3 Lecture 3, 9 March 2022: The double affine Hecke algebra (DAHA)

3.1 Page 1: Presentation of the DAHA

The double affine Hecke algebra (of type $G L_{n}$) is the algebra generated by symbols g and x_{k} and T_{i} for $i, k \in \mathbb{Z}$ with relations

$$
\begin{gathered}
T_{i+n}=T_{i}, \quad x_{i+n}=q^{-1} x_{i}, \quad x_{k} x_{\ell}=x_{\ell} x_{k}, \quad \text { for } i, k, \ell \in \mathbb{Z} ; \quad \text { (periodicityrelsF) } \\
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad T_{i} T_{j}=T_{j} T_{i}, \quad T_{i}^{2}=\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) T_{i}+1, \quad \text { (HeckerelsF) }
\end{gathered}
$$

for $i, j \in \mathbb{Z}$ with $j \notin\{i-1, i+1\}$;

$$
\begin{aligned}
& T_{i} x_{i}=x_{i+1} T_{i}-\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) x_{i+1}, \\
& T_{i} x_{i+1}=x_{i} T_{i}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) x_{i+1},
\end{aligned} \quad x_{i+1}=T_{i} x_{i} T_{i}, \quad \text { and } \quad T_{i} x_{j}=x_{j} T_{i}, \quad \text { (XaffHeckerelsF) }
$$

for $i \in\{1, \ldots, n-1\}$ and $j \in\{1, \ldots, n\}$ with $j \notin\{i, i+1\}$; and

$$
g x_{i}=x_{i+1} g \quad \text { and } \quad g T_{i}=T_{i+1} g \quad \text { for } i \in \mathbb{Z}
$$

(DAHArels2F)
Proposition 3.1. (The glue relations) Define

$$
g^{\vee}=x_{1} T_{1} \cdots T_{n-1}
$$

Then

$$
T_{1}^{-1} g g^{\vee}=g^{\vee} g T_{n-1} \quad \text { and } \quad T_{n-1}^{-1} \cdots T_{1}^{-1} g\left(g^{\vee}\right)^{-1}=q\left(g^{\vee}\right)^{-1} g T_{n-1} \cdots T_{1}
$$

3.2 Page 2: Cherednik-Dunkl operators

The Cherednik-Dunkl operators are Y_{1}, \ldots, Y_{n} given by

$$
Y_{1}=g T_{n-1} \cdots T_{1}, \quad \text { and } \quad Y_{j+1}=T_{j}^{-1} Y_{j} T_{j}^{-1} \quad \text { for } j \in\{1, \ldots, n-1\}
$$

(CDops)
These are analogues of Murphy elements in the DAHA. The following proposition shows that these form a family of commuting operators.
Proposition 3.2. If $i, j \in\{1, \ldots, n\}$ then $Y_{i} Y_{j}=Y_{j} Y_{i}$.

3.3 Page 3: Intertwiners

The intertwiners $\tau_{1}^{\vee}, \ldots, \tau_{n-1}^{\vee}$ are defined by

$$
\begin{equation*}
\tau_{i}^{\vee}=T_{i}+\frac{\left(t^{-\frac{1}{2}}-t^{\frac{1}{2}}\right)}{1-Y_{i}^{-1} Y_{i+1}}=T_{i}^{-1}+\frac{\left(t^{-\frac{1}{2}}-t^{\frac{1}{2}}\right) Y_{i}^{-1} Y_{i+1}^{-1}}{1-Y_{i}^{-1} Y_{i+1}} \tag{tauiops}
\end{equation*}
$$

where the second equality follows from $T_{i}^{-1}=T_{i}-\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)$. The intertwiner τ_{π}^{\vee} is defined by

$$
\begin{equation*}
\tau_{\pi}^{\vee}=x_{1} T_{1} \cdots T_{n-1} \tag{taupiop}
\end{equation*}
$$

The following Proposition determines how the intertwiners τ_{i}^{\vee} and τ_{g}^{\vee} move past the Y_{j}.
Proposition 3.3. If $i \in\{1, \ldots, n-1\}$ and $j \in\{1, \ldots, n\}$ then

$$
\tau_{i}^{\vee} Y_{i}=Y_{i+1} \tau_{i}^{\vee}, \quad \tau_{i}^{\vee} Y_{i+1}=Y_{i} \tau_{i}^{\vee}, \quad \text { and } \quad \tau_{i}^{\vee} Y_{j}=Y_{j} \tau_{i}^{\vee} \quad \text { if } j \notin\{i, i+1\} . \quad \text { (taupastYrels1) }
$$

If $j \in\{1, \ldots, n-1\}$ then

$$
\begin{equation*}
\tau_{\pi}^{\vee} Y_{j}=Y_{j+1} \tau_{\pi}^{\vee} \quad \text { and } \quad \tau_{\pi}^{\vee} Y_{n}=q^{-1} Y_{1} \tau_{\pi}^{\vee} \tag{taupastYrels2}
\end{equation*}
$$

3.4 Page 4: DAHA acts on polynomials

This subsection defines the polynomial representation of the DAHA.
Let $\mathbb{C}[X]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. The symmetric group S_{n} acts on $\mathbb{C}[X]$ by permuting x_{1}, \ldots, x_{n}. Letting s_{1}, \ldots, s_{n-1} denote the simple transpositions in S_{n},

$$
\begin{equation*}
\left(s_{i} f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right) \tag{siops}
\end{equation*}
$$

