5.11 Limits and order: proof

Theorem 5.7. (Limits and order) Let $n \in \mathbb{Z}_{>0}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be functions. Let $a \in \mathbb{R}^{n}$. Assume that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist and

$$
\text { if } x \in X \text { then } f(x) \leq g(x)
$$

Then $\quad \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$.
Proof.
Let $\ell_{1}=\lim _{x \rightarrow a} f(x)$ and $\ell_{2}=\lim _{x \rightarrow a} g(x)$.
To show: If f and g satisfy the condition

$$
\text { if } x \in X \text { then } f(x) \leq g(x)
$$

then $\ell_{1} \leq \ell_{2}$.
Proof by contrapositive.
Assume $\ell_{1}>\ell_{2}$ (the opposite of $\ell_{1} \leq \ell_{2}$ is $\ell_{1}>\ell_{2}$).
To show: There exists $x \in \mathbb{R}^{n}$ such that $f(x)>g(x)$
(the opposite of 'if $x \in \mathbb{R}^{n}$ then $f(x) \leq g(x)$ ' is 'there exists $x \in \mathbb{R}^{n}$ such that $f(x)>g(x)$.').
Let $r \in \mathbb{Z}_{>0}$ be such that $10^{-r}<\ell_{1}-\ell_{2}$.
Since $\lim _{x \rightarrow a} f(x)=\ell_{1}$ then we know that there exists $d_{1} \in \mathbb{Z}_{>0}$ such that

$$
\text { if } x \in \mathbb{R}^{n} \text { is within } 10^{-d_{1}} \text { of } a \text { then } f(x) \text { is within } 10^{-(r+1)} \text { of } \ell_{1} .
$$

Since $\lim _{x \rightarrow a} g(x)=\ell_{2}$ then we know that there exists $d_{2} \in \mathbb{Z}_{>0}$ such that

$$
\text { if } x \in \mathbb{R}^{n} \text { is within } 10^{-d_{2}} \text { of } a \text { then } f(x) \text { is within } 10^{-(r+1)} \text { of } \ell_{2}
$$

Let $d=\max \left(d_{1}, d_{2}\right)$ and let $x \in \mathbb{R}^{n}$ be within 10^{-d} of a (so that $x \neq a$ but x is quite close to a). To show: $f(x)>g(x)$.

$$
f(x)>\ell_{1}-10^{-(r+1)}=\ell_{1}-\ell_{2}+\ell_{2}-10^{-(r+1)}>10^{-r}+\ell_{2}-10^{-(r+1)}>\ell_{2}+10^{-(r+1)}>g(x)
$$

This proves that if f and g satisfy the condition 'if $x \in X$ then $f(x) \leq g(x)$ ' then $\ell_{1} \leq \ell_{2}$.

