1.12 Composition of functions

Let $f: S \to T$ and $g: T \to U$ be functions. The *composition* of f and g is the function

$$g \circ f$$
 given by $g \circ f \colon S \to U$
 $s \mapsto g(f(s))$

Let S be a set. The *identity map on* S is the function given by

$$\operatorname{id}_S \colon S \to S$$
 $s \mapsto s$

Let $f: S \to T$ be a function. The inverse function to f is a function

$$f^{-1}: T \to S$$
 such that $f \circ f^{-1} = \mathrm{id}_T$ and $f^{-1} \circ f = \mathrm{id}_S$.

Theorem 1.4. Let $f: S \to T$ be a function. An inverse function to f exists if and only if f is bijective.

Representing functions as graphs, the identity function id_S looks like

(a) the identity function id_S

In the pictures below, if the left graph is a pictorial representation of a function $f: S \to T$ then the inverse function to $f, f^{-1}: T \to S$, is represented by the graph on the right; the graph for f^{-1} is the mirror-image of the graph for f.

Graph (d) below, represents a function $g: S \to T$ which is not bijective. The inverse function to g does not exist in this case: the graph (e) of a possible candidate, is not the graph of a function.

