Tutorial 8

Main topics: Normal subgroups, Lagrange's theorem, quotient groups

1. (a) Write down the left cosets of $H=\langle(1,0)\rangle$ in $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$. Find the order of each element in the quotient group G / H. Hence identify this quotient group. (Is it isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ or to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$?)
(b) Repeat (a) for $H=\langle(0,2)\rangle$ in $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.
2. (a) A group G has fewer than 100 elements and has subgroups of orders 10 and 25 . What is the order of G ?
(b) (i) If H and K are subgroups of a finite group G, prove that $|(H \cap K)|$ is a common divisor of $|H|$ and $|K|$.
(ii) Deduce that if $|H|=7$ and $|K|=29$, then $H \cap K=\{e\}$.
3. Prove that if G is a cyclic group, then any quotient group G / N is also cyclic.
4. Let G be a group and let H be a subgroup such that the index $[G: H]=2$. Prove that H is normal.
5. Let B be the subgroup of $\operatorname{GL}(2, \mathbb{R})$ consisting of upper triangular matrices, and T the subgroup of GL $(2, \mathbb{R})$ consisting of diagonal matrices.
(a) Prove that T is isomorphic to $\mathbb{R}^{\times} \times \mathbb{R}^{\times}$.
(b) Show that $f: B \rightarrow T$ defined by

$$
f\left(\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]
$$

is a homomorphism and find its kernel U.
(c) Use the first isomorphism theorem to identify (i.e., give a simple description of) the quotient group B / U.
*Try to generalise this result to $\mathrm{GL}(n, \mathbb{R})$.
6. Determine all subgroups of the dihedral group D_{5} (which has order 10).

