1.22 Fundamental theorems of change and calculus

If

$$
\frac{d f}{d x}=g
$$

then define

$$
\left.\left.\frac{d f}{d x}\right]_{x=a}=g(a) \quad \text { and } \quad\left(\int g d x\right)\right]_{x=a}^{x=b}=f(b)-f(a) .
$$

Fundamental theorem of change.

$$
\left.\frac{d f}{d x}\right]_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Fundamental theorem of calculus.

$$
\left.\left(\int g d x\right)\right]_{x=a}^{x=b}=\lim _{N \rightarrow \infty}\left(g(a) \frac{1}{N}+g\left(a+\frac{1}{N}\right) \frac{1}{N}+\cdots+g\left(b-\frac{1}{N}\right) \frac{1}{N}\right) .
$$

1.23 The fundamental theorem of change

Think about

$$
\left.\frac{d f}{d x}\right]_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

in terms of the graph

The slope of $f(x)$ at $x=a$

$$
\begin{aligned}
\frac{f(a+\Delta x)-f(a)}{\Delta x} & =\frac{\text { change in } f}{\text { change in } x} \\
& =\frac{\text { rise }}{\text { run }} \\
& =\text { slope of line connecting }(a, f(a)) \text { and }(a+\Delta x, f(a+\Delta x)) .
\end{aligned}
$$

This gives that

$$
\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}=(\text { slope of } f \text { at the point } x=a) .
$$

A function is differentiable at $x=a$ if the graph of $f(x)$ at $x=a$ exists.

