4 Lecture 4, 16 March 2022: Symmetrizers and E-expansions

4.1 Page 1: Nonsymmetric, relative, symmetric and fermionic Macdonald polynomials

Let $q, t^{\frac{1}{2}} \in \mathbb{C}^{\times}$. Let y_{n} be the operator on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ given by

$$
\left(y_{n} h\right)\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{n-1}, q^{-1} x_{n}\right)
$$

The symmetric group S_{n} acts on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by permuting the variables x_{1}, \ldots, x_{n}. Define operators $T_{1}, \ldots, T_{n-1}, g$ and g^{\vee} on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by

$$
\begin{equation*}
T_{i}=t^{-\frac{1}{2}}\left(t-\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(1-s_{i}\right)\right), \quad g=s_{1} s_{2} \cdots s_{n-1} y_{n}, \quad g^{\vee}=x_{1} T_{1} \cdots T_{n-1} \tag{4.1}
\end{equation*}
$$

where s_{1}, \ldots, s_{n-1} are the simple transpositions in S_{n}. The Cherednik-Dunkl operators are

$$
\begin{equation*}
Y_{1}=g T_{n-1} \cdots T_{1}, \quad Y_{2}=T_{1}^{-1} Y_{1} T_{1}^{-1}, \quad Y_{3}=T_{2}^{-1} Y_{2} T_{2}^{-1}, \quad \ldots, \quad Y_{n}=T_{n-1}^{-1} Y_{n-1} T_{n}^{-1} \tag{4.2}
\end{equation*}
$$

For $\mu \in \mathbb{Z}^{n}$ the nonsymmetric Macdonald polynomial E_{μ} is the (unique) element $E_{\mu} \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ such that

$$
\begin{equation*}
Y_{i} E_{\mu}=q^{-\mu_{i}} t^{-\left(v_{\mu}(i)-1\right)+\frac{1}{2}(n-1)} E_{\mu}, \quad \text { and the coefficient of } x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}} \text { in } E_{\mu} \text { is } 1 \tag{4.3}
\end{equation*}
$$

where $v_{\mu} \in S_{n}$ is the minimal length permutation such that $v_{\mu} \mu$ is weakly increasing.
Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and let $z \in S_{n}$.

$$
\begin{equation*}
\text { The relative Macdonald polynomial } E_{\mu}^{z} \text { is } \quad E_{\mu}^{z}=t^{-\frac{1}{2}\left(\ell\left(z v_{\mu}^{-1}\right)-\ell\left(v_{\mu}^{-1}\right)\right)} T_{z} E_{\mu} \tag{4.4}
\end{equation*}
$$

Let $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right) \in \mathbb{Z}^{n}$.

$$
\begin{equation*}
\text { The symmetric Macdonald polynomial } P_{\lambda} \text { is } \quad P_{\lambda}=\sum_{\nu \in S_{n} \lambda} t^{\frac{1}{2} \ell\left(z_{\nu}\right)} T_{z_{\nu}} E_{\lambda} \tag{4.5}
\end{equation*}
$$

where the sum is over rearrangements ν of λ and $z_{\nu} \in S_{n}$ is minimal length such that $\nu=z_{\nu} \lambda$.
Let $\rho=(n-1, n-2, \ldots, 2,1,0)$. The fermionic Macdonald polynomial $A_{\lambda+\rho}$ is

$$
\begin{equation*}
A_{\lambda+\rho}=(-t)^{\ell\left(w_{0}\right)} \sum_{z \in S_{n}(\lambda+\rho)}\left(-t^{-\frac{1}{2}}\right)^{\ell(z)} T_{z} E_{\lambda+\rho} \tag{4.6}
\end{equation*}
$$

4.2 Page 2: H_{Y}-decomposition of the polynomial representation

Let H_{Y} be the algebra generated by the operators T_{1}, \ldots, T_{n-1} and Y_{1}, \ldots, Y_{n} (so that H_{Y} is an affine Hecke algebra). For $i \in\{1, \ldots, n-1\}$, let

$$
\tau_{i}^{\vee}=T_{i}+\frac{t^{-\frac{1}{2}}(1-t)}{1-Y_{i}^{-1} Y_{i+1}}=T_{i}^{-1}+\frac{t^{-\frac{1}{2}}(1-t) Y_{i}^{-1} Y_{i+1}}{1-Y_{i}^{-1} Y_{i+1}}
$$

(tauipm)
where the second equality is a consequence of $T_{i}-T_{i}^{-1}=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$. As H_{Y}-modules

$$
\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]=\bigoplus_{\lambda} \mathbb{C}[X]^{\lambda} \quad \text { where } \quad \mathbb{C}[X]^{\lambda}=\operatorname{span}\left\{E_{\mu} \mid \mu \in S_{n} \lambda\right\}
$$

and the direct sum is over decreasing $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right) \in \mathbb{Z}^{n}$. A description of the action of H on $\mathbb{C}[X]^{\lambda}$ is given by the following. Let $\mu \in \mathbb{Z}^{n}$ and let $i \in\{1, \ldots, n-1\}$. Let $v_{\mu} \in S_{n}$ be the minimal length permutation such that $v_{\mu} \mu$ is weakly increasing and let

