GTLA lecture 02.10.2020
Let $\rangle: V \times V \rightarrow I F$ a sesquilinear form and W is a finite dim'l subspace of V and $W \cap W^{-1}=0$.
Let $f: W \rightarrow W$ be alinear trans f. and $f^{*}: W \rightarrow W$ thee adjoint linear to ans fossuatiosi.

$$
\left\langle i f x, y \in W \text { treen }\langle f(x), y\rangle=\left\langle x, f^{*}(y)\right\rangle\right)
$$

(a) f is self-adjoint if $f=f^{x}$
(b) f is am isconetyy if $f f^{*}=1=f^{*} f$
(c) f is normal if $f^{*} f=f f^{*}$

Favourite example, is when $V=\mathbb{C}^{n}$ and \langle,$\rangle is the$ standard dot product.

$$
\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=u_{1} \bar{v}_{1}+u_{2} \bar{v}_{2}+\cdots+u_{n} \bar{v}_{n}
$$

Let A be the matrix of f and A^{*} be the matrix of f^{*}
with respect to the favorite basis $\left\{^{\prime}, \ldots, e_{n}\right\}$ where $4^{\prime}=\left(\begin{array}{l}0 \\ \dot{0} \\ 0 \\ 0\end{array}\right)$ 出
$f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$

$$
f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}
$$

$v \mapsto A_{v}$ and $f^{*}, \mathbb{C}^{n} \rightarrow \mathbb{C}^{u}$

$$
V \leadsto 月^{*} V
$$

and

$$
\left.A^{*}=\bar{A}^{t} \quad \begin{array}{c}
\text { conjugate } \\
\text { trauspore } \\
\text { o Hermitian dual }
\end{array}\right)
$$

(Note:

$$
\left.\begin{array}{rl}
(A B)^{*} & =\overline{(A B)^{t}}=\overline{B^{t} A^{t}} \\
& =\overline{B^{t} \bar{A}^{t}}=B^{*} A^{t}
\end{array}\right)
$$

A is $\frac{\text { Hermitian if } A=A^{*}}{\text { (ire setf-adjoint) }}$
A is unitary if $A A^{*}=1=A^{*} A$ (in isometry).
A is normal if $A A^{*}=\Omega^{*} A$.
What is reason for unitary matrices?
The general Linear group is

$$
G L_{n}\langle\mathbb{C}|=\left\{P \in M_{n}\langle\mathbb{C}|\left\{\begin{array}{l}
\text { Pis } \\
\text { invertible }
\end{array}\right\}\right.
$$

Pupposition The map

$$
\left\{\begin{array}{l}
\text { ordered bases } \\
\left(p_{1}, \cdot, p_{n}\right) \text { of } \mathbb{C}^{n}
\end{array}\right\} \longleftrightarrow G C_{n}(\mathbb{C})
$$

$$
\left(p_{1}, \ldots, p_{n}\right) \longrightarrow\left(\begin{array}{ccc}
1 & & \rho_{n} \\
p_{1} & \cdots & b_{1 j} \text { action } \\
1 & & 1
\end{array}\right)
$$

The unitary group is

$$
U_{n}(\mathbb{C})=\left\{U \in M_{n}(\mathbb{C}) \left\lvert\, \begin{array}{l}
U \text { is } \\
\text { unitary }
\end{array}\right.\right\}
$$

($U_{n}\langle\mathbb{C}|$ is a subgroup of $G L_{n}(\mathbb{C})$).
$\frac{\text { Proposition }}{\text { ordered }}$ The map

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { ordered } \\
\text { orthonormal } \\
\text { bases in } \mathbb{C}^{n}
\end{array}\right\} \longleftrightarrow U_{n}(\mathbb{C}) \\
& \left(\mu_{1}, \ldots, \mu_{n}\right) \longrightarrow\left(\begin{array}{ccc}
u_{1} & l \\
u_{1} & \cdots & u_{n} \\
1
\end{array}\right)
\end{aligned}
$$

What is the reason for normal matrices?

A subspace W is A-invanialat if W satisfics:
if $w \in W$ and $A w \in W$.
Popositiosi Let $A \in M_{n}(\mathbb{C})$ suak that $A A^{*}=A^{*} A \operatorname{Let} \lambda \in \mathbb{C}$
and

$$
\begin{aligned}
V_{\lambda} & =\operatorname{ker}(\lambda-\mu) \\
& =\left\{v \in \mathbb{C}^{u}(\lambda-A) v=0\right\} \\
& =\left\{p \in \mathbb{C}^{n} / A p=\lambda \rho\right\}
\end{aligned}
$$

(λ-eigunspace of A).
Then
(a) V_{λ} is A-invariant
(b) V_{d} is A^{*}-siverviant
(c) V_{λ}^{\perp} is A-invariant and
(d) V_{λ}^{1} is g *-nvariant

Proof (a) To sluorv: If $p \in V_{\lambda}$ then $A_{p} \in V_{\lambda}$.

