6 Lecture 6, 30 March 2022: Alcove walks, set valued tableaux and column strict tableaux

6.1 Page 1: Creation formulas

Define operators T_{1}, \ldots, T_{n-1} and g on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by

$$
T_{i} f=t^{-\frac{1}{2}}\left(t-\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(1-s_{i}\right)\right) f \quad \text { and } \quad(g f)\left(x_{1}, \ldots, x_{n}\right)=f\left(q^{-1} x_{n}, x_{1}, \ldots, x_{n-1}\right) .
$$

The Cherdnik-Dunkl operators are

$$
Y_{1}=g T_{n-1} \cdots T_{1}, \quad Y_{2}=T_{1}^{-1} Y_{1} T_{1}^{-1}, \quad Y_{3}=T_{2}^{-1} Y_{1} T_{2}^{-1}, \quad \ldots, \quad Y_{n}=T_{n-1}^{-1} Y_{n-1} T_{n}^{-1} .
$$

The intertwiners, or creation operators, are

$$
\begin{aligned}
& g^{\vee}=x_{1} T_{1} \cdots T_{n-1} \quad \text { and } \\
& \tau_{j}^{\vee}=T_{j}+f_{j+1, j}^{+}=T_{j}^{-1}+f_{j+1, j}^{-} \quad \text { for } j \in\{1, \ldots, n-1\},
\end{aligned} \quad \text { (creationops) } \quad l \text { ? } \quad \text { (}
$$

where, for $k, j \in \mathbb{Z}$ with $j \neq k$,

$$
f_{j k}^{-}=t^{-\frac{1}{2}} \frac{(1-t) Y_{j} Y_{k}^{-1}}{1-Y_{j} Y_{k}^{-1}}=t^{-\frac{1}{2}} \frac{(1-t) Y_{j}}{Y_{k}-Y_{j}} \quad \text { and } \quad f_{j k}^{+}=t^{-\frac{1}{2}} \frac{(1-t)}{1-Y_{j} Y_{k}^{-1}}=t^{-\frac{1}{2}} \frac{(1-t) Y_{k}}{Y_{k}-Y_{j}} .
$$

Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. The minimal length permutation v_{μ} such that $v_{\mu} \mu$ is weakly increasing is given by

$$
v_{\mu}(r)=1+\#\left\{r^{\prime} \in\{1, \ldots, r-1\} \mid \mu_{r^{\prime}} \leq \mu_{r}\right\}+\#\left\{r^{\prime} \in\{r+1, \ldots, n\} \mid \mu_{r^{\prime}}<\mu_{r}\right\},
$$

for $r \in\{1, \ldots, n\}$. A box in μ is a pair (r, c) with $r \in\{1, \ldots, n\}$ and $c \in\left\{1, \ldots, \mu_{r}\right\}$. If $b=(r, c)$ is a box in μ then define

$$
u_{\mu}(r, c)=\#\left\{r^{\prime} \in\{1, \ldots, r-1\} \mid \mu_{r^{\prime}} \leq c-1\right\}+\#\left\{r^{\prime} \in\{r+1, \ldots, n\} \mid \mu_{r^{\prime}}<c-1\right\} .
$$

Define

$$
\tau_{u_{\mu}}^{\vee}=\prod_{\text {boxes }(r, c) \text { in } \mu}\left(\tau_{u_{\mu}(r, c)}^{\vee} \cdots \tau_{2}^{\vee} \tau_{1}^{\vee} g^{\vee}\right)
$$

(thecreator)
Let $z \in S_{n}$ and let $\mu \in \mathbb{Z}^{n}$. The creation formula for the relative Macdonald polynomial E_{μ}^{z} is

$$
E_{\mu}^{z}=t^{-\frac{1}{2}\left(\ell\left(z v_{\mu}^{-1}\right)\right.} T_{z} \tau_{u_{\mu}}^{\vee} 1,
$$