Assume that $\mu_{i}>\mu_{i+1}$. By using the identity $E_{s_{i} \mu}=t^{\frac{1}{2}} \tau_{i}^{\vee} E_{\mu}$ if $\mu_{i}>\mu_{i+1}$ from (E2), the eigenvalue from (8.3) and the two formulas in tauipm,

$$
\begin{array}{ll}
Y_{i}^{-1} Y_{i+1} E_{\mu}=a_{\mu} E_{\mu}, & t^{\frac{1}{2}} \tau_{i}^{\vee} E_{\mu}=E_{s_{i} \mu}, \\
Y_{i}^{-1} Y_{i+1} E_{s_{i} \mu}=a_{s_{i} \mu} E_{s_{i} \mu}, & t^{\frac{1}{2}} \tau_{i}^{\vee} E_{s_{i} \mu}=D_{\mu} E_{\mu},
\end{array} \quad \text { and } \quad t^{\frac{1}{2}} T_{i} E_{\mu}=-\frac{1-t}{1-a_{\mu}} E_{\mu}+E_{s_{i} \mu},
$$

(CXlambdaaction)
Now assume that $\mu_{i}=\mu_{i+1}$. Then $v_{\mu}(i+1)=v_{\mu}(i)+1$ and $a_{\mu}=t^{-1}$ so that

$$
\begin{equation*}
Y_{i}^{-1} Y_{i+1} E_{\mu}=t^{-1} E_{\mu}, \quad\left(t^{\frac{1}{2}} \tau_{i}^{\vee}\right) E_{\mu}=0, \quad \text { and } \quad\left(t^{\frac{1}{2}} T_{i}\right) E_{\mu}=t E_{\mu} \tag{Tigivest}
\end{equation*}
$$

These formulas make explicit the action of H_{Y} on $\mathbb{C}[X]^{\lambda}$ in the basis $\left\{E_{\mu} \mid \mu \in S_{n} \lambda\right\}$.

4.3 Page 3: Symmetrizers

4.3.1 Bosonic and fermionic symmetrizers

Let w_{0} be the longest element of S_{n} so that

$$
w_{0}(i)=n-i+1, \text { for } i \in\{1, \ldots, n\}, \quad \text { and } \quad \ell\left(w_{0}\right)=\frac{n(n-1)}{2}=\binom{n}{2} .
$$

Let $z \in S_{n}$. A reduced expression for z is an expression for z as a product of s_{i},

$$
z=s_{i_{1}} \cdots s_{i_{\ell}}, \quad \text { such that } i_{1}, \ldots, i_{\ell} \in\{1, \ldots, n-1\} \text { and } \ell=\ell(z)
$$

Define

$$
T_{z}=T_{i_{1}} \cdots T_{i_{\ell}} \quad \text { if } z=s_{i_{1}} \cdots s_{i_{\ell}} \text { is a reduced word for } z
$$

The bosonic symmetrizer

$$
\mathbf{1}_{0}=\sum_{z \in S_{n}} t^{\frac{1}{2}\left(\ell(z)-\ell\left(w_{0}\right)\right)} T_{z} \quad \text { is a } t \text {-analogue of } \quad p_{0}=\sum_{z \in S_{n}} z
$$

(fullsymm)

The fermionic symmetrizer

$$
\varepsilon_{0}=\sum_{w \in S_{n}}\left(-t^{-\frac{1}{2}}\right)^{\ell(z)-\ell\left(w_{0}\right)} T_{z} \quad \text { is a } t \text {-analogue of } \quad e_{0}=\sum_{w \in S_{n}}(-1)^{\ell(z)-\ell\left(w_{0}\right)} z .
$$

The symmetrizers satisfy

$$
\begin{gathered}
T_{i} \mathbf{1}_{0}=\mathbf{1}_{0} T_{i}=t^{\frac{1}{2}} \mathbf{1}_{0} \quad \text { and } \quad T_{i} \varepsilon_{0}=\varepsilon_{0} T_{i}=-t^{-\frac{1}{2}} \varepsilon_{0}, \quad \text { for } i \in\{1, \ldots, n-1\}, \\
\mathbf{1}_{0}^{2}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} W_{0}(t) \mathbf{1}_{0} \quad \text { and } \quad \varepsilon_{0}^{2}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} W_{0}(t) \varepsilon_{0}, \quad \text { (symmprops) }
\end{gathered}
$$

where

$$
W_{0}(t)=\sum_{z \in S_{n}} t^{\ell(z)} \text { is the Poincaré polynomial for } S_{n}
$$

Proposition 4.1. As operators on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{-1}\right]$,

$$
\mathbf{1}_{0}=\left(\sum_{z \in W} z\right)\left(\prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

