7 Lecture 7, 6 April 2022: The Boson Fermion correspondence and the Weyl character formula

7.1 Page 7.1: Geometric Satake

The case $q=0$ and $t=0$. The symmetric group acts on $\mathbb{C}[X]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by permuting the variables. Let s_{1}, \ldots, s_{n-1} denote the simple reflections in S_{n} (so that s_{i} is the transposition switching i and $i+1$) let

$$
\begin{aligned}
\mathbb{C}[X]^{S_{n}} & =\left\{f \in \mathbb{C}[X] \mid \text { if } i \in\{1, \ldots, n-1\} \text { then } s_{i} f=f\right\} \quad \text { and } \\
\mathbb{C}[W]^{\text {det }} & =\left\{f \in \mathbb{C}[X] \mid \text { if } i \in\{1, \ldots, n-1\} \text { then } s_{i} f=-f\right\}
\end{aligned}
$$

Let

$$
p_{0}=\sum_{w \in S_{n}} w \quad \text { and } \quad e_{0}=\sum_{w \in S_{n}}(-1)^{\ell\left(w_{0}\right)-\ell(w)} w
$$

where $\ell\left(w_{0}\right)=\frac{1}{2} n(n-1)$. For $\mu \in \mathbb{Z}^{n}$, the monomial symmetric function is

$$
m_{\mu}=\frac{1}{W_{\lambda}(1)} p_{0} x^{\mu}=\frac{1}{W_{\lambda}(1)} \sum_{w \in S_{n}} w x^{\mu}
$$

where the coefficient $\frac{1}{W_{\lambda}(1)}$ makes the coefficient of x^{μ} in m_{μ} equal to 1 . The skew orbit sum is

$$
a_{\mu}=e_{0} x^{\mu}=\sum_{w \in S_{n}}(-1)^{\ell\left(w_{0}\right)-\ell(w)} x^{w \mu}=\operatorname{det}\left(x_{i}^{\mu_{j}}\right)
$$

The special case where $\rho=(n-1, n-2, \ldots, 2,1,0)$ gives the Vandermonde determinant,

$$
a_{\rho}=(-1)^{\ell\left(w_{0}\right)} \operatorname{det}\left(x_{i}^{n-j}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

If $i \in\{1, \ldots, n-1\}$ then $m_{s_{i} \mu}=m_{\mu}$ and $a_{\mu}=-a_{s_{i} \mu}$ and so

$$
\begin{array}{rll}
\left\{m_{\lambda} \mid \lambda \in\left(\mathbb{Z}^{n}\right)^{+}\right\} & \text {is a basis of } & \mathbb{C}[X]^{S_{n}}=p_{0} \mathbb{C}[X], \\
\left\{a_{\lambda+\rho} \mid \lambda \in\left(\mathbb{Z}^{n}\right)^{+}\right\} & \text {is a basis of } & \mathbb{C}[X]^{\text {det }}=e_{0} \mathbb{C}[X],
\end{array}
$$

where

$$
\begin{aligned}
& \left(\mathbb{Z}^{n}\right)^{+}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\} \\
& \left(\mathbb{Z}^{n}\right)^{++}=\left\{\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n} \mid \gamma_{1}>\cdots>\gamma_{n}\right\}
\end{aligned} \quad \text { and } \quad\left(\mathbb{Z}^{n}\right)^{+} \quad \xrightarrow{\sim} \quad\left(\mathbb{Z}^{n}\right)^{++}+1
$$

is a bijection.
For $\lambda \in\left(\mathbb{Z}^{n}\right)^{+}$, the Schur function is

$$
s_{\lambda}=\frac{a_{\lambda+\rho}}{a_{\rho}}
$$

Schur definitively recognized the function s_{λ} as the character of a finite dimensional irreducible representation of the group $G L_{n}(\mathbb{C})$. A way of making the Schur function very natural is to recognize that the following diagram of vector space isomorphisms tells us that $\mathbb{C}[X]^{\text {det }}$ is a free (rank 1) $\mathbb{C}[X]^{S_{n}}$ module with basis vector a_{ρ}.

$$
\begin{array}{ccc}
\mathbb{C}[X]^{W_{0}} & \xrightarrow{\sim} & \mathbb{C}[X]^{\operatorname{det}}=a_{\rho} \mathbb{C}[X]^{W_{0}} \tag{HWeyl}\\
f & \longmapsto & a_{\rho} f \\
s_{\lambda} & \longmapsto & a_{\lambda+\rho}=e_{0} x^{\lambda+\rho} \\
m_{\lambda}=p_{0} x^{\lambda} & &
\end{array}
$$

