2 Lecture 2, 2 March 2022: Macdonald polynomials

2.1 Page 1: Nonsymmetric Macdonald polynomials

Let $\mathbb{C}[X]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Let \mathbb{Z}^{n} denote the set of length n sequences $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ of integers. The ring

$$
\mathbb{C}[X] \text { has basis } \quad\left\{x^{\mu} \mid \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}\right\}, \quad \text { where } \quad x^{\mu}=x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}}
$$

The symmetric group S_{n} acts on $\mathbb{C}[X]$ by permuting x_{1}, \ldots, x_{n} so that

$$
\left(s_{i} f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right)
$$

The symmetric group S_{n} acts on \mathbb{Z}^{n} by permuting the coordinates so that

$$
s_{i}\left(\mu_{1}, \ldots, \mu_{n}\right)=\left(\mu_{1}, \ldots, \mu_{i-1}, \mu_{i+1}, \mu_{i}, \mu_{i+2}, \ldots, \mu_{n}\right)
$$

Then $s_{i} x^{\mu}=x^{s_{i} \mu}$ for $\mu \in \mathbb{Z}^{n}$ and $i \in\{1, \ldots, n-1\}$.
For $f \in \mathbb{C}[X]$ and $i \in\{1, \ldots, n-1\}$ define

$$
\partial_{i} f=\frac{f-s_{i} f}{x_{i}-x_{i+1}}
$$

Define E_{μ} for $\mu \in \mathbb{Z}^{n}$ by the following recursive process:
(E0) $E_{(0, \ldots, 0)}=1$,
(E1) $E_{\left(\mu_{n}+1, \mu_{1}, \ldots, \mu_{n-1}\right)}=q^{\mu_{n}} x_{1} E_{\mu}\left(x_{2}, \ldots, x_{n}, q^{-1} x_{1}\right)$,
(E2) If $\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $\mu_{i}>\mu_{i+1}$ then

$$
E_{s_{i} \mu}=\left(\partial_{i} x_{i}-t x_{i} \partial_{i}+\frac{(1-t) q^{\mu_{i}-\mu_{i+1}} t^{v_{\mu}(i)-v_{\mu}(i+1)}}{1-q^{\mu_{i}-\mu_{i+1}} t^{v_{\mu}(i)-v_{\mu}(i+1)}}\right) E_{\mu}
$$

where $v_{\mu} \in S_{n}$ is minimal length such that $v_{\mu} \mu$ is weakly increasing,
(E3) $E_{\left(\mu_{1}-1, \ldots, \mu_{n}-1\right)}=x_{1}^{-1} \cdots x_{n}^{-1} E_{\left(\mu_{1}, \ldots, \mu_{n}\right)}$.
The set

$$
\left\{E_{\mu} \mid \mu \in \mathbb{Z}^{n}\right\} \quad \text { is a basis of } \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

2.2 Page 2: Symmetric Macdonald polynomials

Let

$$
\mathbb{C}[X]^{S_{n}}=\left\{g \in \mathbb{C}[X] \mid \text { if } w \in S_{n} \text { then } w g=g\right\}, \quad \text { the ring of symmetric functions. }
$$

For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \cdots \geq \lambda_{n}$, let $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}$ and let E_{λ} be the nonsymmetric Macdonald polynomial indexed by λ. The symmetric Macdonald polynomials P_{λ} are defined by

$$
P_{\lambda}=P_{\lambda}(x ; q, t)=\frac{1}{W_{\lambda}(t)} \sum_{w \in S_{n}} w\left(E_{\lambda} \prod_{i<j} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

(Plambdadefn)
where $W_{\lambda}(t)$ is the appropriate constant which makes the coefficient of x^{λ} equal to 1 in $P_{\lambda}(q, t)$. Various specializations of the $P_{\lambda}(x ; q, t)$ have their own names.

$$
\begin{array}{ll}
m_{\lambda}=P_{\lambda}(x ; 0,1) & \text { are the monomial symmetric functions }, \\
s_{\lambda}=P_{\lambda}(x ; 0,0) & \text { are the Schur functions, } \\
P_{\lambda}(x ; 0, t) & \text { are the Hall-Littlewood polynomials } .
\end{array}
$$

