1 Lecture 1, 23 February 2022: n-periodic permutations

1.1 The affine Weyl group

The (type $G L_{n}$) finite Weyl group is

$$
W_{\text {fin }}=S_{n}, \quad \text { the symmetric group of bijections } v:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}
$$

with operation of composition of functions. The type $G L_{n}$ affine Weyl group W is the group of n-periodic permutations $w: \mathbb{Z} \rightarrow \mathbb{Z}$ i.e.,

$$
\begin{equation*}
\text { bijective functions } w: \mathbb{Z} \rightarrow \mathbb{Z} \text { such that } w(i+n)=w(i)+n \tag{1.1}
\end{equation*}
$$

Any n-periodic permutation w is determined by its values $w(1), \ldots, w(n)$. Using $w(i+n)=w(i)+n$, any permutation $v:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ in S_{n} extends to an n-periodic permutation in W, and so $S_{n} \subseteq W$.

Define $\pi \in W$ by

$$
\begin{equation*}
\pi(i)=i+1, \quad \text { for } i \in \mathbb{Z} \tag{1.2}
\end{equation*}
$$

Define $s_{0}, s_{1}, \ldots, s_{n-1} \in W$ by

$$
\begin{align*}
& s_{i}(i)=i+1, \tag{1.3}\\
& s_{i}(i+1)=i,
\end{align*} \quad \text { and } \quad s_{i}(j)=j \text { for } j \in\{0,1, \ldots, i-1, i+2, \ldots, n-1\}
$$

The finite Weyl group S_{n} is the subgroup of W generated by s_{1}, \ldots, s_{n-1}.
For $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$ define $t_{\mu} \in W$ by

$$
\begin{equation*}
t_{\mu}(1)=1+n \mu_{1}, \quad t_{\mu}(2)=2+n \mu_{2}, \quad \ldots, \quad t_{\mu}(n)=n+n \mu_{n} \tag{1.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
W=\left\{t_{\mu} v \mid \mu \in \mathbb{Z}^{n}, v \in S_{n}\right\} \quad \text { with } \quad v t_{\mu}=t_{v \mu} v \text { for } v \in S_{n} \text { and } \mu \in \mathbb{Z}^{n} \tag{1.5}
\end{equation*}
$$

The map

$$
\begin{equation*}
: W \rightarrow S_{n} \quad \text { given by } \quad \overline{t_{\mu} v}=v, \quad \text { for } \mu \in \mathbb{Z}^{n} \text { and } v \in S_{n} \tag{1.6}
\end{equation*}
$$

is a surjective group homomorphism.

1.2 Inversions

Let $w \in W$ be an n-periodic permutation. An inversion of w is

$$
(j, k) \quad \text { with } \quad j<k \text { and } w(j)>w(k)
$$

If (j, k) is an inversion of w then $(j+\ell n, k+\ell n)$ is an inversion of w for $\ell \in \mathbb{Z}$ and so it is sensible to assume $j \in\{1, \ldots, n\}$ and define

$$
\operatorname{Inv}(w)=\{(j, k) \mid j \in\{1, \ldots, n\}, k \in \mathbb{Z}, j<k \text { and } w(j)>w(k)\}
$$

The number of elements of $\operatorname{Inv}(w)$,

$$
\ell(w)=\# \operatorname{Inv}(w), \quad \text { is the length of } w .
$$

Proposition 1.1. Let $\mu \in \mathbb{Z}^{n}$ and $v \in S_{n}$. Then

$$
\begin{aligned}
\operatorname{Inv}\left(t_{\mu} v\right)= & \left.\bigcup_{\substack{i<j, v(i)<v(j) \\
\mu_{v(i)} \geq \mu_{v(j)}}} \bigcup_{\ell=0}^{\mu_{j}-\mu_{i}-1}\{(i, j+\ell n)\}\right) \cup\left(\bigcup_{\substack{i<j, v(i)>v(j) \\
\mu_{v(i)} \geq \mu_{v(j)}}} \bigcup_{\ell=0}^{\mu_{j}-\mu_{i}}\{(i, j+\ell n)\}\right) \\
& \cup\left(\bigcup _ { \substack { i < j , v (i) < v (j) \\
\mu _ { v (i) < \mu _ { v (j) } } } } \bigcup _ { \ell = 1 } ^ { \mu _ { i } - \mu _ { j } } \{ ((j , i + \ell n) \}) \cup \left(\bigcup_{\substack{i<j, v(i)>v(j) \\
\mu_{v(i)}<\mu_{v(j)}}} \bigcup_{\ell=1}^{\mu_{i}-\mu_{j}-1}\{((j, i+\ell n)\})\right.\right.
\end{aligned}
$$