Hermann Weyl used this point of view in his generalization of Schur's result which recognized that the analogues of the s_{λ} for crystallographic reflection groups (Weyl groups) provide the characters of the finite dimensional irreducible representations of compact Lie groups.
The case of $q=0$ and general t. Let H be the subalgebra of \tilde{H} generated by T_{1}, \ldots, T_{n-1} and x_{k} for $k \in \mathbb{Z}$. The restriction of the polynomial representation $\mathbb{C}[X]$ to the subalgebra H is

$$
\mathbb{C}[X] \cong H \mathbf{1}_{0}=\operatorname{span}\left\{x^{\mu} \mathbf{1}_{0} \mid \mu \in \mathbb{Z}^{n}\right\}
$$

For $\mu \in \mathfrak{a}_{\mathbb{Z}}^{*}$ the Whittaker function

$$
A_{\mu}(0, t) \mathbf{1}_{0} \in \varepsilon_{0} H \mathbf{1}_{0} \quad \text { is defined by } \quad A_{\mu}(0, t)=\varepsilon_{0} X^{\mu} \mathbf{1}_{0}
$$

See, for example, $[H K P, \S 6]$ for the connection between p-adic groups and the affine Hecke algebra and the explanation of why A_{μ} is equivalent to the data of a (spherical) Whittaker function for a p-adic group. As proved carefully in [NR04, Theorem 2.7], it follows from (2.6) and (2.3) that

$$
\varepsilon_{0} H \mathbf{1}_{0} \quad \text { has } \mathbb{K} \text {-basis } \quad\left\{A_{\lambda+\rho}(0, t) \mid \lambda \in\left(\mathbb{Z}^{n}\right)^{+}\right\}
$$

Following [Lu83] (see [NR04, Theorem 2.4] for another exposition),

$$
\begin{array}{ll}
\text { the Satake isomorphism, } & \mathbb{K}[X]^{W_{0}} \cong \mathbf{1}_{0} H \mathbf{1}_{0}, \quad \text { and } \\
\text { the Casselman-Shalika formula, } & A_{\lambda+\rho}(0, t)=s_{\lambda} A_{\rho},
\end{array}
$$

can be formulated by the following diagram of vector space (free K-module) isomorphisms:

$$
\begin{aligned}
& \begin{array}{ccccc}
Z(H)=\mathbb{K}[X]^{W_{0}} & \xrightarrow{\sim} & \mathbf{1}_{0} H \mathbf{1}_{0} & \xrightarrow{\longrightarrow} & \varepsilon_{0} H \mathbf{1}_{0} \\
f & \longmapsto & f \mathbf{1}_{0} & \longmapsto & A_{\rho} f \mathbf{1}_{0}
\end{array} \\
& \begin{array}{cccccc}
f & \longmapsto & f \mathbf{1}_{0} & \longmapsto & A_{\rho} f \mathbf{1}_{0} & \text { (GeomLang) } \\
s_{\lambda} & \longmapsto & s_{\lambda} \mathbf{1}_{0} & \longmapsto & A_{\lambda+\rho}(0, t)=\varepsilon_{0} X^{\lambda+\rho} \mathbf{1}_{0} & \text { (G) } \\
P_{\lambda}(0, t) & \longmapsto & P_{\lambda}(0, t) \mathbf{1}_{0}=\mathbf{1}_{0} X^{\lambda} \mathbf{1}_{0} & &
\end{array}
\end{aligned}
$$

As explained by Lusztig Lu83], in this diagram
$\mathbf{1}_{0} H \mathbf{1}_{0}$ is the spherical Hecke algebra
s_{λ} is the Schur function,
$P_{\lambda}(0, t)$ is the Hall-Littlewood polynomial, and
$\left\{P_{\lambda}(0, t) \mathbf{1}_{0} \mid \lambda \in\left(\mathbb{Z}^{n}\right)^{+}\right\}$is the Kazhdan-Lusztig basis of $\mathbf{1}_{0} H \mathbf{1}_{0}$.