Let

$$
c_{i j}(x)=\frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} x_{i} x_{j}^{-1}}{1-x_{i} x_{j}^{-1}}=t^{-\frac{1}{2}} \frac{x_{j}-t x_{i}}{x_{j}-x_{i}}, \quad \text { for } i, j \in\{1, \ldots, n\} \text { with } i \neq j
$$

(cfnxdefn)

If $w \in S_{n}$ then let $\operatorname{Inv}(w)=\{(i, j) \mid i, j \in\{1, \ldots, n\}, i<j$ and $w(i)>w(j)\}$ and define

$$
c_{w}(x)=\prod_{(i, j) \in \operatorname{Inv}(\mathrm{w})} c_{i j}(x)
$$

(cfcnxw)

With these notations the identity in Proposition 4.1 is

$$
\mathbf{1}_{0}=p_{0} c_{w_{0}}\left(x^{-1}\right)
$$

(symmopalt)
where

$$
c_{w_{0}}\left(x^{-1}\right)=\prod_{1 \leq i<j \leq n} c_{i j}\left(x^{-1}\right)=\prod_{1 \leq i<j \leq n} \frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} x_{i}^{-1} x_{j}}{1-x_{i}^{-1} x_{j}}=t^{-\binom{n}{2}} \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}
$$

Proposition 4.2. As operators on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{-1}\right]$,

$$
\mathbf{1}_{0}=p_{0} c_{w_{0}}\left(x^{-1}\right)
$$

Proof. Let $w \in S_{n}$. Using $T_{i}=s_{i} c_{i, i+1}\left(x^{-1}\right)+\left(t^{\frac{1}{2}}-c_{i, i+1}(x)\right)$ and a reduced word $w=s_{i_{1}} \cdots s_{i_{\ell}}$ and expanding, gives

$$
T_{w}=T_{i_{1}} \cdots T_{i_{\ell}}=T_{w}=w c_{w}\left(x^{-1}\right)+\sum_{v<w} v b_{v}(x), \quad \text { with } b_{v}(x) \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

Thus there are $a_{v}(x) \in \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\mathbf{1}_{0}=\sum_{w \in S_{n}} t^{-\frac{1}{2} \ell\left(w_{0} w\right)} T_{w}=w_{0} c_{w_{0}}\left(x^{-1}\right)+\sum_{w<w_{0}} v a_{v}(x)
$$

(topterm)

Since $p_{0}=\sum_{w \in S_{n}} w$ then $s_{i} p_{0}=p_{0}$ and

$$
\begin{aligned}
T_{i}\left(p_{0} c_{w_{0}}\left(x^{-1}\right)\right) & =\left(c_{i, i+1}(x) s_{i}+\left(t^{\frac{1}{2}}-c_{i, i+1}(x)\right)\right) p_{0} c_{w_{0}}\left(x^{-1}\right) \\
& =\left(c_{i, i+1}(x)+\left(t^{\frac{1}{2}}-c_{i, i+1}(x)\right)\right) p_{0} c_{w_{0}}\left(x^{-1}\right)=t^{\frac{1}{2}}\left(p_{0} c_{w_{0}}\left(x^{-1}\right)\right)
\end{aligned}
$$

Since $\mathbf{1}_{0}$ is determined, up to multiplication by a constant, by the property that $T_{i} \mathbf{1}_{0}=t^{\frac{1}{2}} \mathbf{1}_{0}$ for $i \in\{1, \ldots, n-1\}$, it follows from topterm that, as operators on $\mathbb{C}[X]$,

$$
\mathbf{1}_{0}=p_{0} c_{w_{0}}\left(x^{-1}\right)
$$

4.3.2 Symmetrizers and stabilizers

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \in \mathbb{Z}^{n}$. Let

$$
\begin{aligned}
W_{\lambda} & =\left\{w \in S_{n} \mid w \lambda=\lambda\right\} \quad \text { which has longest element denoted } w_{\lambda}, \quad \text { and } \\
W^{\lambda} & =\left\{\text { minimal length representatives of the cosets in } S_{n} / W_{\lambda}\right\}
\end{aligned}
$$

so that W_{λ} is the stabilizer of λ under the action of S_{n} (acting by permutations of the coordinates). Let

$$
p^{\lambda}=\sum_{u \in W^{\lambda}} u \quad \text { and } \quad p_{\lambda}=\sum_{v \in W_{\lambda}} v
$$

The elements p^{λ} and p_{λ} have t-analogues given by

$$
\mathbf{1}^{\lambda}=t^{-\frac{1}{2} \ell\left(w_{0} w_{\lambda}\right)} \sum_{u \in W^{\lambda}} t^{\frac{1}{2} \ell(u)} T_{u} \quad \text { and } \quad \mathbf{1}_{\lambda}=t^{-\frac{1}{2} \ell\left(w_{\lambda}\right)} \sum_{v \in W_{\lambda}} t^{\frac{1}{2} \ell(v)} T_{v} \quad \quad \text { (partialHsymm) }
$$

Then

$$
p_{0}=p^{\lambda} p_{\lambda} \quad \text { and } \quad \mathbf{1}_{0}=\mathbf{1}^{\lambda} \mathbf{1}_{\lambda}
$$

The following proposition provides a formula for the bosonic symmetrizer $\mathbf{1}_{0}$ which is of striking utility (see the proof of the E-expansion and the proof that Macdonald's operators are the same as the elementary symmetric functions in the Y_{i}).