For notational convenience when working with reduced words, let $s_{\pi}=\pi$. Then

$$
\ell\left(s_{\pi}\right)=\ell(\pi)=0 \quad \text { and } \quad \ell\left(s_{i}\right)=1 \text { for } i \in\{1, \ldots, n-1\}
$$

Let $w \in W$. A reduced word for w is an expression of w as a product of s_{1}, \ldots, s_{n-1} and s_{π},

$$
w=s_{i_{1}} \ldots s_{i_{\ell}} \quad \text { with } i_{1}, \ldots, i_{\ell} \in\{1, \ldots, n-1, \pi\} \quad \text { such that } \quad \ell(w)=\ell\left(s_{i_{1}}\right)+\cdots+\ell\left(s_{i_{\ell}}\right)
$$

1.3 The elements $u_{\mu}, v_{\mu}, t_{\mu}$

As in (1.4), for $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$ define $t_{\mu} \in W$ by

$$
t_{\mu}(1)=1+n \mu_{1}, \quad t_{\mu}(2)=2+n \mu_{2}, \quad \ldots, \quad t_{\mu}(n)=n+n \mu_{n}
$$

Then

$$
\begin{equation*}
t_{\mu}=u_{\mu} v_{\mu}, \quad \text { where } v_{\mu} \in S_{n} \text { and } u_{\mu} \text { is minimal length in the coset } t_{\mu} W_{\text {fin }} \tag{1.7}
\end{equation*}
$$

Proposition 1.2. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Let u_{μ} and v_{μ} be as defined in (1.7).
(a) v_{μ} is the minimal length element of S_{n} such that $v_{\mu} \mu$ is (weakly) increasing.
(b) The permutation $v_{\mu}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is given by

$$
v_{\mu}(i)=1+\#\left\{i^{\prime} \in\{1, \ldots, i-1\} \mid \mu_{i^{\prime}} \leq \mu_{i}\right\}+\#\left\{i^{\prime} \in\{i+1, \ldots, n\} \mid \mu_{i^{\prime}}<\mu_{i}\right\}
$$

(c) The n-periodic permutations $u_{\mu}: \mathbb{Z} \rightarrow \mathbb{Z}$ and $u_{\mu}^{-1}: \mathbb{Z} \rightarrow \mathbb{Z}$ are given by

$$
u_{\mu}(i)=v_{\mu}^{-1}(i)+n \mu_{i} \quad \text { and } \quad u_{\mu}^{-1}(i)=v_{\mu}(i)-n \mu_{v_{\mu}(i)} \quad \text { for } i \in\{1, \ldots, n\}
$$

(d) Let $\left|\mu_{i}-\mu_{j}\right|$ denote the absolute value of $\mu_{i}-\mu_{j}$. Then

$$
\ell\left(t_{\mu}\right)=\sum_{\substack{i, j \in\{1, \ldots, n\} \\ i<j}}\left|\mu_{i}-\mu_{j}\right|, \quad \ell\left(v_{\mu}\right)=\#\left\{i<j \mid \mu_{i}>\mu_{j}\right\} \quad \text { and } \quad \ell\left(u_{\mu}\right)=\ell\left(t_{\mu}\right)-\ell\left(v_{\mu}\right)
$$

Remark 1.3. Define an action of W on \mathbb{Z}^{n} by

$$
\begin{align*}
\pi\left(\mu_{1}, \ldots, \mu_{n}\right) & =\left(\mu_{n}+1, \mu_{1}, \ldots, \mu_{n-1}\right) \quad \text { and } \tag{1.8}\\
s_{i}\left(\mu_{1}, \ldots, \mu_{n}\right) & =\left(\mu_{1}, \ldots, \mu_{i-1}, \mu_{i+1}, \mu_{i}, \mu_{i+2}, \ldots, \mu_{n}\right), \quad \text { for } i \in\{1, \ldots, n\} .
\end{align*}
$$

Then u_{μ} is the minimal length element of W such that $u_{\mu}(0,0, \ldots, 0)=\left(\mu_{1}, \ldots, \mu_{n}\right)$.