The spherical Hecke algebra $\mathbf{1}_{0} H \mathbf{1}_{0}$ is the Iwahori-Hecke algebra corresponding to the loop Grassmanian $G L_{n}(\mathbb{C}((\epsilon))) / G L_{n}(\mathbb{C}[[t]])$. The statement that $P_{\lambda}(0, t) \mathbf{1}_{0}$ is a Kazhdan-Luszitg basis element in $\mathbf{1}_{0} H \mathbf{1}_{0}$ indicates that $P_{\lambda}(0, t) \mathbf{1}_{0}$ corresponds to the intersection homology of a Schubert variety in the loop Grassmannian (amazing!).

The diagram GeomLang has particular importance due to the fact that $\mathbb{K}[X]^{W_{0}}$ is an avatar of the Grothendieck group of the category $\operatorname{Rep}(G)$ of finite dimensional representations of G, the spherical Hecke algebra $\mathbf{1}_{0} H 1_{0}$ is a form of the Grothendieck group of K-equivariant perverse sheaves on the loop Grassmanian $G r$ for the Langlands dual group G^{\vee}, and $\varepsilon_{0} H 1_{0}$ is isomorphic to the Grothendieck group of Whittaker sheaves (appropriately formulated N-equivariant sheaves on $G r$); see [FGV].

An analogous picture for general q and general t. The results in Proposition 7.1 and Theorem 7.6 provide an analogous diagram for Macdonald polynomials. Writing the polynomial representation
of \widetilde{H} as $\mathbb{C}[X] \cong \widetilde{H} \mathbf{1}_{Y}$ as in CXasIndHY, then

$$
\begin{array}{rlcl}
\mathbb{C}[X]^{W_{0}} & \longrightarrow & \mathbb{C}[X]^{W_{0}} \mathbf{1}_{Y}=\mathbf{1}_{0} \widetilde{H} \mathbf{1}_{Y} & \longrightarrow A_{\rho} \mathbb{C}[X]^{W_{0}}=\varepsilon_{0} \tilde{H} \mathbf{1}_{Y} \\
f & \longmapsto & \longmapsto \mathbf{1}_{Y} & \longmapsto A_{\rho} f \mathbf{1}_{Y} \\
P_{\lambda}(q, q t) & \longmapsto & P_{\lambda}(q, q t) \mathbf{1}_{Y} & \longmapsto \\
P_{\lambda}(q, t) & \longmapsto & P_{\lambda}(q, t) \mathbf{1}_{Y}=\mathbf{1}_{0} E_{\lambda}(q, t) \mathbf{1}_{Y} &
\end{array}
$$

It would be interesting to understand of this diagram in terms of geometric contexts analogous to those which exists for the $q=0$ case. Some progress in this direction is found, for example, in Ginzburg-Kapranov-Vasserot [GKV95] and Oblomkov-Yun OY14.

7.2 Page 7.2: Symmetrizers and the polynomial representation

Let $\mathbb{C}[X]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. The symmetric group S_{n} acts on $\mathbb{C}[X]$ by permuting x_{1}, \ldots, x_{n}. Letting s_{1}, \ldots, s_{n-1} denote the simple transpositions in S_{n},

$$
\begin{equation*}
\left(s_{i} f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right) \tag{7.1}
\end{equation*}
$$

Define operators T_{1}, \ldots, T_{n-1} and g on $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by

$$
\begin{equation*}
T_{i} f=t^{-\frac{1}{2}}\left(t-\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(1-s_{i}\right)\right) f \tag{7.2}
\end{equation*}
$$

Let $\mathbb{C}[X]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ and define vector subspaces of $\mathbb{C}[X]$ by

$$
\begin{aligned}
\mathbb{C}[X]^{S_{n}} & =\left\{f \in \mathbb{C}[X] \mid \text { if } i \in\{1, \ldots, n-1\} \text { then } s_{i} f=f\right\}, \\
\mathbb{C}[X]^{\text {det }} & =\left\{f \in \mathbb{C}[X] \mid \text { if } i \in\{1, \ldots, n-1\} \text { then } s_{i} f=-f\right\}, \\
\mathbb{C}[X]^{\text {Bos }} & =\left\{f \in \mathbb{C}[X] \mid \text { if } i \in\{1, \ldots, n-1\} \text { then } T_{s_{i}} f=t^{\frac{1}{2}} f\right\}, \\
\mathbb{C}[X]^{\text {Fer }} & =\left\{f \in \mathbb{C}[X] \mid \text { if } i \in\{1, \ldots, n-1\} \text { then } T_{s_{i}} f=-t^{-\frac{1}{2}} f\right\},
\end{aligned}
$$

