5.9 Limits and multiplication: proof

Theorem 5.5. (Limits and multiplication)

Let $n \in \mathbb{Z}_{>0}$. Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$ be functions and let $a \in \mathbb{R}^n$.

Assume that
$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$ exist

Then $\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$

Proof.

Let $l_1 = \lim_{x \to a} f(x)$ and $l_2 = \lim_{x \to a} g(x)$. To show: $\lim_{x \to a} (f(x)g(x)) = l_1 l_2$.

To show: If $e \in \mathbb{Z}_{>0}$ then there exists $d \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^n$ is within 10^{-d} of a then f(x)g(x) is within 10^{-e} of l_1l_2 .

Assume $e \in \mathbb{Z}_{>0}$.

Let $r, s \in \mathbb{Z}_{>0}$ such that $|\ell_1| < 10^r$ and $|\ell_2| < 10^s$. Since $\lim_{x \to a} f(x) = l_1$ then we know that there exists $d_1 \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^n$ is within 10^{-d_1} of a and f(x) is within $10^{-(e+s+1)}$ of l_1 .

Since $\lim_{x\to a} f(x) = l_2$ then we know that there exists $d_2 \in \mathbb{Z}_{>0}$ such that

if $x \in \mathbb{R}^n$ is within 10^{-d_2} of a and f(x) is within $10^{-(e+r+1)}$ of l_2 .

Let $d = \max(d_1, d_2)$.

Assume $x \in \mathbb{R}^n$ is within 10^{-d} of a. To show: f(x)g(x) is within 10^{-e} of l_1l_2 .

$$\begin{split} |f(x)g(x) - l_1l_2| &= |(f(x) - l_1)g(x) + l_1(g(x) - l_2)| \\ &\leq |(f(x) - l_1)g(x)| + |l_1(g(x) - l_2)|, \quad \text{by the triangle inequality,} \\ &= |(f(x) - l_1)(g(x) - l_2) + (f(x) - l_1)l_2| + |l_1| |g(x) - l_2| \\ &\leq |f(x) - l_1)(g(x) - l_2)| + |f(x) - l_1|l_2| + |l_1| |g(x) - l_2| \\ &\leq |f(x) - l_1| |g(x) - l_2| + |f(x) - l_1| |l_2| + |l_1| |g(x) - l_2| \\ &\leq |f(x) - l_1| |g(x) - l_2| + |f(x) - l_1| |l_0^{*} + 10^{r} |g(x) - l_2| \\ &\leq |10^{-(e+r+1)} \cdot 10^{-(e+s+1)} + 10^{-(e+s+1)} 10^{s} + 10^{r} 10^{-(e+r+1)} \\ &= 10^{-e} (10^{-(e+r+s+2)} + 10^{-1} + 10^{-1}) < 10^{-e} \cdot 1 = 10^{-e}. \end{split}$$

So f(x)g(x) is within 10^{-e} of l_1l_2 . So there exists $d \in \mathbb{Z}_{>0}$ such that

if
$$x \in \mathbb{R}^n$$
 is within 10^{-d} of a then $f(x)g(x)$ is within 10^{-e} of l_1l_2 .

So $\lim_{x \to a} (f(x)g(x)) = l_1 l_2.$