5.7 Limits and addition: proof

Theorem 5.3. (Limits and addition)

Let $n \in \mathbb{Z}_{>0}$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be functions and let $a \in \mathbb{R}^{n}$.

$$
\text { Assume that } \quad \lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x) \quad \text { exist. }
$$

Then $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$,
Proof.
Let $l_{1}=\lim _{x \rightarrow a} f(x)$ and $l_{2}=\lim _{x \rightarrow a} g(x)$.
To show: $\lim _{x \rightarrow a}(f(x)+g(x))=l_{1}+l_{2}$.
To show: If $e \in \mathbb{Z}_{>0}$ then there exists $d \in \mathbb{Z}_{>0}$ such that

$$
\text { if } x \text { is within } 10^{-d} \text { of } a \text { then } f(x)+g(x) \text { is within } 10^{-e} \text { of } l_{1}+l_{2}
$$

Assume $e \in \mathbb{Z}_{>0}$.
Since $\lim _{x \rightarrow a} f(x)=l_{1}$ then we know that there exists $d_{1} \in \mathbb{Z}_{>0}$ such that if x is within $10^{-d_{1}}$ of a then $f(x)$ is within $10^{-(e+1)}$ of l_{1}.

Since $\lim _{x \rightarrow a} g(x)=l_{2}$ then we know that there exists $d_{2} \in \mathbb{Z}_{>0}$ such that if x is within $10^{-d_{2}}$ of a then $f(x)$ is within $10^{-(e+1)}$ of l_{2}.

Let $d=\max \left(d_{1}, d_{2}\right)$.
To show: if x is within 10^{-d} of a then $f(x)+g(x)$ is within 10^{-e} of $l_{1}+l_{2}$.
Assume x is within 10^{-d} of a.
To show: $f(x)+g(x)$ is within 10^{-e} of $l_{1}+l_{2}$.

$$
\begin{aligned}
\left|(f(x)+g(x))-\left(l_{1}+l_{2}\right)\right| & =\left|\left(f(x)-l_{1}\right)+\left(g(x)-l_{2}\right)\right| \\
& \leq\left|f(x)-l_{1}\right|+\left|g(x)-l_{2}\right| \\
& \leq 10^{-e+1}+10^{-(e+1)}=\frac{2}{10} 10^{-e}<10^{-e}
\end{aligned}
$$

So $\left(f(x)+g(x)\right.$ is within 10^{-e} of $l_{1}+l_{2}$.
So $\lim _{x \rightarrow a}(f(x)+g(x))=l_{1}+l_{2}=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.