Proposition 7.1 shows that there are $\mathbb{C}[X]^{S_{n}}$-module isomorphisms

$$
\begin{array}{cccccc}
\mathbb{C}[X]^{S_{n}} & \rightarrow \mathbb{C}[X]^{\text {det }} & \text { and } & \mathbb{C}[X]^{\text {Bos }} & \rightarrow \mathbb{C}[X]^{\text {Fer }} \tag{BosFermmaps}\\
f & \mapsto & a_{\rho} f & f & \mapsto & A_{\rho} f
\end{array}
$$

where

$$
a_{\rho}=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) \quad \text { and } \quad A_{\rho}=\prod_{1 \leq i<j \leq n}\left(x_{j}-t x_{i}\right), \quad \quad \text { (arhoArhodefn) }
$$

(so that $a_{\rho} \in \mathbb{C}[X]^{\text {det }}, A_{\rho} \in \mathbb{C}[X]^{\text {Fer }}$ and the coefficient of $x_{1}^{0} x_{2} x_{3}^{2} \cdots x_{n}^{n-1}$ is 1 in both a_{ρ} and A_{ρ}). The maps in BosFermmaps) are Boson-Fermion correspondences.

Let

$$
\begin{equation*}
p_{0}=\sum_{w \in S_{n}} w \quad \text { and } \quad e_{0}=\sum_{w \in S_{n}}(-1)^{\ell(w)} w \tag{symms}
\end{equation*}
$$

Let $z \in S_{n}$. A reduced expression for z is an expression for z as a product of s_{i},

$$
z=s_{i_{1}} \cdots s_{i_{\ell}}, \quad \text { such that } i_{1}, \ldots, i_{\ell} \in\{1, \ldots, n-1\} \text { and } \ell=\ell(z)
$$

Define

$$
T_{z}=T_{i_{1}} \cdots T_{i_{\ell}} \quad \text { if } z=s_{i_{1}} \cdots s_{i_{\ell}} \text { is a reduced word for } z
$$

The bosonic symmetrizer and the fermionic symmetrizer are

$$
\mathbf{1}_{0}=\sum_{z \in S_{n}} t^{\frac{1}{2}\left(\ell(z)-\ell\left(w_{0}\right)\right)} T_{z} \quad \text { and } \quad \varepsilon_{0}=\sum_{w \in S_{n}}\left(-t^{-\frac{1}{2}}\right)^{\ell(z)-\ell\left(w_{0}\right)} T_{z} \quad \quad \text { (bosfersymm) }
$$

The bosonic symmetrizer $\mathbf{1}_{0}$ and the fermionic symmetrizer ε_{0} are t-analogues of p_{0} and e_{0}, respectively.
Proposition 7.1. With notations as in BosFermmaps, symms and bosfersymm,

$$
\begin{array}{lll}
p_{0} \mathbb{C}[X]=\mathbb{C}[X]^{S_{n}}, & e_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\text {det }}=a_{\rho} \mathbb{C}[X]^{S_{n}} & \text { and } \\
\mathbf{1}_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\text {Bos }}=\mathbb{C}[X]^{S_{n}}, & \varepsilon_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\mathrm{Fer}}=A_{\rho} \mathbb{C}[X]^{S_{n}} & \text { and } x^{\rho} \\
A_{\rho}=\varepsilon_{0} x^{\rho}
\end{array}
$$

7.3 Page 7.3: The inner product $(,)_{q, t}$

Let $\mathbb{C}[X]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. Define an involution $-\mathbb{C}[X] \rightarrow \mathbb{C}[X]$ by

$$
\bar{f}\left(x_{1}, \ldots, x_{n} ; q, t\right)=f\left(x_{1}^{-1}, \ldots, x_{n}^{-1} ; q^{-1}, t^{-1}\right), \quad \quad \text { (keyinvdefn) }
$$

Define

$$
\nabla_{q, t}=\prod_{i \neq j} \frac{\left(x_{i} x_{j}^{-1} ; q\right)_{\infty}}{\left(t x_{i} x_{j}^{-1} ; q\right)_{\infty}} \quad \text { and } \quad \Delta_{q, t}=\nabla_{q, t} \prod_{i<j} \frac{1-t x_{i} x_{j}^{-1}}{1-x_{i} x_{j}^{-1}}
$$

(DnabladefnGL)

Define a scalar product $(,)_{q, t}: \mathbb{C}[X] \times \mathbb{C}[X] \rightarrow \mathbb{C}(q, t)$ by

$$
\left.\left(f_{1}, f_{2}\right)_{q, t}=\operatorname{ct}\left(f_{1} \overline{f_{2}} \Delta_{q, t}\right), \quad \text { where } \quad \operatorname{ct}(f)=(\text { constant term in } f), \quad \text { (innproddefnA }\right)
$$

for $f \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.
Proposition 7.2 shows that, in a suitable sense, the inner product $(,)_{q, t}$ is nondegenerate and normalized Hermitian.