(creationformula)
where the action of T_{w}, X^{μ}, and Y_{j} on the polynomial 1 is given by

$$
\begin{equation*}
T_{w} 1=t^{\frac{1}{2} \ell(w)} \cdot 1, \quad X^{\mu} \cdot 1=x^{\mu}, \quad Y_{i+\ell n} \cdot 1=q^{-\ell} t^{-\left(v_{\mu}(i)-1\right)+\frac{1}{2}(n-1)} \cdot 1 . \tag{actionon1}
\end{equation*}
$$

One can use the creation formula as the definition of the relative Macdonald polynomials. In terms of the relative Macdonald polynomials, the nonsymmetric Macdonald polynomials are

$$
\begin{equation*}
E_{\mu}=E_{\mu}^{\mathrm{id}}, \quad \text { for } \mu \in \mathbb{Z}^{n} . \tag{nsaltdef}
\end{equation*}
$$

For $\lambda \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \cdots \geq \lambda_{n}$ the symmetric Macdonald polynomial P_{λ} is

$$
\begin{equation*}
P_{\lambda}=\sum_{\mu \in S_{n} \lambda} E_{\lambda}^{z_{\mu}} \tag{symmaltdef}
\end{equation*}
$$

where the sum is over all rearrangements of λ and $z_{\mu} \in S_{n}$ is the minimal length permutation such that $z_{\mu} \lambda=\mu$.

6.2 Page 2: Alcove walks formula

For $f\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{C}\left(Y_{1}, \ldots, Y_{n}\right)$ define

$$
\begin{aligned}
(\pi f)\left(Y_{1}, \ldots, Y_{n}\right) & =f\left(Y_{2}, \ldots, Y_{n}, Y_{n+1}\right)=f\left(Y_{2}, \ldots, Y_{n}, q^{-1} Y_{1}\right) \quad \text { and } \\
\left(s_{j} f\right)\left(Y_{1}, \ldots, Y_{n}\right) & =f\left(Y_{1}, \ldots, Y_{j-1}, Y_{j+1}, Y_{j}, Y_{j+1} \ldots, Y_{n}\right), \quad \text { for } j \in\{1, \ldots, n-1\}
\end{aligned}
$$

The following relations will be proved in taupastYrels1 and taupastYrels2:

$$
\begin{equation*}
\tau_{j}^{\vee} f=\left(s_{j} f\right) \tau_{j}^{\vee}, \quad \text { and } \quad g^{\vee} f=(\pi f) g^{\vee} \tag{creationrel}
\end{equation*}
$$

and

$$
X^{\mu} T_{w s_{i}}=\left\{\begin{array}{ll}
X^{\mu} T_{w} T_{i}, & \text { if } \ell\left(w s_{i}\right)>\ell(w), \\
X^{\mu} T_{w} T_{i}^{-1}, & \text { if } \ell\left(w s_{i}\right)<\ell(w),
\end{array} \quad \text { and } \quad X^{\mu} T_{w} g^{\vee}=X^{\mu} X_{w(1)} T_{w s_{1} \cdots s_{n-1}} . \quad\right. \text { (Rmultrel) }
$$

These give that if $f \in \mathbb{C}\left(Y_{1}, \ldots, Y_{n}\right), \mu \in \mathbb{Z}^{n}$ and $w \in S_{n}$ then

$$
\begin{aligned}
X^{\mu} T_{w} f(Y) \tau_{j}^{\vee} & =X^{\mu} T_{w} \tau_{j}^{\vee}\left(s_{j} f\right)(Y)= \begin{cases}X^{\mu} T_{w}\left(T_{j}^{\vee}+f_{-\alpha_{j}^{\vee}}^{+}\right)\left(s_{j} f\right), & \text { if } \ell\left(w s_{i}\right)>\ell(w) \\
X^{\mu} T_{w}\left(\left(T_{j}^{\vee}\right)^{-1}+f_{-\alpha_{j}^{\vee}}^{-}\right)\left(s_{j} f\right), & \text { if } \ell\left(w s_{i}\right)<\ell(w)\end{cases} \\
& = \begin{cases}X^{\mu} T_{w s_{j}}\left(s_{j} f\right)+X^{\mu} T_{w}\left(s_{j} f\right) f_{-\alpha_{j}^{\vee}}^{+}, & \text {if } \ell\left(w s_{i}\right)>\ell(w) \\
X^{\mu} T_{w s_{j}}\left(s_{j} f\right)+X^{\mu} T_{w}\left(s_{j} f\right) f_{-\alpha_{j}^{\vee}}^{-}, & \text {if } \ell\left(w s_{i}\right)<\ell(w)\end{cases}
\end{aligned}
$$

and

$$
X^{\mu} T_{w} f g^{\vee}=X^{\mu} T_{w} g^{\vee}(\pi f)=X^{\mu} X_{w(1)} T_{w s_{1} \cdots s_{n-1}}(\pi f)
$$

