Tutorial 4

Main topics: Minimal polynomials, diagonalisation

1. Show that the matrix

$$
A=\left[\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]
$$

has minimal polynomial $X^{2}-2 X-8$. Use this to determine the inverse of A.
2. Find the minimal polynomials of the matrices:

$$
A=\left[\begin{array}{cc}
-3 & 2 \\
-2 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right] \quad C=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

[Hint: Use the following results from the lectures:
(i) the minimal polynomial divides the characteristic polynomial,
(ii) every eigenvalue is a root of the minimal polynomial.]
3. Let $f: V \rightarrow V$ be a linear transformation on an n-dimensional vector space with minimal polynomial $m(X)=X^{n}$.
(a) Show that there is a vector $v \in V$ such that $f^{n-1}(v) \neq 0$.
(b) Show that $\mathcal{B}=\left\{f^{n-1}(v), f^{n-2}(v), \ldots, f^{2}(v), f(v), v\right\}$ is a basis for V.
(c) Find the matrix of f with respect to the basis \mathcal{B}.
4. Let K be an algebraically closed field, let $V=M_{2}(K)$ and consider the linear transformation $f: V \rightarrow V$ given by $f(A)=A^{T}$ (the transpose of A).
(a) Find the minimal polynomial of f.
(b) Find the eigenvalues and corresponding eigenspaces of f.
5. Let $f: V \rightarrow V$ be a linear transformation on an n-dimensional complex vector space satisfying $f^{4}=\operatorname{id}_{V}$. Show that f is diagonalisable. What can you say about the eigenvalues of f ?
6. Let $f: V \rightarrow V$ be a linear transformation on a finite-dimensional vector space V and suppose that $f^{2}=f$. Explain how to find a diagonal matrix representing f.
7. Let $f, g: V \rightarrow V$ be commuting linear transformations: $f g=g f$.
(a) Show that any eigenspace of f is g-invariant.
(b) If K is algebraically closed and V is finite-dimensional, prove that f and g have a common eigenvector.
8. (Challenging!) Find a linear transformation $f: V \rightarrow V$ on an infinite dimensional vector space V that satisfies no monic polynomial equation $p(f)=0$.

