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7 Lecture 7, 6 April 2022: The Boson Fermion correspondence and
the Weyl character formula

7.1 Page 7.1: Geometric Satake

The case q = 0 and t = 0. The symmetric group acts on C[X] = C[x±1
1 , . . . , x

±1
n ] by permuting the

variables. Let s1, . . . , sn�1 denote the simple reflections in Sn (so that si is the transposition switching
i and i+ 1) let

C[X]Sn = {f 2 C[X] | if i 2 {1, . . . , n� 1} then sif = f} and

C[W ]det = {f 2 C[X] | if i 2 {1, . . . , n� 1} then sif = �f}.

Let
p0 =

X

w2Sn

w and e0 =
X

w2Sn

(�1)`(w0)�`(w)
w,

where `(w0) =
1
2n(n� 1). For µ 2 Zn, the monomial symmetric function is

mµ =
1

W�(1)
p0x

µ =
1

W�(1)

X

w2Sn

wx
µ
,

where the coe�cient 1
W�(1)

makes the coe�cient of xµ in mµ equal to 1. The skew orbit sum is

aµ = e0x
µ =

X

w2Sn

(�1)`(w0)�`(w)
x
wµ = det(x

µj

i
).

The special case where ⇢ = (n� 1, n� 2, . . . , 2, 1, 0) gives the Vandermonde determinant,

a⇢ = (�1)`(w0) det(xn�j

i
) =

Y

1i<jn

(xj � xi).

If i 2 {1, . . . , n� 1} then msiµ = mµ and aµ = �asiµ and so

{m� | � 2 (Zn)+} is a basis of C[X]Sn = p0C[X],

{a�+⇢ | � 2 (Zn)+} is a basis of C[X]det = e0C[X],

where

(Zn)+ = {� = (�1, . . . ,�n) 2 Zn
| �1 � · · · � �n}

(Zn)++ = {� = (�1, . . . , �n) 2 Zn
| �1 > · · · > �n}

and
(Zn)+

⇠
�! (Zn)++

� 7�! �+ ⇢

is a bijection.
For � 2 (Zn)+, the Schur function is

s� =
a�+⇢

a⇢
.

Schur definitively recognized the function s� as the character of a finite dimensional irreducible repre-
sentation of the group GLn(C). A way of making the Schur function very natural is to recognize that
the following diagram of vector space isomorphisms tells us that C[X]det is a free (rank 1) C[X]Sn-
module with basis vector a⇢.

C[X]W0
⇠

�! C[X]det = a⇢C[X]W0

f 7�! a⇢f

s� 7�! a�+⇢ = e0x
�+⇢

m� = p0x
�

(HWeyl)
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Hermann Weyl used this point of view in his generalization of Schur’s result which recognized that
the analogues of the s� for crystallographic reflection groups (Weyl groups) provide the characters of
the finite dimensional irreducible representations of compact Lie groups.

The case of q = 0 and general t. Let H be the subalgebra of eH generated by T1, . . . , Tn�1 and xk

for k 2 Z. The restriction of the polynomial representation C[X] to the subalgebra H is

C[X] ⇠= H10 = span{xµ10 | µ 2 Zn
}.

For µ 2 a⇤Z the Whittaker function

Aµ(0, t)10 2 "0H10 is defined by Aµ(0, t) = "0X
µ10.

See, for example, [HKP, §6] for the connection between p-adic groups and the a�ne Hecke algebra and
the explanation of why Aµ is equivalent to the data of a (spherical) Whittaker function for a p-adic
group. As proved carefully in [NR04, Theorem 2.7], it follows from (2.6) and (2.3) that

"0H10 has K-basis {A�+⇢(0, t) | � 2 (Zn)+}.

Following [Lu83] (see [NR04, Theorem 2.4] for another exposition),

the Satake isomorphism, K[X]W0 ⇠= 10H10, and
the Casselman-Shalika formula, A�+⇢(0, t) = s�A⇢,

can be formulated by the following diagram of vector space (free K-module) isomorphisms:

Z(H) = K[X]W0
⇠

�! 10H10
⇠

�! "0H10
f 7�! f10 7�! A⇢f10
s� 7�! s�10 7�! A�+⇢(0, t) = "0X

�+⇢10
P�(0, t) 7�! P�(0, t)10 = 10X�10

(GeomLang)

As explained by Lusztig [Lu83], in this diagram

10H10 is the spherical Hecke algebra

s� is the Schur function,

P�(0, t) is the Hall-Littlewood polynomial, and

{P�(0, t)10 | � 2 (Zn)+} is the Kazhdan-Lusztig basis of 10H10.

