5.11 Limits and order: proof

Theorem 5.7. (Limits and order) Let $n \in \mathbb{Z}_{>0}$ and let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$ be functions. Let $a \in \mathbb{R}^n$. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist and

if
$$x \in X$$
 then $f(x) \leq g(x)$.

Then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$

Proof.

Let $\ell_1 = \lim_{x \to a} f(x)$ and $\ell_2 = \lim_{x \to a} g(x)$. To show: If f and g satisfy the condition

if
$$x \in X$$
 then $f(x) \leq g(x)$,

then $\ell_1 \leq \ell_2$.

Proof by contrapositive.

Assume $\ell_1 > \ell_2$ (the opposite of $\ell_1 \le \ell_2$ is $\ell_1 > \ell_2$).

To show: There exists $x \in \mathbb{R}^n$ such that f(x) > g(x)

(the opposite of 'if $x \in \mathbb{R}^n$ then $f(x) \leq g(x)$ ' is 'there exists $x \in \mathbb{R}^n$ such that f(x) > g(x).'). Let $r \in \mathbb{Z}_{>0}$ be such that $10^{-r} < \ell_1 - \ell_2$.

Since $\lim_{x \to a} f(x) = \ell_1$ then we know that there exists $d_1 \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^n$ is within 10^{-d_1} of a then f(x) is within $10^{-(r+1)}$ of ℓ_1 .

Since $\lim_{x\to a} g(x) = \ell_2$ then we know that there exists $d_2 \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^n$ is within 10^{-d_2} of a then f(x) is within $10^{-(r+1)}$ of ℓ_2 .

Let $d = \max(d_1, d_2)$ and let $x \in \mathbb{R}^n$ be within 10^{-d} of a (so that $x \neq a$ but x is quite close to a). To show: f(x) > g(x).

$$f(x) > \ell_1 - 10^{-(r+1)} = \ell_1 - \ell_2 + \ell_2 - 10^{-(r+1)} > 10^{-r} + \ell_2 - 10^{-(r+1)} > \ell_2 + 10^{-(r+1)} > g(x).$$

This proves that if f and g satisfy the condition 'if $x \in X$ then $f(x) \leq g(x)$ ' then $\ell_1 \leq \ell_2$.