5.10 Limits and composition of functions: proof

Theorem 5.6. (Limits and composition of functions) Let $m, n, p \in \mathbb{Z}_{>0}$. Let Let $f \colon \mathbb{R}^n \to \mathbb{R}^p$ and $g \colon \mathbb{R}^m \to \mathbb{R}^n$ be functions and let $a \in \mathbb{R}^m$ and $\ell \in \mathbb{R}^n$.

 $\label{eq:assume} Assume \ that \quad \lim_{x \to a} g(x) \ and \ \lim_{x \to a} f(g(x)) \ exist \qquad and \qquad \lim_{x \to a} g(x) = \ell.$

Then

$$\lim_{y \to \ell} f(y) = \lim_{x \to a} f(g(x))$$

Proof.

Let $L = \lim_{y \to \ell} f(y)$.

To show: $\lim_{x \to a} f(g(x)) = L.$

To show: If $e \in \mathbb{Z}_{>0}$ then there exists $d \in \mathbb{Z}_{>0}$ such that

if
$$x \in \mathbb{R}^m$$
 is within 10^{-d} of a then $f(g(x))$ is within 10^{-e} of L.

Assume $e \in \mathbb{Z}_{>0}$.

To show: There exists $d \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^m$ is within 10^{-d} of a then f(g(x)) is within 10^{-e} of L.

Since $\lim_{y \to \ell} f(y) = L$ we know that there exists $d_1 \in \mathbb{Z}_{>0}$ such that

if $y \in \mathbb{R}^n$ is within 10^{-d_1} of ℓ then f(y) is within 10^{-e} of L.

Since $\lim_{x \to a} g(x) = \ell$ we know that there exists $d \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^m$ is within 10^{-d} of a then g(x) is within 10^{-d_1} of ℓ .

To show: If $x \in \mathbb{R}^n$ is within 10^{-d} of a then f(g(x)) is within 10^{-e} of L. Assume $x \in \mathbb{R}^n$ is within 10^{-d} of a. To show: f(g(x) is within 10^{-e} of L. Since x is within 10^{-d} of a then g(x) is within 10^{-d_1} of ℓ , and so f(g(x)) is within 10^{-e} of L. So, if $x \in \mathbb{R}^n$ is within 10^{-d} of a then f(g(x)) is within 10^{-e} of L. So there exists $d \in \mathbb{Z}_{>0}$ such that if $x \in \mathbb{R}^n$ is within 10^{-d} of a then f(g(x)) is within 10^{-e} of L. So $\lim_{x \to a} f(g(x)) = L$.