Tutorial 6

Main topics: Properties and examples of groups; subgroups, cyclic groups, orders of elements

1. Let K be a field.
(a) Does the set $M_{n}(K)$ of $n \times n$ matrices form a group under matrix addition?
(b) Does $M_{n}(K)$ form a group under matrix multiplication?
(c) The set $\mathrm{GL}_{n}(K)$ of invertible $n \times n$ matrices forms a group under matrix multiplication. Does $\mathrm{GL}_{n}(K)$ form a group under matrix addition?
2. Let G be a group and $x, y, z, w \in G$.
(a) Given that $x y z^{-1} w=e$, solve for y (in terms of x, z and w).
(b) Assume $x y z=e$. Does it follow that $y z x=e$? Does it follow that $y x z=e$?
3. Let $n \in \mathbb{N}$. Show that the set of all complex n-th roots of unity $\mu_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$ forms a group under multiplication. (It's useful to notice that μ_{n} is a subset of the group $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$, so it is enough to show that μ_{n} is a subgroup.)
4. Compute the following products of permutations in the symmetric group S_{6} :
(a) $(123)(456) \times(12)(34)(56)$
(b) $(12) \times(246) \times(123654)$
5. (a) For each of the following $n \in \mathbb{N}$ write down an element of S_{5} that has order n.
(i) 1
(ii) 2
(iii) 3
(iv) 4
(v) 5
(vi) 6
(b) Find the orders of the following elements of the group $\mathbb{C}^{\times}=(\mathbb{C} \backslash\{0\}, \times)$.
(i) 1
(ii) -1
(iii) 3 (iv) i
6. List all the cyclic subgroups of S_{3}. How many are there?
7. Show that if $g^{2}=e$ for all g in a group G, then G is abelian.