Inductively using these to compute $T_{z} \tau_{u_{\mu}}^{\vee}=T_{z} \tau_{i_{1}}^{\vee} \cdots \tau_{i_{\ell}}^{\vee}=\left(\left(\left(T_{z} \tau_{i_{1}}^{\vee}\right) \tau_{i_{2}}^{\vee}\right) \cdots \tau_{i_{\ell-1}}^{\vee}\right) \tau_{i_{\ell}}^{\vee}$ gives an expression for $T_{z} \tau_{u_{\mu}}^{\vee}$ with all the $X \mathrm{~s}$ on the left and all the $Y \mathrm{~s}$ on the right,

$$
T_{z} \tau_{u_{\mu}}^{\vee}=\sum_{F \subseteq\{1, \ldots, \ell\}} X^{\mathrm{end}^{z}(F)} T_{\varphi^{z}(F)} f_{F}^{+} f_{F}^{-}
$$

(XleftYright)
where f_{F}^{+}and f_{F}^{-}are products of $f_{j k}^{+}$(respectively, $f_{j k}^{-}$) that fall out of the inductive process (we shall describe these explicitly in (SVTformula). By applying (XleftYright) to the polynomial 1 and using the relations in actionon1) gives

$$
E_{\mu}^{z}=\sum_{F \subseteq\{1, \ldots, \ell\}} t^{\frac{1}{2}\left(\ell\left(\varphi^{z}(F)\right)-\ell\left(z v_{\mu}^{-1}\right)\right.} \mathrm{ev}_{0}^{\rho}\left(f_{F}^{+} f_{F}^{-}\right) x^{\operatorname{end}^{z}(F)}
$$

(alcovewalkformula)
where

$$
\operatorname{ev}_{0}^{\rho}(f)=f\left(t^{\frac{1}{2}(n-1)-0}, t^{\frac{1}{2}(n-1)-1}, \ldots, t^{\frac{1}{2}(n-1)-(n-1)}\right) \quad \text { for } f\left(Y_{1}, \ldots, Y_{n}\right) \in \mathbb{C}\left(Y_{1}, \ldots, Y_{n}\right)
$$

The formula alcovewalkformula is the alcove walk formula for relative Macdonald polynomials. It provides an expansion of the relative Macdonald polynomials in terms of monomials. Modulo the proof of the relations creationrel and Rmultrel this page contains a complete proof of the alcove walk formula for relative Macdonald polynomials (and, by nsaltdef) and symmaltdef), also for the nonsymmetric Macdonald polynomials and the symmetric Macdonald polynomials).

6.3 Page 3: Set valued tableaux formula

This page provides the statement of a set-valued tableaux formula for relative Macdonald polynomials.
Use the notation γ_{n} for the n-cycle $\gamma_{n}=s_{n-1} \cdots s_{1}$ in S_{n}. For positive integers k_{1}, \ldots, k_{ℓ} such that $k_{1}+\cdots+k_{\ell}=n$ let

$$
\gamma_{k_{1}} \times \cdots \times \gamma_{k_{\ell}} \quad \text { be the disjoint product of cycles in } \quad S_{k_{1}} \times \cdots \times S_{k_{\ell}} \subseteq S_{n}
$$

To give a formula for E_{μ}^{z}, fix $z \in S_{n}$ and $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Identify μ with the set of boxes in μ,

$$
\mu=\left\{(r, c) \mid r \in\{1, \ldots, n\} \text { and } c \in\left\{1, \ldots, \mu_{r}\right\}\right\}
$$

