1 Lecture 1, 23 February 2022: *n*-periodic permutations

1.1 The affine Weyl group

The $(type \ GL_n)$ finite Weyl group is

 $W_{\text{fin}} = S_n$, the symmetric group of bijections $v \colon \{1, \ldots, n\} \to \{1, \ldots, n\}$

with operation of composition of functions. The type GL_n affine Weyl group W is the group of *n*-periodic permutations $w: \mathbb{Z} \to \mathbb{Z}$ i.e.,

bijective functions $w \colon \mathbb{Z} \to \mathbb{Z}$ such that w(i+n) = w(i) + n. (1.1)

Any *n*-periodic permutation w is determined by its values $w(1), \ldots, w(n)$. Using w(i+n) = w(i) + n, any permutation $v: \{1, \ldots, n\} \to \{1, \ldots, n\}$ in S_n extends to an *n*-periodic permutation in W, and so $S_n \subseteq W$.

Define $\pi \in W$ by

$$\pi(i) = i + 1, \quad \text{for } i \in \mathbb{Z}. \tag{1.2}$$

Define $s_0, s_1, \ldots, s_{n-1} \in W$ by

$$s_i(i) = i + 1, s_i(i+1) = i,$$
 and $s_i(j) = j$ for $j \in \{0, 1, \dots, i-1, i+2, \dots, n-1\}.$ (1.3)

The finite Weyl group S_n is the subgroup of W generated by s_1, \ldots, s_{n-1} .

For $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$ define $t_{\mu} \in W$ by

$$t_{\mu}(1) = 1 + n\mu_1, \quad t_{\mu}(2) = 2 + n\mu_2, \quad \dots, \quad t_{\mu}(n) = n + n\mu_n.$$
 (1.4)

Then

$$W = \{t_{\mu}v \mid \mu \in \mathbb{Z}^n, v \in S_n\} \quad \text{with} \quad vt_{\mu} = t_{\nu\mu}v \text{ for } v \in S_n \text{ and } \mu \in \mathbb{Z}^n.$$
(1.5)

The map

$$\overline{}: W \to S_n \quad \text{given by} \quad \overline{t_\mu v} = v, \quad \text{for } \mu \in \mathbb{Z}^n \text{ and } v \in S_n, \tag{1.6}$$

is a surjective group homomorphism.

1.2 Inversions

Let $w \in W$ be an *n*-periodic permutation. An *inversion of* w is

(j,k) with j < k and w(j) > w(k).

If (j, k) is an inversion of w then $(j + \ell n, k + \ell n)$ is an inversion of w for $\ell \in \mathbb{Z}$ and so it is sensible to assume $j \in \{1, \ldots, n\}$ and define

$$Inv(w) = \{(j,k) \mid j \in \{1, \dots, n\}, k \in \mathbb{Z}, j < k \text{ and } w(j) > w(k) \}.$$

The number of elements of Inv(w),

$$\ell(w) = \#$$
Inv (w) , is the length of w.

Proposition 1.1. Let $\mu \in \mathbb{Z}^n$ and $v \in S_n$. Then

$$\operatorname{Inv}(t_{\mu}v) = \Big(\bigcup_{\substack{i < j, v(i) < v(j) \\ \mu_{v(i)} \ge \mu_{v(j)} \\ \nu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ (i < j, v(i) < v(j) \\ \mu_{v(i)} < \mu_{v(j)} \\ (i < j, v(i) < v(j) \\ (i < j, v(i) < v(j,$$

For notational convenience when working with reduced words, let $s_{\pi} = \pi$. Then

 $\ell(s_{\pi}) = \ell(\pi) = 0$ and $\ell(s_i) = 1$ for $i \in \{1, \dots, n-1\}$.

Let $w \in W$. A reduced word for w is an expression of w as a product of s_1, \ldots, s_{n-1} and s_{π} ,

$$w = s_{i_1} \dots s_{i_\ell}$$
 with $i_1, \dots, i_\ell \in \{1, \dots, n-1, \pi\}$ such that $\ell(w) = \ell(s_{i_1}) + \dots + \ell(s_{i_\ell})$.

