Tutorial 9

Main topics: Inner products

1. Explain why the following do not define inner products on \mathbb{C}^{2} :
(a) $\left\langle\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle=z_{1} w_{1}+4 z_{2} w_{2}$
(b) $\left\langle\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle=z_{1} \overline{w_{1}}-z_{2} \overline{w_{2}}$
(c) $\left\langle\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle=z_{1} \overline{w_{1}}$
2. Find the length of the vector $(1-2 i, 2+3 i) \in \mathbb{C}^{2}$ using the standard inner product on \mathbb{C}^{2}.
3. Find an orthonormal basis for \mathbb{C}^{2} containing a multiple of the vector $(1+i, 1-i)$. [Hint: use Gram-Schmidt.]
4. Show that in every complex inner product space V :

$$
\forall u, v \in V \quad 4\langle u, v\rangle=\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}
$$

5 . Let (\cdot, \cdot) be an inner product on a complex vector space V. Let ${ }_{\mathbb{R}} V$ be V regarded as a real vector space, and define $\langle v, w\rangle=\operatorname{Re}(v, w)$.
(a) Show that $\langle v, w\rangle$ is an inner product on ${ }_{\mathbb{R}} V$.
(b) Show that: $\forall v, w \in V \quad(v, w)=\langle v, w\rangle+i\langle v, i w\rangle$
(c) Deduce that $(v, w)=0$ if and only if $\langle v, w\rangle=0$ and $\langle v, i w\rangle=0$.
6. Let W be the subspace of \mathbb{R}^{4} spanned by the set $\{(0,1,0,1),(2,0,-3,-1)\}$. Find a basis for the orthogonal complement W^{\perp} (where inner product is the usual dot product).
[Hint: $x \in W^{\perp}$ if and only if $x \cdot(0,1,0,1)=0$ and $x \cdot(2,0,-3,-1)=0$.]
7. Let W be a subspace of an inner product space V. Show that $W \subset\left(W^{\perp}\right)^{\perp}$ and that $W=\left(W^{\perp}\right)^{\perp}$ if $\operatorname{dim} V$ is finite.