Proposition 4.3. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \in \mathbb{Z}^{n}$ and let w^{λ} be the longest element of the set W^{λ}. Use notations for the symmetrizers and c-functions as in (fullsymm, (partialWsymm, partialHsymm) and (cfcnxw). Then, as operators on $\mathbb{C}[X]$,

$$
\mathbf{1}_{0}=p^{\lambda} c_{w^{\lambda}}\left(x^{-1}\right) \mathbf{1}_{\lambda}
$$

Proposition 4.4. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \in \mathbb{Z}$ and let w^{λ} be the longest element of the set W^{λ}. Use notations for the symmetrizers and c-functions as in (fullsymm, partialWsymm, partialHsymm and (cfcnxw). Then, as operators on $\mathbb{C}[X]$,

$$
\mathbf{1}_{0}=p^{\lambda} c_{w^{\lambda}}\left(x^{-1}\right) \mathbf{1}_{\lambda}
$$

Proof. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$,

$$
\operatorname{Inv}\left(w_{\lambda}\right)=\left\{(i, j) \mid i<j \text { and } \lambda_{i}=\lambda_{j}\right\} \quad \text { and } \quad \operatorname{Inv}\left(w^{\lambda}\right)=\left\{(i, j) \mid i<j \text { and } \lambda_{i}>\lambda_{j}\right\}
$$

If $u \in W_{\lambda}$ then $\lambda_{u(i)}>\lambda_{u(j)}$ if $\lambda_{i}>\lambda_{j}$ so that $u \operatorname{Inv}\left(w^{\lambda}\right)=\left\{(u(i), u(j)) \mid i<j\right.$ and $\left.\lambda_{i}>\lambda_{j}\right\}=\operatorname{Inv}\left(w^{\lambda}\right)$, which gives that $w_{\lambda}^{-1} c_{w^{\lambda}}=u c_{w^{\lambda}}=c^{w_{\lambda}}$ for $u \in W_{\lambda}$. This is the reason for the equalities

$$
c_{w_{0}}=\left(w_{\lambda}^{-1} c_{w^{\lambda}}\right) c_{w_{\lambda}}=c_{w^{\lambda}} c_{w_{\lambda}} \quad \text { and } \quad p_{\lambda} c_{w^{\lambda}}=c_{w^{\lambda}} p_{\lambda} . \quad \text { (cfcnsplit) }
$$

Replacing S_{n} by the group W_{λ} in the proof of Proposition 4.1 gives $\mathbf{1}_{\lambda}=p_{\lambda} c_{w_{\lambda}}\left(x^{-1}\right)$. Using the relations in cfcnsplit) and $\mathbf{1}_{\lambda}=p_{\lambda} c_{w_{\lambda}}\left(x^{-1}\right)$ gives

$$
\mathbf{1}_{0}=p_{0} c_{w_{0}}\left(x^{-1}\right)=p^{\lambda} p_{\lambda} c_{w_{\lambda}^{-1} w^{\lambda}}\left(x^{-1}\right) c_{w_{\lambda}}\left(x^{-1}\right)=p^{\lambda} c_{w^{\lambda}}\left(x^{-1}\right) p_{\lambda} c_{w_{\lambda}}\left(x^{-1}\right)=p^{\lambda} c_{w^{\lambda}}\left(x^{-1}\right) \mathbf{1}_{\lambda}
$$

4.3.3 Symmetrizers and XY-parallelism

The double affine Hecke algebra (of type $G L_{n}$) is the algebra generated by symbols g and X_{k} and T_{i} for $i, k \in \mathbb{Z}$ with relations

$$
\begin{array}{r}
T_{i+n}=T_{i}, \quad X_{i+n}=q^{-1} X_{i}, \quad X_{k} X_{\ell}=X_{\ell} X_{k}, \quad \text { for } i, k, \ell \in \mathbb{Z} ; \quad \text { (periodicityrelsF) } \\
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad T_{i} T_{j}=T_{j} T_{i}, \quad T_{i}^{2}=\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) T_{i}+1, \quad \text { (HeckerelsF) }
\end{array}
$$

for $i, j \in \mathbb{Z}$ with $j \notin\{i-1, i+1\}$;

$$
\begin{aligned}
& T_{i} x_{i}=X_{i+1} T_{i}-\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) X_{i+1}, \\
& T_{i} x_{i+1}=X_{i} T_{i}+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) X_{i+1},
\end{aligned} \quad X_{i+1}=T_{i} X_{i} T_{i}, \quad \text { and } \quad T_{i} X_{j}=X_{j} T_{i}, \quad \text { (XaffHeckerelsF) }
$$

for $i \in\{1, \ldots, n-1\}$ and $j \in\{1, \ldots, n\}$ with $j \notin\{i, i+1\}$; and

$$
g X_{i}=X_{i+1} g \quad \text { and } \quad g T_{i}=T_{i+1} g \quad \text { for } i \in \mathbb{Z}
$$