1.4 Boxes

Fix $n \in \mathbb{Z}_{>0}$. A box is an element of $\{1, \ldots, n\} \times \mathbb{Z}_{\geq 0}$ so that

$$
\{\text { boxes }\}=\left\{(r, c) \mid r \in\{1, \ldots, n\}, c \in \mathbb{Z}_{\geq 0}\right\}
$$

To conform to [Mac, p.2], we draw the box (r, c) as a square in row r and column c using the same coordinates as are usually used for matrices.

$$
\begin{equation*}
\text { The cylindrical coordinate of the box }(r, c) \text { is the number } r+n c \text {. } \tag{1.9}
\end{equation*}
$$

The basement is the set $\{(r, 0) \mid r \in\{1, \ldots, n\}\}$, so that the basement is the collection of boxes in the 0th column. Pictorially,

Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ an n-tuple of nonnegative integers. The diagram of μ is the set $d g(\mu)$ of boxes with μ_{i} boxes in row i and the diagram of μ with basement $\widehat{d g}(\mu)$ includes the extra boxes $(r, 0)$ for $r \in\{1, \ldots, n\}$:

$$
\begin{aligned}
& d g(\mu)=\left\{(r, c) \mid r \in\{1, \ldots, n\} \text { and } c \in\left\{1, \ldots, \mu_{r}\right\}\right\} \text { and } \\
& \widehat{d g}(\mu)=\left\{(r, c) \mid r \in\{1, \ldots, n\} \text { and } c \in\left\{0,1, \ldots, \mu_{r}\right\}\right\}
\end{aligned}
$$

It is often convenient to abuse notation and identify $\mu, d g(\mu)$ and $\widehat{d g}(\mu)$ (because these are just different ways of viewing the sequence $\left.\left(\mu_{1}, \ldots, \mu_{n}\right)\right)$. For example, if $\mu=(0,4,1,5,4)$ then

1.5 Affine coroots

Let $\mathfrak{a}_{\mathbb{Z}}$ be the set of \mathbb{Z}-linear combinations of symbols $\varepsilon_{1}^{\vee}, \ldots, \varepsilon_{n}^{\vee}, K$. The affine coroots are

$$
\alpha_{i, j+\ell n}^{\vee}=\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}+\ell K \quad \text { with } i, j \in\{1, \ldots, n\} \text { and } i \neq j \text { and } \ell \in \mathbb{Z}
$$

(in the context of the corresponding affine Lie algebra the symbol K is the central element). The shift and height of an affine coroot are given by

$$
\begin{equation*}
\operatorname{sh}\left(\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}+\ell K\right)=-\ell \quad \text { and } \quad \operatorname{ht}\left(\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}+\ell K\right)=j-i \tag{1.10}
\end{equation*}
$$

The affine coroot corresponding to an inversion

$$
\begin{equation*}
(i, k)=(i, j+\ell n) \quad \text { with } i, j \in\{1, \ldots, n\} \text { and } \ell \in \mathbb{Z}, \quad \text { is } \quad \alpha_{i, j+\ell n}^{\vee}=\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}+\ell K \tag{1.11}
\end{equation*}
$$

Define a \mathbb{Z}-linear action of the affine Weyl group W on $\mathfrak{a}_{\mathbb{Z}}$ by

$$
\begin{gather*}
\pi^{-1} \varepsilon_{1}^{\vee}=\varepsilon_{n}^{\vee}+K, \quad \pi^{-1} \varepsilon_{i}^{\vee}=\varepsilon_{i-1}^{\vee} \quad \text { for } i \in\{2, \ldots, n\}, \tag{1.12}\\
s_{i} \varepsilon_{i}^{\vee}=\varepsilon_{i+1}^{\vee}, \quad s_{i} \varepsilon_{i+1}^{\vee}=\varepsilon_{i}^{\vee}, \quad s_{i} \varepsilon_{j}=\varepsilon_{j}^{\vee} \quad \text { if } j \in\{1, \ldots, n\} \text { and } j \notin\{i, i+1\} .
\end{gather*}
$$

If $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$ then $t_{\mu} \varepsilon_{i}^{\vee}=\varepsilon_{i}^{\vee}-\mu_{i} K$.
Let

$$
\alpha_{0}^{\vee}=\alpha_{n, n+1}^{\vee}=\varepsilon_{n}^{\vee}-\varepsilon_{1}^{\vee}+K, \quad \text { and } \quad \alpha_{i}^{\vee}=\varepsilon_{i}^{\vee}-\varepsilon_{i+1}^{\vee} \text { for } i \in\{1, \ldots, n-1\}
$$