Order the boxes of μ by the values $r+n c$. The minimal length permutation v_{μ} such that $v_{\mu} \mu$ is weakly increasing is given by

$$
v_{\mu}(r)=1+\#\left\{r^{\prime} \in\{1, \ldots, r-1\} \mid \mu_{r^{\prime}} \leq \mu_{r}\right\}+\#\left\{r^{\prime} \in\{r+1, \ldots, n\} \mid \mu_{r^{\prime}}<\mu_{r}\right\}
$$

for $r \in\{1, \ldots, n\}$. For a box $(r, c) \in \mu$ and $i \in\left\{1, \ldots, u_{\mu}(r, c)\right\}$ define

$$
\operatorname{sh}(i, r, c)=\mu_{r}-c+1=\operatorname{sh}(r, c), \quad \text { and } \quad \operatorname{ht}(i, r, c)=v_{\mu}(r)-i
$$

A set valued tableau T of shape μ is a choice of subset $T(r, c) \subseteq\left\{1, \ldots, u_{\mu}(r, c)\right\}$ for each box $(r, c) \in \mu$. More formally, a set valued tableau T of shape μ is a function

$$
T: \mu \rightarrow\{\text { subsets of }\{1, \ldots, n\}\} \quad \text { such that } T(r, c) \subseteq\left\{1, \ldots, u_{\mu}(r, c)\right\}
$$

Let (r, c) be a box in μ. Let $z_{(r, c)}=z$ if (r, c) is the first box in μ and for a general box $(r, c) \in \mu$ define

$$
z_{(r, c)}=z_{\left(r^{\prime}, c^{\prime}\right)}\left(\gamma_{u_{(r, c)}+1-\ell_{p}} \times \cdots \times \gamma_{\ell_{2}-\ell_{1}} \times \gamma_{\ell_{1}}\right) \gamma_{n}^{-1}
$$

where $T(r, c)=\left\{\ell_{1}, \ldots, \ell_{p}\right\}$ and $\left(r^{\prime}, c^{\prime}\right) \in \mu$ is the box before (r, c) in μ. Define

$$
\begin{aligned}
& T_{+}^{z}(r, c)=\left\{\ell_{j} \in T(r, c) \mid z_{(r, c)}\left(u_{(r, c)}+1-\ell_{j+1}\right)<z_{(r, c)}\left(u_{(r, c)}+1-\ell_{j}\right)\right\} \quad \text { and } \\
& T_{-}^{z}(r, c)=\left\{\ell_{j} \in T(r, c) \mid z_{(r, c)}\left(u_{(r, c)}+1-\ell_{j+1}\right)>z_{(r, c)}\left(u_{(r, c)}+1-\ell_{j}\right)\right\}
\end{aligned}
$$

where we make the conventions that $\ell_{p+1}=u_{(r, c)}+1$ and $z_{(r, c)}(0)=z_{(r, c)}(n)$. Define

$$
\varphi^{z}(T)=z\left(b_{\max }\right) \text { where } b_{\max } \text { is the last box of } \mu, \quad \# f(T)=\sum_{(r, c) \in \mu} \operatorname{Card}(T(r, c))
$$

and

$$
\begin{aligned}
\operatorname{cov}_{ \pm}^{z}(T) & =\left(\sum_{(r, c) \in \mu} \sum_{i \in T_{\neq}^{z}(r, c)} \operatorname{ht}(i, r, c)\right) \pm \frac{1}{2}\left(\ell\left(\varphi^{z}(T)\right)-\ell\left(z v_{\mu}^{-1}\right)-\# f(T)\right), \\
\operatorname{maj}_{ \pm}^{z}(T) & =\sum_{(r, c)} \sum_{i \in T_{\mp}^{z}(r, c)} \operatorname{sh}(i, r, c)=\sum_{(r, c) \in \mu} \operatorname{sh}(r, c) \cdot\left|T_{ \pm}^{z}(r, c)\right| \quad \text { and } \\
\operatorname{wt}_{ \pm}^{z}(T) & =q^{ \pm \operatorname{cov}_{ \pm}^{z}(T)} t^{ \pm \operatorname{maj}_{ \pm}^{z}(T)}\left(\prod_{(r, c) \in \mu} \prod_{i \in T(r, c)} \frac{\left(1-t^{ \pm 1}\right)}{1-q^{ \pm \operatorname{sh}_{\mu}(r, c, i)} t^{ \pm \mathrm{ht}(r, c, i)}}\right) .
\end{aligned}
$$