Proposition 2.1. If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \cdots \geq \lambda_{n}$ then $E_{\lambda}(0, t)=x^{\lambda}$.
Using Proposition 2.1 gives formulas

$$
\begin{align*}
& m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} x^{\gamma}, \quad s_{\lambda}=\sum_{w \in S_{n}} w\left(x^{\lambda} \prod_{i<j} \frac{x_{i}}{x_{i}-x_{j}}\right) \tag{2.1}\\
& \text { and } \quad P_{\lambda}(0, t)=\frac{1}{W_{\lambda}(t)} \sum_{w \in S_{n}} w\left(x^{\lambda} \prod_{i<j} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right) .
\end{align*}
$$

2.3 Page 3: Fermionic Macdonald polynomials

Let

$$
\begin{aligned}
&\left(\mathbb{Z}^{n}\right)^{+}=\{\lambda \\
&\left(\mathbb{Z}^{n}\right)^{++}=\left\{\gamma=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\} \quad \text { and } \\
&\left.\left., \gamma_{n}\right) \mid \gamma_{1}>\cdots>\gamma_{n}\right\} .
\end{aligned}
$$

The map

$$
\begin{array}{cl}
\left(\mathbb{Z}^{n}\right)^{+} & \rightarrow\left(\mathbb{Z}^{n}\right)^{++} \\
\lambda & \mapsto \lambda+\rho
\end{array} \quad \text { where } \quad \rho=(n-1, n-2, \ldots, 2,1,0)
$$

(rhodefn)
is a bijection.
For $\lambda \in\left(\mathbb{Z}^{n}\right)^{+}$, the fermionic Macdonald polynomial $A_{\lambda+\rho}$ is

$$
A_{\lambda+\rho}(q, t)=\left(\prod_{i<j} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right) \sum_{w \in S_{n}}(-1)^{\ell(w)} w E_{\lambda+\rho}
$$

(Alambdadefn)

Theorem 2.2. (Weyl character formula) Let $\lambda \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then

$$
A_{\rho}=\prod_{i<j}\left(x_{i}-t x_{j}\right) \quad \text { and } \quad P_{\lambda}(q, q t)=\frac{A_{\lambda+\rho}(q, t)}{A_{\rho}}
$$

2.4 Page 4: Eigenvalues

Define operators T_{1}, \ldots, T_{n-1} and g on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by

$$
T_{i} f=t^{-\frac{1}{2}}\left(t-\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(1-s_{i}\right)\right) f \quad \text { and } \quad(g f)\left(x_{1}, \ldots, x_{n}\right)=f\left(q^{-1} x_{n}, x_{1}, \ldots, x_{n-1}\right)
$$

The Cherednik-Dunkl operators are

$$
Y_{1}=g T_{n-1} \cdots T_{1}, \quad Y_{2}=T_{1}^{-1} Y_{1} T_{1}^{-1}, \quad Y_{3}=T_{2}^{-1} Y_{1} T_{2}^{-1}, \quad \ldots, \quad Y_{n}=T_{n-1}^{-1} Y_{n-1} T_{n}^{-1}
$$

Theorem 2.3. Let $\mu \in \mathbb{Z}^{n}$ and let $i \in\{1, \ldots, n\}$. Then

$$
Y_{i} E_{\mu}=q^{-\mu_{i}} t^{-\left(v_{\mu}(i)-1\right)+\frac{1}{2}(n-1)} E_{\mu}
$$

2.5 Page 5: Creation formulas

2.5.1 A creation formula for E_{μ}

The intertwiners, or creation operators, are

$$
\tau_{\pi}^{\vee}=x_{1} T_{1} \cdots T_{n-1} \quad \text { and } \quad \tau_{j}^{\vee}=T_{j}+t^{-\frac{1}{2}} \frac{(1-t) Y_{k}}{Y_{k}-Y_{j}}
$$