Let $w \in W$ and let $w=s_{i_{1}} \cdots s_{i_{\ell}}$ be a reduced word for w. The coroot sequence of the reduced word $w=s_{i_{1}} \cdots s_{i_{\ell}}$ (recall that $s_{\pi}=\pi$) is
the sequence $\left(\beta_{k}^{\vee} \mid k \in\{1, \ldots, \ell\}\right.$ and $\left.\left.i_{k} \neq \pi\right\}\right)$ given by $\quad \beta_{k}^{\vee}=s_{i_{\ell}}^{-1} \cdots s_{i_{k+1}}^{-1} \alpha_{i_{k}}^{\vee}$.
Then, identifying inversions with affine coroots as in 1.11,

$$
\begin{equation*}
\operatorname{Inv}(w)=\left\{\beta_{k}^{\vee} \mid k \in\{1, \ldots, \ell\} \text { and } k \neq \pi\right\} \tag{1.14}
\end{equation*}
$$

(see [Mac03, (2.2.9)] or [Bou, Ch. VI §1 no. 6 Cor. 2]).

1.6 The box greedy reduced word for u_{μ}

Let $\mu \in \mathbb{Z}^{n}$.

$$
\text { Write }(r, c) \in \mu \quad \text { if } r \in\{1, \ldots, n\} \text { and } c \in \mathbb{Z} \text { with } c \leq \mu_{r}
$$

For $(r, c) \in \mu$ define

$$
u_{\mu}(r, c)=\#\left\{r^{\prime} \in\{1, \ldots, r-1\} \mid \mu_{r^{\prime}}<c \leq \mu_{r}\right\}+\#\left\{r^{\prime} \in\{r+1, \ldots, n\} \mid \mu_{r^{\prime}}<c-1<\mu_{r}\right\}
$$

The box greedy reduced word for u_{μ} is

$$
\begin{equation*}
u_{\mu}^{\square}=\prod_{(r, c) \in \mu}\left(s_{u_{\mu}(r, c)} \cdots s_{1} \pi\right), \tag{1.15}
\end{equation*}
$$

where the product is over the boxes of μ in increasing cylindrical wrapping order. The following Proposition justifies the terminology box greedy reduced word for u_{μ}.

Proposition 1.4. Let $\mu \in \mathbb{Z}^{n}$. For $r \in\{1, \ldots, n\}$ and $c \in \mathbb{Z}$ define

$$
v_{\mu}(r)=1+\#\left\{r^{\prime} \in\{1, \ldots, r-1\} \mid \mu_{r^{\prime}} \leq \mu_{r}\right\}+\#\left\{r^{\prime} \in\{r+1, \ldots, n\} \mid \mu_{r^{\prime}}<\mu_{r}\right\}
$$

and

$$
\operatorname{arm}_{\mu}(r, c)=\mu_{r}-c+1
$$

The product u_{μ}^{\square} is a reduced word for u_{μ}, the inversion set of u_{μ} is

$$
\operatorname{Inv}\left(u_{\mu}\right)=\bigcup_{(r, c) \in \mu} \bigcup_{i=1}^{u_{\mu}(r, c)}\left\{\varepsilon_{v_{\mu}(r)}^{\vee}-\varepsilon_{i}^{\vee}+\operatorname{arm}_{\mu}(r, c) K\right\} \quad \text { and } \quad \ell\left(u_{\mu}\right)=\sum_{(r, c) \in \mu} u_{\mu}(r, c)
$$

Remark 1.5. Let $\mu \in \mathbb{Z}_{\geq 0}^{n}$. For $(r, c) \in \mu$ define

$$
\operatorname{attack}_{\mu}(r, c)=\left\{\left(r^{\prime}, c\right) \in \mu \mid r^{\prime}<r\right\} \sqcup\left\{\left(r^{\prime}, c-1\right) \in \mu \mid r^{\prime}>r\right\}
$$

Then

$$
u_{\mu}(r, c)=n-1-\# \operatorname{attack}_{\mu}(r, c)
$$

For example, with $\mu=(3,0,5,1,4,3,4)$ and $b=(5,2)$, which has cylindrical coordinate $b=5+7 \cdot 2=19$ the set $\operatorname{attack}_{\mu}(b)$ is pictured as

and

$$
u_{\mu}(b)=u_{\mu}(5,2)=7-1-4=2
$$

