5.10 Limits and composition of functions: proof

Theorem 5.6. (Limits and composition of functions)

Let $m, n, p \in \mathbb{Z}_{>0}$. Let Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be functions and let $a \in \mathbb{R}^{m}$ and $\ell \in \mathbb{R}^{n}$.

$$
\text { Assume that } \quad \lim _{x \rightarrow a} g(x) \text { and } \lim _{x \rightarrow a} f(g(x)) \text { exist } \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=\ell
$$

Then

$$
\lim _{y \rightarrow \ell} f(y)=\lim _{x \rightarrow a} f(g(x))
$$

Proof.
Let $L=\lim _{y \rightarrow \ell} f(y)$.
To show: $\lim _{x \rightarrow a} f(g(x))=L$.
To show: If $e \in \mathbb{Z}_{>0}$ then there exists $d \in \mathbb{Z}_{>0}$ such that if $x \in \mathbb{R}^{m}$ is within 10^{-d} of a then $f(g(x))$ is within 10^{-e} of L.

Assume $e \in \mathbb{Z}_{>0}$.
To show: There exists $d \in \mathbb{Z}_{>0}$ such that

$$
\text { if } x \in \mathbb{R}^{m} \text { is within } 10^{-d} \text { of } a \text { then } f(g(x)) \text { is within } 10^{-e} \text { of } L
$$

Since $\lim _{y \rightarrow \ell} f(y)=L$ we know that there exists $d_{1} \in \mathbb{Z}_{>0}$ such that
if $y \in \mathbb{R}^{n}$ is within $10^{-d_{1}}$ of ℓ then $f(y)$ is within 10^{-e} of L.
Since $\lim _{x \rightarrow a} g(x)=\ell$ we know that there exists $d \in \mathbb{Z}_{>0}$ such that

$$
\text { if } x \in \mathbb{R}^{m} \text { is within } 10^{-d} \text { of } a \text { then } g(x) \text { is within } 10^{-d_{1}} \text { of } \ell
$$

To show: If $x \in \mathbb{R}^{n}$ is within 10^{-d} of a then $f(g(x))$ is within 10^{-e} of L.
Assume $x \in \mathbb{R}^{n}$ is within 10^{-d} of a.
To show: $f\left(g(x)\right.$ is within 10^{-e} of L.
Since x is within 10^{-d} of a then $g(x)$ is within $10^{-d_{1}}$ of ℓ,
and so $f(g(x))$ is within 10^{-e} of L.
So, if $x \in \mathbb{R}^{n}$ is within 10^{-d} of a then $f(g(x))$ is within 10^{-e} of L.
So there exists $d \in \mathbb{Z}_{>0}$ such that if $x \in \mathbb{R}^{n}$ is within 10^{-d} of a then $f(g(x))$ is within 10^{-e} of L.
So $\lim _{x \rightarrow a} f(g(x))=L$.