(creationopsA)
for $j \in\{1, \ldots, n-1\}$.
Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. The minimal length permutation v_{μ} such that $v_{\mu} \mu$ is weakly increasing is given by

$$
v_{\mu}(r)=1+\#\left\{r^{\prime} \in\{1, \ldots, r-1\} \mid \mu_{r^{\prime}} \leq \mu_{r}\right\}+\#\left\{r^{\prime} \in\{r+1, \ldots, n\} \mid \mu_{r^{\prime}}<\mu_{r}\right\}
$$

for $r \in\{1, \ldots, n\}$. A box in μ is a pair (r, c) with $r \in\{1, \ldots, n\}$ and $c \in\left\{1, \ldots, \mu_{r}\right\}$. If $b=(r, c)$ is a box in μ then define

$$
u_{\mu}(r, c)=\#\left\{r^{\prime} \in\{1, \ldots, r-1\} \mid \mu_{r^{\prime}} \leq c-1\right\}+\#\left\{r^{\prime} \in\{r+1, \ldots, n\} \mid \mu_{r^{\prime}}<c-1\right\}
$$

Theorem 2.4. Let $\mu \in \mathbb{Z}_{\geq 0}^{n}$. Letting

$$
\tau_{u_{\mu}}^{\vee}=\prod_{(r, c) \in \mu}\left(\tau_{u_{\mu}(r, c)}^{\vee} \cdots \tau_{2}^{\vee} \tau_{1}^{\vee} \tau_{\pi}^{\vee}\right), \quad \text { then } \quad E_{\mu}=t^{-\frac{1}{2} \ell\left(v_{\mu}^{-1}\right)} \tau_{u_{\mu}}^{\vee} 1
$$

where 1 is the polynomial $1 \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

2.5.2 Creation formulas for P_{λ} and $A_{\lambda+\delta}$

Let w_{0} be the longest element of S_{n} so that

$$
w_{0}(i)=n-i+1, \text { for } i \in\{1, \ldots, n\}, \quad \text { and } \quad \ell\left(w_{0}\right)=\frac{n(n-1)}{2}=\binom{n}{2}
$$

Let $z \in S_{n}$. A reduced expression for z is an expression for z as a product of s_{i},

$$
z=s_{i_{1}} \cdots s_{i_{\ell}}, \quad \text { such that } i_{1}, \ldots, i_{\ell} \in\{1, \ldots, n-1\} \text { and } \ell=\ell(z)
$$

Define

$$
T_{z}=T_{i_{1}} \cdots T_{i_{\ell}} \quad \text { if } z=s_{i_{1}} \cdots s_{i_{\ell}} \text { is a reduced word for } z
$$

The bosonic symmetrizer and the fermionic symmetrizer are

$$
\mathbf{1}_{0}=\sum_{z \in S_{n}} t^{\frac{1}{2}\left(\ell(z)-\ell\left(w_{0}\right)\right)} T_{z} \quad \text { and } \quad \varepsilon_{0}=\sum_{w \in S_{n}}\left(-t^{-\frac{1}{2}}\right)^{\ell(z)-\ell\left(w_{0}\right)} T_{z}
$$

The creation formulas for P_{λ} and $A_{\lambda+\rho}$ are

2.6 Lecture 2: Notes and references

Macdonald Mac Ch. I (1.13)] uses the notation δ for $(n-1, \ldots, 2,1,0)$. The element ρ is such that $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1$ for the simple coroots α_{i}^{\vee}. In the case of reductive groups which are not simple (like $G L_{n}$ or Kac-Moody groups) the element ρ is not uniquely determined by these conditions. For the group $G L_{n}, \rho=(n-1, \ldots, 2,1,0)$ is a favorite choice, whereas for the group $S L_{n}$ (which also has a type A root system) $\rho=\left(\frac{n-1}{2}, \frac{n-3}{2}, \ldots,-\frac{n-3}{2},-\frac{n-1}{2}\right)$ is the only option. Since this section is focused on Macdonald polynomials for type $G L_{n}$ it seems sensible to use the notation ρ, in place of Macdonald's notation δ.