The spherical Hecke algebra 10H10 is the Iwahori-Hecke algebra corresponding to the loop Grassma-
nian GLn(C((✏)))/GLn(C[[t]]). The statement that P�(0, t)10 is a Kazhdan-Luszitg basis element in
10H10 indicates that P�(0, t)10 corresponds to the intersection homology of a Schubert variety in the
loop Grassmannian (amazing!).

The diagram (GeomLang) has particular importance due to the fact that K[X]W0 is an avatar of the
Grothendieck group of the category Rep(G) of finite dimensional representations of G, the spherical
Hecke algebra 10H10 is a form of the Grothendieck group of K-equivariant perverse sheaves on the
loop Grassmanian Gr for the Langlands dual group G

_, and "0H10 is isomorphic to the Grothendieck
group of Whittaker sheaves (appropriately formulated N -equivariant sheaves on Gr); see [FGV].

An analogous picture for general q and general t. The results in Proposition 7.1 and Theorem
7.6 provide an analogous diagram for Macdonald polynomials. Writing the polynomial representation
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of eH as C[X] ⇠= eH1Y as in (CXasIndHY), then

C[X]W0 �! C[X]W01Y = 10 eH1Y �! A⇢C[X]W0 = "0
eH1Y

f 7�! f1Y 7�! A⇢f1Y
P�(q, qt) 7�! P�(q, qt)1Y 7�! A�+⇢(q, t)1Y = "0E�+⇢(q, t)1
P�(q, t) 7�! P�(q, t)1Y = 10E�(q, t)1Y

It would be interesting to understand of this diagram in terms of geometric contexts analogous to
those which exists for the q = 0 case. Some progress in this direction is found, for example, in
Ginzburg-Kapranov-Vasserot [GKV95] and Oblomkov-Yun [OY14].

7.2 Page 7.2: Symmetrizers and the polynomial representation

Let C[X] = C[x±1
1 , . . . , x

±1
n ]. The symmetric group Sn acts on C[X] by permuting x1, . . . , xn. Letting

s1, . . . , sn�1 denote the simple transpositions in Sn,

(sif)(x1, . . . , xn) = f(x1, . . . , xi�1, xi+1, xi, xi+2, . . . , xn). (7.1)

Define operators T1, . . . , Tn�1 and g on C[x±1
1 , . . . , x

±1
n ] by

Tif = t
� 1

2
�
t�

txi � xi+1

xi � xi+1
(1� si)

�
f (7.2)

Let C[X] = C[x±1
1 , . . . , x

±1
n ] and define vector subspaces of C[X] by

C[X]Sn = {f 2 C[X] | if i 2 {1, . . . , n� 1} then sif = f},

C[X]det = {f 2 C[X] | if i 2 {1, . . . , n� 1} then sif = �f},

C[X]Bos = {f 2 C[X] | if i 2 {1, . . . , n� 1} then Tsif = t
1
2 f},

C[X]Fer = {f 2 C[X] | if i 2 {1, . . . , n� 1} then Tsif = �t
� 1

2 f},

Proposition 7.1 shows that there are C[X]Sn-module isomorphisms

C[X]Sn ! C[X]det

f 7! a⇢f
and

C[X]Bos
! C[X]Fer

f 7! A⇢f
(BosFermmaps)

where
a⇢ =

Y

1i<jn

(xj � xi) and A⇢ =
Y

1i<jn

(xj � txi), (arhoArhodefn)

(so that a⇢ 2 C[X]det, A⇢ 2 C[X]Fer and the coe�cient of x01x2x
2
3 · · ·x

n�1
n is 1 in both a⇢ and A⇢).

The maps in (BosFermmaps) are Boson-Fermion correspondences.
Let

p0 =
X

w2Sn

w and e0 =
X

w2Sn

(�1)`(w)
w. (symms)

Let z 2 Sn. A reduced expression for z is an expression for z as a product of si,

z = si1 · · · si` , such that i1, . . . , i` 2 {1, . . . , n� 1} and ` = `(z).

