1.7 The exponential and the logarithm

The exponential function is the element e^{x} of $\mathbb{Q}[[x]]$ given by

$$
e^{x}=\sum_{k \in \mathbb{Z}>0} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Theorem 1.2. As an element of $\mathbb{Q}[[x, y]$ (which has $x y=y x)$,

$$
e^{x+y}=e^{x} e^{y}
$$

HW: Show that $e^{0}=1$.
HW: Show that $e^{-x}=\frac{1}{e^{x}}$.
The logarithm is

$$
\log (1+x)=\sum_{k \in \mathbb{Z}_{>0}}(-1)^{k-1} \frac{x^{k}}{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots .
$$

Theorem 1.3. Let

$$
G=\{p(x) \in \mathbb{Q}[[x]] \mid p(0)=1\} \quad \text { and } \quad \mathfrak{g}=\{p(x) \in \mathbb{Q}[[x]] \mid p(0)=0\}
$$

Then
(a) $\log \left(1+\left(e^{x}-1\right)\right)=e^{\log (1+x)}-1=x$.
(b) G is a commutative group under multiplication, \mathfrak{g} is a commutative group under addition and

$$
\begin{array}{rlc}
G & \longrightarrow & \mathfrak{g} \\
p & \longmapsto & e^{p}-1
\end{array} \quad \text { is bijective and satisfies } \quad \varphi\left(p_{1} p_{2}\right)=\varphi\left(p_{1}\right)+\varphi\left(p_{2}\right) .
$$