For $j \in\{1, \ldots, n\}$ define operators y_{1}, \ldots, y_{n} by

$$
\begin{equation*}
\left(y_{i} f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, q^{-1} x_{i}, x_{i+1}, \cdots x_{n}\right) \tag{yjops}
\end{equation*}
$$

For $f \in \mathbb{C}[X]$ and $i \in\{1, \ldots, n-1\}$ define the divided difference operators $\partial_{i}: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ and the Hecke algebra operators $T_{i}: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ and the promotion operator $g: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ by

$$
\partial_{i} f=\frac{f-s_{i} f}{x_{i}-x_{i+1}}, \quad T_{i}=t^{-\frac{1}{2}} x_{i+1} \partial_{i}-t^{\frac{1}{2}} \partial_{i} x_{i+1} \quad \text { and } \quad g=s_{1} \cdots s_{n-1} y_{n}, \quad \text { (divdiffops) }
$$

For $i \in\{1, \ldots, n\}$ let $X_{i}: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ be the operator given by multiplication by x_{i} (i.e. $X_{i} f=x_{i} f$ for $f \in \mathbb{C}[X]$).

Theorem 3.4. The formulas divdiffops define an action of the double affine Hecke algebra on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

A way of deriving the formulas in divdiffops is to consider the induced representation

$$
\mathbb{C}[X]=\operatorname{Ind}_{H_{Y}}^{\widetilde{H}_{Y}}\left(\mathbf{1}_{Y}\right)=\mathbb{C}-\operatorname{span}\left\{x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}} \mathbf{1}_{Y} \mid \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}\right\}
$$

determined by

$$
g \mathbf{1}_{Y}=\mathbf{1}_{Y} \quad \text { and } \quad T_{i} \mathbf{1}_{Y}=t^{\frac{1}{2}} \mathbf{1}_{Y}
$$

Then the formulas in divdiffops) are consequences of the relations in XaffHeckerelsF) and DAHArels2F).
Remark 3.5. An alternate expression for ∂_{i} is

$$
\partial_{i}=\left(1+s_{i}\right) \frac{1}{x_{i}-x_{i+1}}
$$

which is the form in which ∂_{i} arises as a push-pull operator in cohomology of the flag variety. The Leibniz rule for ∂_{i} is

$$
\partial_{i}\left(f_{1} f_{2}\right)=\left(\partial_{i} f_{1}\right) f_{2}+\left(s_{i} f_{1}\right)\left(\partial_{i} f_{2}\right)
$$

and the 0-Hecke algebra relations are

$$
\partial_{i}^{2}=0, \quad \partial_{i} \partial_{j}=\partial_{j} \partial_{i}, \quad \partial_{i} \partial_{i+1} \partial_{i}=\partial_{i+1} \partial_{i} \partial_{i+1}
$$

for $i, j \in\{1, \ldots, n-1\}$ and $j \notin\{i+1, i-1\}$. All of these identities for the operators ∂_{i} are verified by direct computation. In particular,

$$
\partial_{1} \partial_{2} \partial_{1}=\frac{1}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)} \sum_{w \in S_{3}} w
$$

which is a formula for the push forward $H_{T}^{*}\left(F l_{3}\right) \rightarrow H_{T}^{*}(\mathrm{pt})$ where $F l_{3}$ denotes the full flag variety in \mathbb{C}^{3}.

3.5 Page 5: c-functions

3.5.1 c-functions in x s

Let

$$
c_{i j}(x)=\frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} x_{i} x_{j}^{-1}}{1-x_{i} x_{j}^{-1}}=t^{-\frac{1}{2}} \frac{x_{j}-t x_{i}}{x_{j}-x_{i}}, \quad \text { for } i, j \in\{1, \ldots, n\} \text { with } i \neq j . \quad \text { (cfnxdefn) }
$$

As operators on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$,

$$
\begin{equation*}
T_{i}=c_{i, i+1}(x) s_{i}-\left(c_{i, i+1}(x)-t^{\frac{1}{2}}\right), \tag{Tiviacfan}
\end{equation*}
$$

Another formula for the action of T_{i} is

$$
\begin{equation*}
t^{\frac{1}{2}} T_{i}=t-\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(1-s_{i}\right), \tag{TiviaBLop}
\end{equation*}
$$

3.5.2 c-functions in Y s

Let

$$
c_{i j}(Y)=\frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} Y_{i} Y_{j}^{-1}}{1-Y_{i} Y_{j}^{-1}}=t^{-\frac{1}{2}} \frac{Y_{j}-t Y_{i}}{Y_{j}-Y_{i}}, \quad \text { for } i, j \in\{1, \ldots, n\} \text { with } i \neq j . \quad \text { (cfnYdefn) }
$$

Letting

$$
\begin{equation*}
\eta_{s_{i}}=\tau_{i}^{\vee} \frac{1}{c_{i, i+1}(Y)} \quad \text { then } \quad T_{i}=\eta_{s_{i}} c_{i, i+1}(Y)-\left(c_{i+1, i}(Y)-t^{\frac{1}{2}}\right), \tag{TiviacfcnY}
\end{equation*}
$$

The striking similarity between Tiviacfen and TiviacfenY) is the core of the XY-parallelism in double affine Artin groups and double affine Hecke algebras (see [Mac03 §3.5]).

