1.10 Sets

A set is a collection of objects which are called elements.
Write

$$
s \in S \text { if } s \text { is an element of the set } S
$$

- The empty set \emptyset is the set with no elements.
- A subset T of a set S is a set T such that if $t \in T$ then $t \in S$.

Write

$$
\begin{aligned}
& T \subseteq S \text { if } T \text { is a subset of } S, \text { and } \\
& T=S \text { if the set } T \text { is equal to the set } S
\end{aligned}
$$

Let S and T be sets.

- The union of S and T is the set $S \cup T$ of all u such that $u \in S$ or $u \in T$,

$$
S \cup T=\{u \mid u \in S \text { or } u \in T\}
$$

- The intersection of S and T is the set $S \cup T$ of all u such that $u \in S$ and $u \in T$,

$$
S \cap T=\{u \mid u \in S \text { and } u \in T\}
$$

- The product S and T is the set $S \times T$ of all ordered pairs (s, t) where $s \in S$ and $t \in T$,

$$
S \times T=\{(s, t) \mid s \in S \text { and } t \in T\}
$$

The sets S and T are disjoint if $S \cap T=\emptyset$.
The set S is a proper subset of T if $S \subseteq T$ and $S \neq T$.