Then the relative Macdonald polynomial is

$$
E_{\mu}^{z}=\sum_{T} \mathrm{wt}_{+}^{z}(T) x^{T}=\sum_{T} \mathrm{wt}_{-}^{z}(T) x^{T}, \quad \text { where } \quad x^{T}=\prod_{(r, c) \in \mu} x_{z_{(r, c)}(n)}
$$

and the sum is over all set valued tableaux T of shape μ.

6.4 Page 4: Nonattacking fillings formula

Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $z \in S_{n}$. A nonattacking filling for (z, μ) is $T: \widehat{\operatorname{dg}}(\mu) \rightarrow\{1, \ldots, n\}$ such that
(a) $T(i, 0)=z(i)$ for $i \in\{1, \ldots, n\}$ and
(b) if $b \in d g(\mu)$ and $a \in \operatorname{attack}_{\mu}(b)$ then $T(a) \neq T(b)$.

For example,

$$
T=\begin{array}{l|lllll}
1 & & & & \tag{6.1}\\
2 & 1 & 1 & 1 & 2 & \text { is a nonattacking filling for }(z, \mu) \\
3 & 3 & & & & \text { with } z=\operatorname{id} \in S_{5} \text { and } \mu=(0,4,1,5,4) \\
4 & 4 & 4 & 5 & 4 & 4 \\
5 & 5 & 2 & 3 & 3 &
\end{array}
$$

Let $\mu \in \mathbb{Z}_{\geq 0}^{n}$. Using cylindrical coordinates for boxes as specified in 1.9 , define, for a box $b \in d g(\mu)$,

$$
\begin{align*}
\operatorname{attack}_{\mu}(b) & =\{b-1, \ldots, b-n+1\} \cap \widehat{d g}(\mu) \tag{6.2}\\
\operatorname{Nleg}_{\mu}(b) & =\left(b+n \mathbb{Z}_{>0}\right) \cap d g(\mu) \text { and } \tag{6.3}\\
\operatorname{Narm}_{\mu}(b) & =\left\{a \in \operatorname{attack}_{\mu}(b) \mid \# \operatorname{Nleg}_{\mu}(a) \leq \# \operatorname{Nleg}_{\mu}(b)\right\} . \tag{6.4}
\end{align*}
$$

where $\# \mathrm{Nleg}_{\mu}(a)$ denotes the number of elements of $\mathrm{Nleg}_{\mu}(a)$. For example, with $\mu=(3,0,5,1,4,3,4)$ and $b=(5,2)$, which has cylindrical coordinate $b=5+7 \cdot 2=19$ the sets $\operatorname{attack}_{\mu}(b)$, $\operatorname{Narm}_{\mu}(b)$ and $\mathrm{Nleg}_{\mu}(b)$ are pictured as

Let $\mu \in \mathbb{Z}_{\geq 0}^{n}$ and $z \in S_{n}$ and let T be a nonattacking filling of shape (z, μ). For $b \in d g(\mu)$ let

$$
\begin{equation*}
\operatorname{bwn}_{T}(b)=\left\{a \in \operatorname{arm}_{\mu}(b) \mid T(b-n)>T(a)>T(b) \text { or } T(b-n)<T(a)<T(b)\right\} . \tag{6.5}
\end{equation*}
$$

The weight of b in T is

$$
\mathrm{wt}_{T}(b)= \begin{cases}\left(\frac{1-t}{\left.1-q^{\# \operatorname{Nleg}_{\mu}(b)+1} t^{\# \operatorname{Narm}_{\mu}(b)+1}\right) t^{\# \mathrm{bwn}_{T}(b)} x_{T(b)},}\right. & \text { if } T(b-n)>T(b) \tag{6.6}\\ \left(\frac{(1-t) q^{\# \operatorname{Nleg}_{\mu}(b)+1} t^{\# \operatorname{Narm}_{\mu}(b)+1}}{1-q^{\# \operatorname{Nleg}_{\mu}(b)+1} t \# \operatorname{Narm}_{\mu}(b)+1}\right) t^{-1-\# \mathrm{bwn}_{T}(b)} x_{T(b)}, & \text { if } T(b-n)<T(b) \\ x_{T(b)}, & \text { if } T(b-n)=T(b)\end{cases}
$$

