5.8 Limits and scalar multiplication: proof

Theorem 5.4. (Limits and scalar multiplication)

Let $n \in \mathbb{Z}_{>0}$. Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$ be functions and let $a \in \mathbb{R}^n$.

Assume that $\lim_{x \to a} f(x)$ exists.

Then, if $c \in \mathbb{R}$ then $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$,

Proof.

Assume $c \in \mathbb{R}$ and let $l = \lim_{x \to a} f(x)$.

To show: $\lim_{x \to a} cf(x) = cl$.

To show: If $e \in \mathbb{Z}_{>0}$ then there exists $d \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^n$ is within 10^{-d} of a then cf(x) is within 10^{-e} of cl.

Assume $e \in \mathbb{Z}_{>0}$.

Let $r \in \mathbb{Z}_{>0}$ be such that $c < 10^r$. Since $l = \lim_{x \to a} f(x)$ then we know that there exists $d \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^n$ is within 10^{-d} of a then f(x) is within $10^{-(e+r)}$ of l.

To show: If $x \in \mathbb{R}^n$ is within 10^{-d} of a then cf(x) is within 10^{-e} of cl. Assume $x \in \mathbb{R}^n$ is within 10^{-d} of a. To show: cf(x) is within 10^{-e} of cl.

$$d(cf(x), cl) = |cf(x) - cl| = |c| \cdot |f(x) - l| < |c| \cdot 10^{-(e+r)} < 10^r 10^{-(e+r)} = 10^{-e}.$$

So cf(x) is within 10^{-e} of cl. So $\lim_{x \to a} cf(x) = cl$.

с		
н		
L	_	