1.3 The elements $u_{\mu}, v_{\mu}, t_{\mu}$

As in (1.4), for $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$ define $t_{\mu} \in W$ by

$$t_{\mu}(1) = 1 + n\mu_1, \quad t_{\mu}(2) = 2 + n\mu_2, \quad \dots, \quad t_{\mu}(n) = n + n\mu_n.$$

Then

 $t_{\mu} = u_{\mu}v_{\mu}, \quad \text{where } v_{\mu} \in S_n \text{ and } u_{\mu} \text{ is minimal length in the coset } t_{\mu}W_{\text{fin}}.$ (1.7)

Proposition 1.2. Let $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{>0}^n$. Let u_μ and v_μ be as defined in (1.7).

(a) v_{μ} is the minimal length element of S_n such that $v_{\mu}\mu$ is (weakly) increasing.

(b) The permutation $v_{\mu} \colon \{1, \ldots, n\} \to \{1, \ldots, n\}$ is given by

$$v_{\mu}(i) = 1 + \#\{i' \in \{1, \dots, i-1\} \mid \mu_{i'} \le \mu_i\} + \#\{i' \in \{i+1, \dots, n\} \mid \mu_{i'} < \mu_i\}.$$

(c) The n-periodic permutations $u_{\mu} \colon \mathbb{Z} \to \mathbb{Z}$ and $u_{\mu}^{-1} \colon \mathbb{Z} \to \mathbb{Z}$ are given by

$$u_{\mu}(i) = v_{\mu}^{-1}(i) + n\mu_i$$
 and $u_{\mu}^{-1}(i) = v_{\mu}(i) - n\mu_{v_{\mu}(i)}$ for $i \in \{1, \dots, n\}$.

(d) Let $|\mu_i - \mu_j|$ denote the absolute value of $\mu_i - \mu_j$. Then

$$\ell(t_{\mu}) = \sum_{\substack{i,j \in \{1,\dots,n\}\\i < j}} |\mu_i - \mu_j|, \qquad \ell(v_{\mu}) = \#\{i < j \mid \mu_i > \mu_j\} \qquad and \qquad \ell(u_{\mu}) = \ell(t_{\mu}) - \ell(v_{\mu}).$$

Remark 1.3. Define an action of W on \mathbb{Z}^n by

$$\pi(\mu_1, \dots, \mu_n) = (\mu_n + 1, \mu_1, \dots, \mu_{n-1}) \quad \text{and}$$

$$s_i(\mu_1, \dots, \mu_n) = (\mu_1, \dots, \mu_{i-1}, \mu_{i+1}, \mu_i, \mu_{i+2}, \dots, \mu_n), \quad \text{for } i \in \{1, \dots, n\}.$$
(1.8)

Then u_{μ} is the minimal length element of W such that $u_{\mu}(0, 0, \dots, 0) = (\mu_1, \dots, \mu_n)$.

1.4 Boxes

Fix $n \in \mathbb{Z}_{>0}$. A box is an element of $\{1, \ldots, n\} \times \mathbb{Z}_{>0}$ so that

$$\{\text{boxes}\} = \{(r, c) \mid r \in \{1, \dots, n\}, \ c \in \mathbb{Z}_{>0}\}.$$

To conform to Mac, p.2], we draw the box (r, c) as a square in row r and column c using the same coordinates as are usually used for matrices.

