. Note that $\mathcal{B}=\{1, i\}$ is a basis for V over \mathbb{R}.
(a) Let $\alpha=a+i b$ be a complex number. Show that multiplication by α is a linear transformation $f: V \rightarrow V$.
(b) Find the matrix of f with respect to the basis \mathcal{B}.
(c) What are the eigenvalues of multiplication by i ?
5. Let $f: \mathbb{F}_{5}^{4} \rightarrow \mathbb{F}_{5}^{4}$ be the linear transformation whose matrix in the standard basis is

$$
A=\left[\begin{array}{llll}
3 & 4 & 1 & 0 \\
1 & 1 & 4 & 3 \\
0 & 1 & 2 & 1 \\
3 & 3 & 3 & 3
\end{array}\right]
$$

Let $U=\operatorname{Span}\{(1,2,0,3),(0,1,1,4)\}$ and $W=\operatorname{Span}\{(1,2,2,0),(4,0,1,3),(2,1,2,3)\}$
(a) Find bases for U and for W.
(b) Show that $\mathbb{F}_{5}^{4}=U \oplus W$.
(c) Check that both U and W are f-invariant.
(d) Find a block diagonal matrix for f, using an appropriate basis for \mathbb{F}_{5}^{4}.
6. Consider the matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.
(a) Show that the complex eigenvalues of A are $1, \omega, \omega^{2}$ where $\omega=e^{2 \pi i / 3}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$.
(b) Find an eigenvector in \mathbb{C}^{2} corresponding to each eigenvalue.
(c) Explain why A is diagonalisable over \mathbb{C} and find a diagonal matrix D and an invertible matrix P such that $P^{-1} A P=D$.
(d) Explain why A is not diagonalisable over \mathbb{R}.