(DAHArels2F)
The Cherednik-Dunkl operators are Y_{1}, \ldots, Y_{n} given by

$$
Y_{1}=g T_{n-1} \cdots T_{1}, \quad \text { and } \quad Y_{j+1}=T_{j}^{-1} Y_{j} T_{j}^{-1} \quad \text { for } j \in\{1, \ldots, n-1\}
$$

Define Y_{i} for $i \in \mathbb{Z}$ by setting

$$
Y_{i+n}=q^{-1} Y_{i} \quad \text { and let } \quad g^{\vee}=x_{1} T_{1} \cdots T_{n-1}
$$

c-functions. For $i, j \in \mathbb{Z}$ with $i \neq j$ set

$$
c_{i j}(X)=\frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} X_{i} X_{j}^{-1}}{1-X_{i} X_{j}^{-1}} \quad \text { and } \quad c_{i j}(Y)=\frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} Y_{i} Y_{j}^{-1}}{1-Y_{i} Y_{j}^{-1}}
$$

(cfnadefn)
Y-intertwiners. For $i \in\{1, \ldots, n-1\}$ define $\eta_{s_{i}}$ by the equation

$$
\begin{equation*}
\eta_{s_{i}}=\frac{1}{c_{-\alpha_{i}^{\vee}}^{\vee}}\left(T_{i}^{\vee}+\left(c_{-\alpha_{i}^{\vee}}-t^{\frac{1}{2}}\right)\right)=\frac{1}{c_{-\alpha_{i}^{\vee}}^{\vee}}\left(\left(T_{i}^{\vee}\right)^{-1}+\left(c_{-\alpha_{i}^{\vee}}-t^{-\frac{1}{2}}\right)\right) . \tag{etaidefn}
\end{equation*}
$$

X-intertwiners. For $i \in\{1, \ldots, n-1\}$ define $\xi_{s_{i}}$ by the equation

$$
\xi_{s_{i}}=\frac{1}{c_{-\alpha_{i}}}\left(T_{i}+\left(c_{-\alpha_{i}}-t^{\frac{1}{2}}\right)\right)=\frac{1}{c_{-\alpha_{i}}}\left(\left(T_{i}\right)^{-1}+\left(c_{-\alpha_{i}}-t^{-\frac{1}{2}}\right) .\right.
$$

If $w \in S_{n}$ and $w=s_{i_{1}} \cdots s_{i_{\ell}}$ is a reduced word for w define

$$
\begin{equation*}
\xi_{w}=\xi_{s_{i_{1}}} \cdots \xi_{s_{i_{\ell}}} \quad \text { and } \quad \eta_{w}=\eta_{s_{j_{1}}} \cdots \eta_{s_{j_{m}}} \tag{etawxiv}
\end{equation*}
$$

Define the

$$
\begin{array}{llll}
X \text {-symmetrizer } & p_{0}^{X}=\sum_{w \in W_{0}} \xi_{w}, & X \text {-antisymmetrizer } & e_{0}^{X}=\sum_{w \in W_{0}} \operatorname{det}\left(w_{0} w\right) \xi_{w} \\
Y \text {-symmetrizer } & p_{0}^{Y}=\sum_{w \in W_{0}} \eta_{w}, & Y \text {-antisymmetrizer } & e_{0}^{Y}=\sum_{w \in W_{0}} \operatorname{det}\left(w_{0} w\right) \eta_{w}
\end{array}
$$

The bosonic symmetrizer and the fermionic symmetrizer are

$$
\mathbf{1}_{0}=\sum_{z \in S_{n}} t^{\frac{1}{2}\left(\ell(z)-\ell\left(w_{0}\right)\right)} T_{z} \quad \text { and } \quad e_{0}=\sum_{w \in S_{n}}(-1)^{\ell(z)-\ell\left(w_{0}\right)} z
$$

The bosonic symmetrizer $\mathbf{1}_{0}$ is a t-analogue of p_{0}^{X} and p_{0}^{Y} and the fermionic symmetrizer ε_{0} is a t analogue of e_{0}^{X} and e_{0}^{Y}. The following Proposition rewrites the bosonic and fermionic symmetrizers in terms of the X-symmetrizers and the Y-symmetrizers. It is a reformulation of symmopalt which highlights the XY-parallelism in the DAHA.

