1.12 Composition of functions

Let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions. The composition of f and g is the function

Let S be a set. The identity map on S is the function given by

$$
\begin{array}{rlll}
\operatorname{id}_{S}: & & \rightarrow & S \\
s & \mapsto & s
\end{array}
$$

Let $f: S \rightarrow T$ be a function. The inverse function to f is a function

$$
f^{-1}: T \rightarrow S \quad \text { such that } \quad f \circ f^{-1}=\operatorname{id}_{T} \quad \text { and } \quad f^{-1} \circ f=\operatorname{id}_{S}
$$

Theorem 1.4. Let $f: S \rightarrow T$ be a function. An inverse function to f exists if and only if f is bijective.

Representing functions as graphs, the identity function id_{S} looks like

(a) the identity function id_{S}

In the pictures below, if the left graph is a pictorial representation of a function $f: S \rightarrow T$ then the inverse function to $f, f^{-1}: T \rightarrow S$, is represented by the graph on the right; the graph for f^{-1} is the mirror-image of the graph for f.

(b) the function f

(c) the function f^{-1}

Graph (d) below, represents a function $g: S \rightarrow T$ which is not bijective. The inverse function to g does not exist in this case: the graph (e) of a possible candidate, is not the graph of a function.

(d) the function g

(e) not a function