Define
Tz = Ti1 · · ·Ti` if z = si1 · · · si` is a reduced word for z.
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The bosonic symmetrizer and the fermionic symmetrizer are

10 =
X

z2Sn

t
1
2 (`(z)�`(w0))Tz and "0 =

X

w2Sn

(�t
� 1

2 )`(z)�`(w0)Tz. (bosfersymm)

The bosonic symmetrizer 10 and the fermionic symmetrizer "0 are t-analogues of p0 and e0, respectively.

Proposition 7.1. With notations as in (BosFermmaps), (symms) and (bosfersymm),

p0C[X] = C[X]Sn , e0C[X] = C[X]det = a⇢C[X]Sn and a⇢ = e0x
⇢
,

10C[X] = C[X]Bos = C[X]Sn , "0C[X] = C[X]Fer = A⇢C[X]Sn and A⇢ = "0x
⇢
,

7.3 Page 7.3: The inner product (, )q,t

Let C[X] = C[x±1
1 , . . . , x

±1
n ]. Define an involution : C[X] ! C[X] by

f(x1, . . . , xn; q, t) = f(x�1
1 , . . . , x

�1
n ; q�1

, t
�1), (keyinvdefn)

Define

rq,t =
Y

i 6=j

(xix
�1
j

; q)1

(txix
�1
j

; q)1
and �q,t = rq,t

Y

i<j

1� txix
�1
j

1� xix
�1
j

. (DnabladefnGL)

Define a scalar product ( , )q,t : C[X]⇥ C[X] ! C(q, t) by

(f1, f2)q,t = ct(f1f2�q,t), where ct(f) = (constant term in f), (innproddefnA)

for f 2 C[x±1
1 , . . . , x

±1
n ].

Proposition 7.2 shows that, in a suitable sense, the inner product (, )q,t is nondegenerate and
normalized Hermitian.

Proposition 7.2.

(a) (sesquilinear) If f, g 2 C[X] and c 2 C[q±1] then

(cf, g)q,t = c(f, g)q,t, and (f, cg)q,t = c(f, g)q,t.

(b) (nonisotropy) If f 2 C[X] and f 6= 0 then (f, f)q,t 6= 0.

(c) (nondegeneracy) If F is a subspace of C[X] and (, )F : F ⇥ F ! C is the restriction of (, )q,t to F ,
then (, )F is nondegenerate.

(d) (normalized Hermitian) If f1, f2 2 C[X] then

(f2, f1)q,t
(1, 1)q,t

=
⇣(f1, f2)q,t

(1, 1)q,t

⌘
.

7.4 Page 7.4: The inner product characterization of Eµ and P�

Let µ 2 Zn. Write
x
µ = x

µ1
1 · · ·x

µn
n if µ = (µ1, . . . , µn).

Proposition 7.3. Let µ 2 Zn. The nonsymmetric Macdonald polynomial Eµ is the unique element
of C[x±1

1 , . . . , x
±1
n ] such that

(a) Eµ = x
µ + (lower terms);
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(b) If ⌫ 2 Zn and ⌫ < µ then (Eµ, x
⌫)q,t = 0.

Define
(Zn)+ = {(�1, . . . , �n) 2 Zn

| �1 � · · · � �n}.

For � 2 (Zn)+, define the monomial symmetric function m� by

m� =
X

µ2Sn�

x
µ
, where the sum is over all distinct rearrangements of �.

Proposition 7.4. Let � 2 (Zn)+. The symmetric Macdonald polynomial P� is the unique element of
C[x±1

1 , . . . , x
±1
n ]Sn such that

(a) P� = m� + (lower terms);

(b) If � 2 (Zn)+ and � < � then (P�,m�)q,t = 0.

7.5 Page 7.5: Going up a level from t to qt

As in (arhoArhodefn) and (slicksymmA), let

A⇢ =
Y

1i<jn

(xj � txi) and W0(t) =
X

w2Sn

t
`(w)

.

Proposition 7.5. Let f, g 2 C[X]Sn so that f and g are symmetric functions. Then

(f, g)q,qt =
W0(qt)

W0(t�1)
(A⇢f,A⇢g)q,t.

7.6 Page 7.6: Weyl character formula for Macdonald polynomials

Theorem 7.6. Let � 2 Zn with �1 � �2 � · · · � �n. Then

P�(q, qt) =
A�+⇢(q, t)

A⇢(t)
.
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