Proposition 4.5. ([Mac03, (5.5.14) and (5.5.16)])

$$
\mathbf{1}_{0}=p_{0}^{X} c_{w_{0}}\left(X^{-1}\right)=p_{0}^{Y} c_{w_{0}}(Y) \quad \text { and } \quad \varepsilon_{0}=c_{w_{0}}(X) e_{0}^{X}=c_{w_{0}}\left(Y^{-1}\right) e_{0}^{Y} \quad \quad \text { (slicksymmA) }
$$

4.3.4 Symmetrizers, stabilizers and XY-parallelism

Let $\lambda \in\left(\mathfrak{a}_{\mathbb{Z}}^{*}\right)^{+}$. The stabilizer of λ under the action of W_{0} is

$$
W_{\lambda}=\left\{v \in W_{0} \mid v \lambda=\lambda\right\} \quad \text { and } \quad w_{\lambda} \text { denotes the longest element of } W_{\lambda}
$$

Let

$$
W^{\lambda} \text { be the set of minimal length representatives of the cosets in } W / W_{\lambda} .
$$

Let w^{λ} be the longest element of W^{λ} so that $w_{0}=w^{\lambda} w_{\lambda}$ with $\ell\left(w_{0}\right)=\ell\left(w^{\lambda}\right)+\ell\left(w_{\lambda}\right)$. Let

$$
\begin{align*}
& p_{X}^{\lambda}=\sum_{u \in W^{\lambda}} \xi_{u} \quad \text { and } p_{\lambda}^{X}=\sum_{v \in W_{\lambda}} \xi_{v} \quad \text { so that } \quad p_{0}^{X}=p_{X}^{\lambda} p_{\lambda}^{X}, \\
& e_{X}^{\lambda}=\sum_{u \in W^{\lambda}}^{u \in W^{\lambda}} \operatorname{det}\left(w^{\lambda} u\right) \xi_{u} \quad \text { and } \quad e_{\lambda}^{X}=\sum_{v \in W_{\lambda}}^{v \in W_{\lambda}} \operatorname{det}\left(w_{\lambda} v\right) \xi_{v} \quad \text { so that } \quad e_{0}^{X}=e_{X}^{\lambda} e_{\lambda}^{X} \text {, } \\
& p_{Y}^{\lambda}=\sum_{u \in W^{\lambda}}^{u \in W^{\lambda}} \eta_{u} \quad \text { and } p_{\lambda}^{Y}=\sum_{v \in W_{\lambda}}^{v \in W_{\lambda}} \eta_{v}, \quad \text { so that } \quad p_{0}^{Y}=p_{Y}^{\lambda} p_{\lambda}^{Y}, \tag{pWs}\\
& e_{Y}^{\lambda}=\sum_{u \in W^{\lambda}}^{u \in W^{\lambda}} \operatorname{det}\left(w^{\lambda} u\right) \eta_{u} \quad \text { and } \quad e_{\lambda}^{Y}=\sum_{v \in W_{\lambda}}^{v \in W_{\lambda}} \operatorname{det}\left(w_{\lambda} v\right) \eta_{v} \quad \text { so that } \quad e_{0}^{Y}=e_{Y}^{\lambda} e_{\lambda}^{Y} .
\end{align*}
$$

The elements in pWs have t-analogues:

$$
\begin{array}{ll}
\mathbf{1}^{\lambda}=t^{-\frac{1}{2} \ell\left(w^{\lambda}\right)} \sum_{u \in W^{\lambda}}\left(t^{\frac{1}{2}}\right)^{\ell(u)} T_{u} & \text { and } \quad \mathbf{1}_{\lambda}=t^{-\frac{1}{2} \ell\left(w_{\lambda}\right)} \sum_{v \in W_{\lambda}}\left(t^{\frac{1}{2}}\right)^{\ell(v)} T_{v}, \\
\varepsilon^{\lambda}=\left(-t^{-\frac{1}{2}}\right)^{-\ell\left(w^{\lambda}\right)} \sum_{u \in W^{\lambda}}\left(-t^{-\frac{1}{2}}\right)^{\ell(u)} T_{u} \quad \text { and } \quad \varepsilon_{\lambda}=\left(-t^{-\frac{1}{2}}\right)^{-\ell\left(w_{\lambda}\right)} \sum_{v \in W_{\lambda}}\left(-t^{-\frac{1}{2}}\right)^{\ell(v)} T_{v} . \tag{pHs}
\end{array}
$$

Then

$$
\mathbf{1}_{0}=\mathbf{1}^{\lambda} \mathbf{1}_{\lambda} \quad \text { and } \quad \varepsilon_{0}=\varepsilon^{\lambda} \varepsilon_{\lambda}
$$

The following is a generalization of Proposition 4.5 It is a reformulation of (4.3) which highlights the XY-parallelism in the DAHA.
Proposition 4.6. Let $\lambda \in\left(\mathfrak{a}_{\mathbb{Z}}^{*}\right)^{+}$and let w^{λ} be the longest element of the set W^{λ}. Use notations of the symmetrizers and c-functions as in (cfnadefn), bosfersymm, (pHs) and pWs).