Proposition 7.2.

(a) (sesquilinear) If $f, g \in \mathbb{C}[X]$ and $c \in \mathbb{C}\left[q^{ \pm 1}\right]$ then

$$
(c f, g)_{q, t}=c(f, g)_{q, t}, \quad \text { and } \quad(f, c g)_{q, t}=\bar{c}(f, g)_{q, t}
$$

(b) (nonisotropy) If $f \in \mathbb{C}[X]$ and $f \neq 0$ then $(f, f)_{q, t} \neq 0$.
(c) (nondegeneracy) If F is a subspace of $\mathbb{C}[X]$ and $(,)_{F}: F \times F \rightarrow \mathbb{C}$ is the restriction of $(,)_{q, t}$ to F, then $(,)_{F}$ is nondegenerate.
(d) (normalized Hermitian) If $f_{1}, f_{2} \in \mathbb{C}[X]$ then

$$
\frac{\left(f_{2}, f_{1}\right)_{q, t}}{(1,1)_{q, t}}=\overline{\left(\frac{\left(f_{1}, f_{2}\right)_{q, t}}{(1,1)_{q, t}}\right)} .
$$

7.4 Page 7.4: The inner product characterization of E_{μ} and P_{λ}

Let $\mu \in \mathbb{Z}^{n}$. Write

$$
x^{\mu}=x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}} \quad \text { if } \mu=\left(\mu_{1}, \ldots, \mu_{n}\right)
$$

Proposition 7.3. Let $\mu \in \mathbb{Z}^{n}$. The nonsymmetric Macdonald polynomial E_{μ} is the unique element of $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ such that
(a) $E_{\mu}=x^{\mu}+($ lower terms $)$;
(b) If $\nu \in \mathbb{Z}^{n}$ and $\nu<\mu$ then $\left(E_{\mu}, x^{\nu}\right)_{q, t}=0$.

Define

$$
\left(\mathbb{Z}^{n}\right)^{+}=\left\{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n} \mid \gamma_{1} \geq \cdots \geq \gamma_{n}\right\}
$$

For $\gamma \in\left(\mathbb{Z}^{n}\right)^{+}$, define the monomial symmetric function m_{γ} by

$$
m_{\gamma}=\sum_{\mu \in S_{n} \gamma} x^{\mu}, \quad \text { where the sum is over all distinct rearrangements of } \gamma .
$$

Proposition 7.4. Let $\lambda \in\left(\mathbb{Z}^{n}\right)^{+}$. The symmetric Macdonald polynomial P_{λ} is the unique element of $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]^{S_{n}}$ such that
(a) $P_{\lambda}=m_{\lambda}+($ lower terms $)$;
(b) If $\gamma \in\left(\mathbb{Z}^{n}\right)^{+}$and $\gamma<\lambda$ then $\left(P_{\lambda}, m_{\gamma}\right)_{q, t}=0$.

7.5 Page 7.5: Going up a level from t to $q t$

As in arhoArhodefn) and (slicksymmA), let

$$
A_{\rho}=\prod_{1 \leq i<j \leq n}\left(x_{j}-t x_{i}\right) \quad \text { and } \quad W_{0}(t)=\sum_{w \in S_{n}} t^{\ell(w)} .
$$

Proposition 7.5. Let $f, g \in \mathbb{C}[X]^{S_{n}}$ so that f and g are symmetric functions. Then

$$
(f, g)_{q, q t}=\frac{W_{0}(q t)}{W_{0}\left(t^{-1}\right)}\left(A_{\rho} f, A_{\rho} g\right)_{q, t} .
$$

7.6 Page 7.6: Weyl character formula for Macdonald polynomials

Theorem 7.6. Let $\lambda \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then

$$
P_{\lambda}(q, q t)=\frac{A_{\lambda+\rho}(q, t)}{A_{\rho}(t)} .
$$

