5.12 Limits and order for sequences: proof

Theorem 5.8. (Limits and order for sequences) Let $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ be sequences in \mathbb{R} . Assume that $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist and

if
$$n \in \mathbb{Z}_{>0}$$
 then $a_n \leq b_n$

Then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

Proof.

Let $\ell_1 = \lim_{n \to \infty} a_n$ and $\ell_2 = \lim_{n \to \infty} b_n$. To show: If (a_1, a_2, \ldots) and (b_1, b_2, \ldots) satisfy the condition

if $n \in \mathbb{Z}_{>0}$ then $a_n \leq b_n$,

then $\ell_1 \leq \ell_2$.

Proof by contrapositive.

Assume $\ell_1 > \ell_2$ (the opposite of $\ell_1 \le \ell_2$ is $\ell_1 > \ell_2$).

To show: There exists $N \in \mathbb{Z}_{>0}$ such that $a_N > b_N$

(the opposite of 'if $n \in \mathbb{Z}_{>0}$ then $a_n \leq b_n$ ' is 'there exists $N \in \mathbb{Z}_{>0}$ such that $a_N > b_N$ '). Let $r \in \mathbb{Z}_{>0}$ be such that $10^{-r} < \ell_1 - \ell_2$.

Since $\lim_{n\to\infty} a_n = \ell_1$ then we know that there there exists $N_1 \in \mathbb{Z}_{>0}$ such that

if $n \in \mathbb{Z}_{>0}$ is at least N_1 then a_n is within $10^{-(r+1)}$ of ℓ_1 .

Since $\lim_{n\to\infty} b_n = \ell_2$ then we know that there there exists $N_2 \in \mathbb{Z}_{>0}$ such that

if $n \in \mathbb{Z}_{>0}$ is at least N_2 then b_n is within $10^{-(r+1)}$ of ℓ_2 .

Let $N = \max(N_1, N_2)$. To show: $a_N > b_N$.

$$a_N > \ell_1 - 10^{-(r+1)} = \ell_1 - \ell_2 + \ell_2 - 10^{-(r+1)}$$

> 10^{-r} + \ell_2 - 10^{-(r+1)} > \ell_2 + 10^{-(r+1)} > b_N

This proves that if $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ satisfy the condition 'if $n \in \mathbb{Z}_{>0}$ then $a_n \leq b_n$ ' then $\ell_1 \leq \ell_2$.