$$
\begin{align*}
& \mathbf{1}_{0}=p_{X}^{\lambda} c_{w^{\lambda}}\left(X^{-1}\right) \mathbf{1}_{\lambda}=p_{Y}^{\lambda} c_{w^{\lambda}}(Y) \mathbf{1}_{\lambda} \quad \text { and } \\
& \varepsilon_{0}=c_{w^{\lambda}}(X) e_{X}^{\lambda} \varepsilon_{\lambda}=c_{w^{\lambda}}\left(Y^{-1}\right) e_{Y}^{\lambda} \varepsilon_{\lambda} \tag{symwparabA}
\end{align*}
$$

4.4 Page 4: E-expansions

Proposition 4.7. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and let $S_{n} \lambda$ be the set of distinct rearrangements of λ. Then

$$
\begin{aligned}
P_{\lambda} & =\sum_{z \in W^{\lambda}} t^{\frac{1}{2} \ell\left(w^{\lambda} z\right)} \mathrm{ev}_{z \lambda}^{\rho}\left(c_{w^{\lambda} z}(Y)\right) E_{z \lambda} \quad \text { and } \\
A_{\lambda+\rho} & =\sum_{z \in W_{0}}\left(-t^{\frac{1}{2}}\right)^{\ell\left(w_{0} z\right)} \mathrm{ev}_{z(\lambda+\rho)}^{\rho}\left(c_{w_{0} z}\left(Y^{-1}\right)\right) E_{z(\lambda+\rho)}
\end{aligned}
$$

Alternatively, letting $v_{\mu} \in S_{n}$ be the minimal length permutation such that $v_{\mu} \mu$ is weakly increasing,

$$
\begin{aligned}
P_{\lambda} & =\sum_{\mu \in S_{n} \lambda} t^{\#\left\{i<j \mid \mu_{i}>\mu_{j}\right\}}\left(\prod_{\substack{1 \leq i<j \leq n \\
\mu_{i}>\mu_{j}}} \frac{1-q^{\mu_{i}-\mu_{j}} t^{v_{\mu}(j)-v_{\mu}(i)-1}}{1-q^{\mu_{i}-\mu_{j}} t^{v_{\mu}(j)-v_{\mu}(i)}}\right) E_{\mu} \quad \text { and } \\
A_{\lambda+\rho} & =\sum_{\mu \in S_{n}(\lambda+\rho)}\left(\left(\prod_{\substack{1 \leq i<j \leq n \\
\mu_{i}>\mu_{j}}}(-1)\left(\frac{1-q^{\mu_{i}-\mu_{j}} t^{v_{\mu}(j)-v_{\mu}(i)+1}}{1-q^{\mu_{i}-\mu_{j}} t^{v_{\mu}(j)-v_{\mu}(i)}}\right)\right) E_{\mu}\right.
\end{aligned}
$$

If $n=2$ and $m \in \mathbb{Z}_{>0}$ then

$$
\begin{aligned}
P_{(m, 0)} & =E_{(0, m)}+t^{\frac{1}{2}} \operatorname{ev}_{(m, 0)}^{\rho}\left(c_{12}\right) E_{(m, 0)}=E_{(0, m)}+t\left(\frac{1-q^{m}}{1-q^{m} t}\right) E_{(m, 0)} \\
A_{m \omega_{1}} & =E_{(0, m)}-t^{\frac{1}{2}} \operatorname{ev}_{(m, 0)}^{\rho}\left(c_{21}\right) E_{(m, 0)}=E_{-m \omega_{1}}-\frac{1-q^{m} t^{2}}{1-q^{m} t} E_{m \omega_{1}}
\end{aligned}
$$

To relate the expressions to the c-functions note that $t\left(\frac{1-q^{m}}{1-q^{m} t}\right)=t^{\frac{1}{2}}\left(\frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} q^{-m} t^{-1}}{1-q^{-m} t^{-1}}\right)$. If $n=3$ then

$$
\begin{aligned}
& P_{(2,1,0)}=E_{(0,1,2)}+t\left(\frac{1-q}{1-q t}\right) E_{(1,0,2)}+t\left(\frac{1-q}{1-q t}\right) E_{(0,2,1)}+t^{2}\left(\frac{1-q t}{1-q t^{2}}\right)\left(\frac{1-q^{2}}{1-q^{2} t}\right) E_{(2,0,1)} \\
& \quad+t^{2}\left(\frac{1-q t}{1-q t^{2}}\right)\left(\frac{1-q^{2}}{1-q^{2} t}\right) E_{(1,2,0)}+t^{3}\left(\frac{1-q}{1-q t}\right)\left(\frac{1-q^{2} t}{1-q^{2} t^{2}}\right)\left(\frac{1-q}{1-q t}\right) E_{(2,1,0)} \\
& P_{(1,0,0)}=E_{(0,0,1)}+t\left(\frac{1-q}{1-q t}\right) E_{(0,1,0)}+t^{2}\left(\frac{1-q}{1-q t}\right)\left(\frac{1-q t}{1-q t^{2}}\right) E_{(1,0,0)}
\end{aligned}
$$