and the weight of T is

$$
\begin{equation*}
\mathrm{wt}(T)=\prod_{b \in \operatorname{dg}(\mu)} \mathrm{wt}_{T}(b), \quad \text { a product over the boxes of } T . \tag{6.7}
\end{equation*}
$$

The following theorem is the nonattacking fillings formula for relative Macdonald polynomials.
Theorem 6.1. Let $\mu \in \mathbb{Z}_{\geq 0}^{n}$ and $z \in S_{n}$. Then the relative Macdonald polynomial E_{μ}^{z} is

$$
E_{\mu}^{z}=\sum_{T \in \mathrm{NAF}_{\mu}^{z}} \mathrm{wt}(T), \quad \text { where the sum is over nonattacking fillings } T \text { for }(z, \mu)
$$

6.5 Page 5: Column strict tableaux formulas

Let

$$
B(\lambda)=\{\text { column strict tableaux of shape } \lambda \text { filled from }\{1, \ldots, n\}\}
$$

For a column strict tableau T let $T(b)$ denote the entry in box b.
Let $T \in B(\lambda)$ and let $b \in \lambda$. Let $i \in\{1, \ldots, n\}$ with $i>T(b)$. Define

$$
\left.\begin{array}{rlrl}
a(b, & \leq i) & =\operatorname{Card}\left\{b^{\prime} \in \operatorname{arm}_{\lambda}(b) \mid T\left(b^{\prime}\right) \leq i\right\}, & a(b,<i)
\end{array}\right)=\operatorname{Card}\left\{b^{\prime} \in \operatorname{arm}_{\lambda}(b) \mid T\left(b^{\prime}\right)<i\right\}, ~ 子 \operatorname{Card}\left\{b^{\prime} \in \operatorname{leg}_{\lambda}(b) \mid T\left(b^{\prime}\right) \leq i\right\}, \quad l(b,<i)=\operatorname{Card}\left\{b^{\prime} \in \operatorname{leg}_{\lambda}(b) \mid T\left(b^{\prime}\right)<i\right\}
$$

and

$$
\begin{equation*}
h_{T}(b, \leq i)=\frac{1-q^{a(b, \leq i)} t^{l(b, \leq i)+1}}{1-q^{a(b, \leq i)+1} t^{l(b, \leq i)}} \quad \text { and } \quad h_{T}(b,<i)=\frac{1-q^{a(b,<i)} t^{l(b,<i)+1}}{1-q^{a(b,<i)+1} t^{l(b,<i)}} \tag{6.8}
\end{equation*}
$$

Theorem 6.2. For a column strict tableau $T \in B(\lambda)$ and a box $b \in \lambda$ define

$$
\psi_{T}=\prod_{b \in \lambda} \psi_{T}(b), \quad \text { where } \quad \psi_{T}(b)=\prod_{\substack{i>T(b), i \in T(\operatorname{arm} \\ i \notin T(b)) \\ i \log \lambda(b))}} \frac{h_{T}(b,<i)}{h_{T}(b, \leq i)}
$$

and $h_{T}(b,<i)$ and $h_{T}(b, \leq i)$ are as defined in 6.8). Then

$$
P_{\lambda}=\sum_{T \in B(\lambda)} \psi_{T} x^{T}, \quad \text { where } \quad x^{T}=x_{1}^{(\# 1 \mathrm{~s} \text { in } T)} \cdots x_{n}^{(\# n \mathrm{~s} \text { in } T)}
$$

6.6 Lecture 6: Notes and references

Theorem 6.2 follows [Mac, Ch. VI (7.13')]. Theorem 6.1 summarizes [Al16, Def. 5 and Prop. 6] and [HHL06, Theorem 3.5.1]. Equation alcovewalkformula follows RY08, Theorem 2.2 and Theorem 3.4].

