1.16 Continuity

Let $n, m \in \mathbb{Z}_{>0}$ and let $p \in \mathbb{R}^{m}$. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at p if

$$
\lim _{x \rightarrow p} f(x)=f(p)
$$

1.16.1 x^{n} and e^{x} are continuous

Proposition 1.8.

(a) Let $n \in \mathbb{Z}_{>0}$. The function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(x)=x^{n}$ is continuous.
(b) The function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(x)=e^{x}$ is continuous.

1.16.2 Behavior of x^{n} as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$
\lim _{n \rightarrow \infty} x^{n}= \begin{cases}0, & \text { if }|x|<1 \\ \text { diverges in } \mathbb{C}, & \text { if }|x|>1 \\ 1, & \text { if } x=1 \\ \text { diverges in } \mathbb{C}, & \text { if }|x|=1 \text { and } x \neq 1\end{cases}
$$

1.16.3 Behavior of $1+x+x^{2}+\cdots+x^{n}$ as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$
\lim _{n \rightarrow \infty}\left(1+x+x^{2}+\cdots+x^{n}\right)=\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{1-x}= \begin{cases}\frac{1}{1-x}, & \text { if }|x|<1 \\ \text { diverges in } \mathbb{C}, & \text { if }|x| \geq 1\end{cases}
$$

For example, if $x=\frac{1}{2}$ then

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots+\left(\frac{1}{2}\right)^{n}\right)=\lim _{n \rightarrow \infty} \frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}=\frac{1}{1-\frac{1}{2}}=2
$$

1.16.4 Favorite limits

Proposition 1.9. (a) If $n \in \mathbb{Z}_{>0}$ then, in \mathbb{R}, $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$.
(b) If $\alpha \in \mathbb{R}_{>0}$ then $\lim _{x \rightarrow \infty} x^{-\alpha} \log x=0$.
(c) Let $p \in \mathbb{R}_{>0}$. Then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$.
(d) Let $p \in \mathbb{R}_{>0}$. Then $\lim _{n \rightarrow \infty} p^{1 / n}=0$.
(e) $\lim _{n \rightarrow \infty} n^{1 / n}=1$.