The cylindrical coordinate of the box (r, c) is the number r + nc. (1.9)

The basement is the set $\{(r, 0) \mid r \in \{1, ..., n\}\}$, so that the basement is the collection of boxes in the 0th column. Pictorially,

1(1,0)	$_{6}(1,1)$	$_{11}(1,2)$	$_{16}$ (1,3)	$_{23}$ (1,4)		
$_{2}(2,0)$	$_{7}(2,1)$	12(2,2)	$_{17}$ (2,3)	$_{22}(2,4)$	•••	
$_{3}(3,0)$	$_{8}(3,1)$	$_{13}$ (3,2)	$_{18}$ (3,3)	$_{23}$ (3,4)	•••	with box (r, c) numbered $r+nc$.
$_{4}(4,0)$	$_{9}(4,1)$	$_{14}$ (4, 2)	$_{19}$ (4,3)	$_{24}$ (4, 4)	•••	
$_{5}(5,0)$	10(5,1)	$_{15}$ (5,2)	$_{20}$ (5,3)	$_{25}(5,4)$		

Let $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$ an *n*-tuple of nonnegative integers. The diagram of μ is the set $dg(\mu)$ of boxes with μ_i boxes in row *i* and the diagram of μ with basement $\widehat{dg}(\mu)$ includes the extra boxes (r, 0) for $r \in \{1, \ldots, n\}$:

$$dg(\mu) = \{(r,c) \mid r \in \{1, \dots, n\} \text{ and } c \in \{1, \dots, \mu_r\}\} \text{ and } \widehat{dg}(\mu) = \{(r,c) \mid r \in \{1, \dots, n\} \text{ and } c \in \{0, 1, \dots, \mu_r\}\}$$

It is often convenient to abuse notation and identify μ , $dg(\mu)$ and $dg(\mu)$ (because these are just different ways of viewing the sequence (μ_1, \ldots, μ_n)). For example, if $\mu = (0, 4, 1, 5, 4)$ then

1.5 Affine coroots

Let $\mathfrak{a}_{\mathbb{Z}}$ be the set of \mathbb{Z} -linear combinations of symbols $\varepsilon_1^{\vee}, \ldots, \varepsilon_n^{\vee}, K$. The *affine coroots* are

$$\alpha_{i,j+\ell n}^{\vee} = \varepsilon_i^{\vee} - \varepsilon_j^{\vee} + \ell K \qquad \text{with } i,j \in \{1,\ldots,n\} \text{ and } i \neq j \text{ and } \ell \in \mathbb{Z}$$

(in the context of the corresponding affine Lie algebra the symbol K is the central element). The *shift* and *height* of an affine coroot are given by

$$\operatorname{sh}(\varepsilon_i^{\vee} - \varepsilon_j^{\vee} + \ell K) = -\ell$$
 and $\operatorname{ht}(\varepsilon_i^{\vee} - \varepsilon_j^{\vee} + \ell K) = j - i.$ (1.10)

The affine coroot corresponding to an inversion

$$(i,k) = (i,j+\ell n) \text{ with } i,j \in \{1,\ldots,n\} \text{ and } \ell \in \mathbb{Z}, \text{ is } \alpha_{i,j+\ell n}^{\vee} = \varepsilon_i^{\vee} - \varepsilon_j^{\vee} + \ell K.$$
 (1.11)

Define a \mathbb{Z} -linear action of the affine Weyl group W on $\mathfrak{a}_{\mathbb{Z}}$ by

$$\pi^{-1}\varepsilon_1^{\vee} = \varepsilon_n^{\vee} + K, \quad \pi^{-1}\varepsilon_i^{\vee} = \varepsilon_{i-1}^{\vee} \text{ for } i \in \{2, \dots, n\},$$
(1.12)

$$s_i \varepsilon_i^{\vee} = \varepsilon_{i+1}^{\vee}, \quad s_i \varepsilon_{i+1}^{\vee} = \varepsilon_i^{\vee}, \quad s_i \varepsilon_j = \varepsilon_j^{\vee} \text{ if } j \in \{1, \dots, n\} \text{ and } j \notin \{i, i+1\}$$

If $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n$ then $t_\mu \varepsilon_i^{\vee} = \varepsilon_i^{\vee} - \mu_i K$. Let

$$\alpha_0^{\vee} = \alpha_{n,n+1}^{\vee} = \varepsilon_n^{\vee} - \varepsilon_1^{\vee} + K, \quad \text{and} \quad \alpha_i^{\vee} = \varepsilon_i^{\vee} - \varepsilon_{i+1}^{\vee} \text{ for } i \in \{1, \dots, n-1\}.$$