For general n, if $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ is the sequence of length n with 1 in the ith spot and 0 elsewhere then

$$
P_{(r, 0, \ldots, 0)}=\sum_{i=1}^{n} t^{n-i}\left(\frac{1-q^{r}}{1-q^{r} t}\right)\left(\frac{1-q^{r} t}{1-q^{r} t^{2}}\right) \cdots\left(\frac{1-q^{r} t^{n-i-1}}{1-q^{r} t^{n-i}}\right) E_{r \varepsilon_{i}}=\sum_{i=1}^{n} t^{n-i}\left(\frac{1-q^{r}}{1-q^{r} t^{n-i}}\right) E_{r \varepsilon_{i}} .
$$

4.5 Page 5: Symmetrization of E_{μ}

The following Proposition shows that the symmetrization $\mathbf{1}_{0} E_{\mu}$ of the nonsymmetric Macdonald polynomial E_{μ} is always, up to an explicit constant factor, equal to the symmetric Macdonald polynomial P_{λ}.

Proposition 4.8. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the weakly decreasing rearrangement of μ and let $z_{\mu} \in S_{n}$ be minimal length such that $\mu=z_{\mu} \lambda$. Let

$$
W_{\lambda}=\left\{y \in S_{n} \mid y \lambda=\lambda\right\} \quad \text { and } \quad W_{\lambda}(t)=\sum_{y \in W_{\lambda}} t^{\ell(y)}
$$

Then

$$
P_{\lambda}=\frac{t^{\frac{1}{2} \ell\left(w_{0}\right)}}{W_{\lambda}(t)}\left(\frac{1}{t^{\frac{1}{2} \ell\left(z_{\mu}\right)} \mathrm{ev}_{\lambda}^{\rho}\left(c_{z_{\mu}}(Y)\right)}\right) \mathbf{1}_{0} E_{\mu}
$$

Alternatively,

$$
P_{\lambda}=\frac{t^{\frac{1}{2} \ell\left(w_{0}\right)}}{W_{\lambda}(t)}\left(\prod_{(i, j) \in \operatorname{Inv}\left(z_{\mu}\right)} \frac{1-q^{\lambda_{i}-\lambda_{j}} t^{j-i}}{1-q^{\lambda_{i}-\lambda_{j}} t^{j-i+1}}\right) \mathbf{1}_{0} E_{\mu}
$$

4.6 Page 6: KZ families

For $\mu \in \mathbb{Z}^{n}$, let $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)$ be the decreasing rearrangement of μ and let $z_{\mu} \in S_{n}$ be minimal length such that $\mu=z_{\mu} \lambda$. Define

$$
\begin{equation*}
f_{\mu}=E_{\lambda}^{z_{\mu}}=t^{\frac{1}{2} \ell\left(z_{\mu}\right)} T_{z_{\mu}} E_{\lambda} \tag{4.7}
\end{equation*}
$$

It follows from the identities in the last column of CXlambdaaction that

$$
\left\{f_{\mu} \mid \mu \in S_{n} \lambda\right\} \quad \text { is another basis of } \mathbb{C}[X]^{\lambda}
$$

The following Proposition says that the $\left\{f_{\mu} \mid \mu \in \mathbb{Z}^{n}\right\}$ form a KZ-family, in the terminology of [KT06, Def. 3.3] (see also CMW18, Def. 1.13], CdGW15, (17), (18), (19)], CdGW16, Def. 2]).
Proposition 4.9. Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Let $i \in\{1, \ldots, n-1\}$ and let T_{i} and g be as defined in 8.1). Then

$$
t^{\frac{1}{2}} T_{i} f_{\mu}=\left\{\begin{array}{ll}
f_{s_{i} \mu}, & \text { if } \mu_{i}>\mu_{i+1}, \\
t f_{\mu}, & \text { if } \mu_{i}=\mu_{i+1},
\end{array} \quad \text { and } \quad g f_{\mu}=q^{-\mu_{n}} f_{\left(\mu_{n}, \mu_{1}, \ldots, \mu_{n-1}\right)}\right.
$$

4.7 Lecture 4: Notes and references

Following Fe11, Definition 4.4.2] and [Al16, Definition 5] and [Mac03, (5.7.6)] (Ferreira references private communication with Haglund), define the permuted basement Macdonald polynomials by

$$
\begin{equation*}
E_{\mu}^{z}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} t^{\frac{1}{2} \ell(z)} T_{z} E_{\mu}, \quad \text { for } \mu \in \mathbb{Z}^{n} \text { and } z \in S_{n} \tag{4.8}
\end{equation*}
$$

For the symmetrization of E_{μ} see [Mac03, (5.7.1)] and [Mac95, Remarks after (6.8)]). See [Mac95, remarks after (6.8)] or Mac03, (5.7.2)] for the explicit constant.

The fomulas for the symmetrizers $\mathbf{1}_{0}$ and ε_{0} in Section 4.3 follow [Mac03, (5.5.14) and (5.5.16)].

