Tutorial 3

Main topics: Bases, linear transformations, eigenvalues, direct sums, invariant subspaces

- 1. Consider the subset $S = \{([1]_5, [3]_5), ([3]_5, [4]_5), ([2]_5, [3]_5)\}$ of \mathbb{F}_5^2 .
 - (a) Does S span \mathbb{F}_5^2 ?
 - (b) Is S linearly independent?
 - (c) Find a subset of S that is a basis for \mathbb{F}_5^2 .
- 2. Are the following sets of functions from \mathbb{R} to \mathbb{R} linearly independent?
 - (a) $\{1, \sin^2 x, \cos^2 x\}$ (b) $\{1, \sin(2x), \cos(2x)\}$
- 3. Show that $\{1, \sqrt{2}, \sqrt{3}\}$ is linearly independent over the field of scalars \mathbb{Q} . (Hint: Is $\sqrt{6}$ rational?)
- 4. We can regard the complex numbers \mathbb{C} as a vector space V over the field of real numbers \mathbb{R} . Note that $\mathcal{B} = \{1, i\}$ is a basis for V over \mathbb{R} .
 - (a) Let $\alpha = a + ib$ be a complex number. Show that multiplication by α is a linear transformation $f: V \to V$.
 - (b) Find the matrix of f with respect to the basis \mathcal{B} .
 - (c) What are the eigenvalues of multiplication by i?
- 5. Let $f: \mathbb{F}_5^4 \to \mathbb{F}_5^4$ be the linear transformation whose matrix in the standard basis is

$$A = \begin{bmatrix} 3 & 4 & 1 & 0 \\ 1 & 1 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 3 & 3 & 3 & 3 \end{bmatrix}$$

Let $U = \text{Span}\{(1, 2, 0, 3), (0, 1, 1, 4)\}$ and $W = \text{Span}\{(1, 2, 2, 0), (4, 0, 1, 3), (2, 1, 2, 3)\}$

- (a) Find bases for U and for W.
- (b) Show that $\mathbb{F}_5^4 = U \oplus W$.
- (c) Check that both U and W are f-invariant.
- (d) Find a block diagonal matrix for f, using an appropriate basis for \mathbb{F}_5^4 .

6. Consider the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

- (a) Show that the complex eigenvalues of A are $1, \omega, \omega^2$ where $\omega = e^{2\pi i/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$.
- (b) Find an eigenvector in \mathbb{C}^2 corresponding to each eigenvalue.
- (c) Explain why A is diagonalisable over \mathbb{C} and find a diagonal matrix D and an invertible matrix P such that $P^{-1}AP = D$.
- (d) Explain why A is not diagonalisable over \mathbb{R} .