Let $w \in W$ and let $w = s_{i_1} \cdots s_{i_\ell}$ be a reduced word for w. The coroot sequence of the reduced word $w = s_{i_1} \cdots s_{i_\ell}$ (recall that $s_{\pi} = \pi$) is

the sequence
$$(\beta_k^{\vee} \mid k \in \{1, \dots, \ell\}$$
 and $i_k \neq \pi\})$ given by $\beta_k^{\vee} = s_{i_\ell}^{-1} \cdots s_{i_{k+1}}^{-1} \alpha_{i_k}^{\vee}.$ (1.13)

Then, identifying inversions with affine coroots as in (1.11),

$$\operatorname{Inv}(w) = \{\beta_k^{\vee} \mid k \in \{1, \dots, \ell\} \text{ and } k \neq \pi\}$$
(1.14)

(see <u>Mac03</u>, (2.2.9)] or <u>Bou</u>, Ch. VI §1 no. 6 Cor. 2]).

1.6 The box greedy reduced word for u_{μ}

Let $\mu \in \mathbb{Z}^n$.

Write
$$(r, c) \in \mu$$
 if $r \in \{1, \ldots, n\}$ and $c \in \mathbb{Z}$ with $c \leq \mu_r$.

For $(r, c) \in \mu$ define

$$u_{\mu}(r,c) = \#\{r' \in \{1,\ldots,r-1\} \mid \mu_{r'} < c \le \mu_r\} + \#\{r' \in \{r+1,\ldots,n\} \mid \mu_{r'} < c-1 < \mu_r\}.$$

The box greedy reduced word for u_{μ} is

$$u_{\mu}^{\Box} = \prod_{(r,c)\in\mu} (s_{u_{\mu}(r,c)}\cdots s_{1}\pi), \qquad (1.15)$$

where the product is over the boxes of μ in increasing cylindrical wrapping order. The following Proposition justifies the terminology box greedy reduced word for u_{μ} .

Proposition 1.4. Let $\mu \in \mathbb{Z}^n$. For $r \in \{1, \ldots, n\}$ and $c \in \mathbb{Z}$ define

$$v_{\mu}(r) = 1 + \#\{r' \in \{1, \dots, r-1\} \mid \mu_{r'} \le \mu_r\} + \#\{r' \in \{r+1, \dots, n\} \mid \mu_{r'} < \mu_r\}.$$

and

$$\operatorname{arm}_{\mu}(r,c) = \mu_r - c + 1.$$

The product u_{μ}^{\Box} is a reduced word for u_{μ} , the inversion set of u_{μ} is

$$\operatorname{Inv}(u_{\mu}) = \bigcup_{(r,c)\in\mu} \bigcup_{i=1}^{u_{\mu}(r,c)} \{\varepsilon_{v_{\mu}(r)}^{\vee} - \varepsilon_{i}^{\vee} + \operatorname{arm}_{\mu}(r,c)K\} \quad and \quad \ell(u_{\mu}) = \sum_{(r,c)\in\mu} u_{\mu}(r,c).$$

Remark 1.5. Let $\mu \in \mathbb{Z}_{\geq 0}^n$. For $(r, c) \in \mu$ define

$$\operatorname{attack}_{\mu}(r, c) = \{ (r', c) \in \mu \mid r' < r \} \sqcup \{ (r', c - 1) \in \mu \mid r' > r \}.$$

Then

$$u_{\mu}(r,c) = n - 1 - \#\operatorname{attack}_{\mu}(r,c).$$

For example, with $\mu = (3, 0, 5, 1, 4, 3, 4)$ and b = (5, 2), which has cylindrical coordinate $b = 5+7\cdot 2 = 19$ the set attack_{μ}(b) is pictured as