Assume $p \in V_{\lambda}$.
To stor: $A \rho \in V_{\lambda}$.

$$
\begin{array}{r}
A p=\lambda p \in V_{\lambda} \text { since } V_{\lambda} \\
\text { is } n \text { subspace } \\
\text { and } \lambda \in \mathbb{C} .
\end{array}
$$

(b) To show': If $p \in V_{\lambda}$ then

$$
A^{*} p \in V_{\lambda}
$$

Assume $p \in V_{\lambda}$.
To show: $A^{*} p \in V_{\lambda}$.
To show: $A\left(A^{*} p\right)=\lambda\left(A^{*} p\right)$.

$$
A A_{p}^{*}=A^{*} P_{p} \quad \text { (since A, nos) }
$$

$$
=A^{*} \lambda \rho=\lambda A^{*} p \text {. }
$$

So V_{λ} is A^{*} invariant.
(d) To slew: V_{λ}^{1} is A_{-}^{*}-s variant.

To show: If $v \in V_{\lambda} \perp$ then

$$
A_{V}^{*} \in V_{\lambda}^{H}
$$

Assume $v \in V_{\lambda} \neq$.

To show: $A_{\nu}^{*} \in V_{\lambda}^{\perp}$
To show: If $p \in V_{\lambda}$ then $\left\langle A_{V, p}^{*}\right\rangle=0$
Assume $p \in V_{\lambda}$

$$
\begin{aligned}
\text { To slew w: } & \left\langle A_{v, p}^{*}\right\rangle=0 \\
\left\langle A^{*} v, p\right\rangle & =\overline{\left\langle\rho, A^{*} v\right\rangle} \\
& =\overline{\langle A p, v\rangle} \\
& =\overline{\langle\lambda p, v\rangle} \\
& =\frac{\lambda\langle p, v\rangle}{\lambda / 2} \\
& =\overline{\lambda, 0} \text { sure } v \in V_{\lambda}, \\
& =0
\end{aligned}
$$

So $A^{*} v \in V_{\lambda}^{\perp}$ and V_{λ}^{+}is $A^{*}{ }_{i n v t}$.
(c) Toslewn: V_{λ}^{+}is A-invariant. To show: If $v \in V_{\lambda}^{+}$then $A v \in V_{\lambda}^{\perp}$.
Assure $v \in V_{\lambda}{ }^{1}$
To show: $A_{V} \in V_{\lambda}+$.

To show: If $p \in V_{d}$ then

$$
\langle A v, P\rangle=0 .
$$

Assure $p \in V_{1}$.
To slow: $\langle A \nu, \rho\rangle=0$.
$\langle A v, \phi\rangle=\left\langle v, A^{*} p\right\rangle$ since $A^{*} p \in V_{\lambda}$

$$
=0
$$

$\operatorname{since} \widehat{V}_{\lambda}$ is Mont.
and $v \in V_{\lambda} \downarrow$,
so $V_{\lambda} \perp$ is A-invaniant. 1 .
Theorem (Spectral theorem). Let $n \in Z_{s_{0}}$ and let $A \in M_{n}(\mathbb{C})$ and assume $A_{A^{*}}=A^{*} A$.
(a) Then there exist $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ and a mitarymatrix U suck that

$$
U^{-1} A U=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 . \lambda_{n}
\end{array}\right)
$$

(b) Let $V=\mathbb{C}^{n}$ with the standard dot product. Let $f^{\prime} V \rightarrow V$ be a linear train Assuation suclethat $f f^{*}=f^{*} f$. Then then exists an orthonormal basis $\mathbb{U C}, \ldots, C_{n}$ al of V such that M,..., in use all nigmerectors of f.
(a) and (b) are equivalent by taking. A to be the matrix of f with respect to $\left(b, \ldots, e_{n}\right)$ and

$$
U=\left(\begin{array}{ccc}
1 & & 1 \\
u_{1} & \ldots & u_{n} \\
1 & & 1
\end{array}\right)
$$

Corollary Assume A is self adjoint. Then A diagorslisable and all eigenvalues are real.

Prof Assume A is self adjoint.
So $A=A^{*}$.

$$
\text { So } \quad A A^{*}=A A=A^{*} A \text {. }
$$

So A is normal.
oo the spectral theorem says
there exists $U \in U_{u}(\mathbb{C})$ with

$$
\begin{aligned}
& U^{*} A U=U^{-1} A U=\left(\begin{array}{lll}
\lambda_{1} & & \\
0 & & \lambda_{n} \\
0 & & \\
\text { Then }
\end{array}\right)=D
\end{aligned}
$$

$$
\begin{aligned}
&\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0^{\prime} & I_{n}
\end{array}\right)=D^{*}=\left(U^{*} A U\right)^{*} \\
&\left.=U^{*} A^{*} U U^{*}\right)^{*} \\
&=U^{*} A^{*} U=U^{*} A U=D \\
&=\left(\lambda_{1},{ }_{n}\right) \\
& \delta_{0} \lambda_{1}=\lambda_{1}, \ldots, \lambda_{n}=\lambda_{n} \\
& \delta_{0} \lambda_{1} \in \mathbb{R}, \ldots, \lambda_{n}<\mathbb{R},
\end{aligned}
$$

group

$$
G \lessdot M_{n}(\mathbb{C})
$$

Represent your group as matrices.

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 0 \\
4 & 1 & \\
0 & 1 & 9 \\
0 & 1 &
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right) \otimes\left(\begin{array}{lll}
1 & 0 & 7 \\
0 & 0 & 1 \\
2 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc|cc|cc}
2 & 3 & 0 & 0 & 14 & 21 \\
4 & 5 & 0 & 0 & 28 & 35 \\
\hline 0 & 0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 0 & 4 & 5 \\
\hline 4 & 6 & 0 & 0 & 0 & 0 \\
8 & 10 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

