5.9 Limits and multiplication: proof

Theorem 5.5. (Limits and multiplication)

Let $n \in \mathbb{Z}_{>0}$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be functions and let $a \in \mathbb{R}^{n}$.

$$
\text { Assume that } \quad \lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x) \quad \text { exist. }
$$

Then $\lim _{x \rightarrow a}(f(x) g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$.
Proof.
Let $l_{1}=\lim _{x \rightarrow a} f(x)$ and $l_{2}=\lim _{x \rightarrow a} g(x)$.
To show: $\lim _{x \rightarrow a}(f(x) g(x))=l_{1} l_{2}$.
To show: If $e \in \mathbb{Z}_{>0}$ then there exists $d \in \mathbb{Z}_{>0}$ such that
if $x \in \mathbb{R}^{n}$ is within 10^{-d} of a then $f(x) g(x)$ is within 10^{-e} of $l_{1} l_{2}$.
Assume $e \in \mathbb{Z}_{>0}$.
Let $r, s \in \mathbb{Z}_{>0}$ such that $\left|\ell_{1}\right|<10^{r}$ and $\left|\ell_{2}\right|<10^{s}$.
Since $\lim _{x \rightarrow a} f(x)=l_{1}$ then we know that there exists $d_{1} \in \mathbb{Z}_{>0}$ such that
if $x \in \mathbb{R}^{n}$ is within $10^{-d_{1}}$ of a and $f(x)$ is within $10^{-(e+s+1)}$ of l_{1}.
Since $\lim _{x \rightarrow a} f(x)=l_{2}$ then we know that there exists $d_{2} \in \mathbb{Z}_{>0}$ such that

$$
\text { if } x \in \mathbb{R}^{n} \text { is within } 10^{-d_{2}} \text { of } a \text { and } f(x) \text { is within } 10^{-(e+r+1)} \text { of } l_{2}
$$

Let $d=\max \left(d_{1}, d_{2}\right)$.
Assume $x \in \mathbb{R}^{n}$ is within 10^{-d} of a.
To show: $f(x) g(x)$ is within 10^{-e} of $l_{1} l_{2}$.

$$
\begin{aligned}
\left|f(x) g(x)-l_{1} l_{2}\right| & =\left|\left(f(x)-l_{1}\right) g(x)+l_{1}\left(g(x)-l_{2}\right)\right| \\
& \leq\left|\left(f(x)-l_{1}\right) g(x)\right|+\left|l_{1}\left(g(x)-l_{2}\right)\right|, \quad \text { by the triangle inequality, } \\
& =\left|\left(f(x)-l_{1}\right)\left(g(x)-l_{2}\right)+\left(f(x)-l_{1}\right) l_{2}\right|+\left|l_{1}\right|\left|g(x)-l_{2}\right| \\
& \left.\left.\leq \mid f(x)-l_{1}\right)\left(g(x)-l_{2}\right)|+| f(x)-l_{1}\right) l_{2}\left|+\left|l_{1}\right|\right| g(x)-l_{2} \mid \\
& \leq\left|f(x)-l_{1}\right|\left|g(x)-l_{2}\right|+\left|f(x)-l_{1}\right|\left|l_{2}\right|+\left|l_{1}\right|\left|g(x)-l_{2}\right| \\
& \leq\left|f(x)-l_{1}\right|\left|g(x)-l_{2}\right|+\left|f(x)-l_{1}\right| 10^{s}+10^{r}\left|g(x)-l_{2}\right| \\
& \leq 10^{-(e+r+1)} \cdot 10^{-(e+s+1)}+10^{-(e+s+1)} 10^{s}+10^{r} 10^{-(e+r+1)} \\
& =10^{-e}\left(10^{-(e+r+s+2)}+10^{-1}+10^{-1}\right)<10^{-e} \cdot 1=10^{-e} .
\end{aligned}
$$

So $f(x) g(x)$ is within 10^{-e} of $l_{1} l_{2}$.
So there exists $d \in \mathbb{Z}_{>0}$ such that
if $x \in \mathbb{R}^{n}$ is within 10^{-d} of a then $f(x) g(x)$ is within 10^{-e} of $l_{1} l_{2}$.
So $\lim _{x \rightarrow a}(f(x) g(x))=l_{1} l_{2}$.

