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14 Lecture 1: Exercises, Remarks and Examples

14.1 HW from in person Lecture 1

HW 1. Recall the W -action on Zn. Let Stab(0, 0, . . . , 0) = {w 2 W | w(0, 0, . . . , 0)} = (0, 0, . . . , 0)}.
Show that

W0 = Stab(0, 0, . . . , 0).

HW 2. Show that
{v 2 Sn | `(v) = 1} = {s1, . . . , sn�1}.

HW 3. Show that if w 2 W then `(w) is finite.

HW 4. Show that `(⇡) = 0 and `(si) = 1 for i 2 {0, 1, . . . , n� 1}.

HW 5. Show that
{w 2 W | `(w) = 0} = {⇡

k
| k 2 Z}.

HW 6. Show that

{w 2 W | `(w) = 1} = {⇡
k
si | k 2 Z and i 2 {0, 1, . . . , n� 1}}.

HW 7. Let Z(W ) = {z 2 W | if w 2 W then zw = wz}. Show that

Z(W ) = {⇡
kn

| k 2 Z}.

HW 8. Show that ⇡n = t(1,1,...,1).

HW 9. Let "i = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith spot. Show that

t(1,0,...,0) = ⇡sn�1 · · · s1 and t"i = si�1 · · · s2s1⇡sn�1 · · · si.

HW 10. Is it true that ⇡tµ = t⇡µ⇡?

HW 11. Let W ad be the subgroup of W generated by {s0, s1, . . . , sn�1}. Show that

W
ad = {w 2 W | w(1) + · · ·+ w(n) = 1

2n(n+ 1)}.

HW 12. Explain why it is sensible to define si = si+n for i 2 Z. Then show that

s
2
i = 1, sisi+1si = si+1sisi+1, ⇡si⇡

�1 = si+1, and sisj = sjsi,

for i, j 2 Z with j + nZ 62 {(i� 1) + nZ, (i+ 1) + nZ}.
HW 13. Show that if µ 2 Zn and v 2 Sn then vtµ = tvµv.

HW 14. Show that
W = {tµv | µ 2 Zn and v 2 Sn}.

HW 15. Show that
W = {⇡

k
u | k 2 Z and u 2 W

ad
}.

HW 16. For µ 2 Zn let vµ 2 Sn be minimal length such that vµµ is weakly decreasing. Show that
v(0,4,5,1,4) = s4s2s3.

HW 17. For µ 2 Zn let vµ 2 Sn be minimal length such that vµµ is weakly decreasing. Show that if
r 2 {1, . . . , n} then

vµ(r) = #{r
0
> r | µr0 < µr}+#{r

0
< r | µr0  µr}.

HW 18. Define uµ = tµv
�1
µ . Show that uµW0 = tµW0 and

uµ is the unique minimal length element in the coset tµW0.
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14.2 Examples from Supplement

14.2.1 Examples of the inversion set Inv(w).

Define n-periodic permutations ⇡ and s0, s1, . . . , sn�1 2 W by

⇡(i) = i+ 1, for i 2 Z, (14.1)

si(i) = i+ 1,
si(i+ 1) = i,

and si(j) = j for j 2 {0, 1, . . . , i� 1, i+ 2, . . . , n� 1}. (14.2)

An inversion of a bijection w : Z ! Z is

(j, k) 2 Z⇥ Z with j < k and w(j) > w(k).

and the a�ne root corresponding to an inversion

(i, k) = (i, j + `n) with i, j 2 {1, . . . , n} and ` 2 Z, is �
_ = "

_
i � "

_
j + `K. (14.3)

Let n = 3. The element

w = s1s2 has w(1) = 2, w(2) = 3, w(3) = 1,

and w(1) > w(3) and w(2) > w(3) and

Inv(w) = {↵
_
2 , s2↵

_
1 } = {"

_
2 � "

_
3 , "

_
1 � "

_
3 }.

The element
w = s2s1 has w(1) = 3, w(2) = 1, w(3) = 2,

and w(1) > w(2) and w(1) > w(3) and

Inv(w) = {↵
_
1 , s1↵

_
2 } = {"

_
1 � "

_
2 , "

_
1 � "

_
3 }.

14.2.2 Relations in the a�ne Weyl group W

The following relations are useful when working with n-periodic permutations.

Proposition 14.1. Then

s0 = t"_1 �"_n
sn�1 · · · s2s1s2 · · · sn�1, t"_1

= ⇡sn�1 · · · s2s1, (14.4)

and t"_i+1
= sit"_i

si, ⇡si⇡
�1 = si+1, (14.5)

for i 2 {1, . . . , n� 1}.

Proof. Proof of (14.9): If i 62 {1, n}

t"_1 �"_n
sn�1 · · · s2s1s2 · · · sn�1(i)t"_1 �"_n

(i) = i = s0(i).

If i = 1 then
t"_1 �"_n

sn�1 · · · s2s1s2 · · · sn�1(1) = t"_1 �"_n
(n) = n� n = 0 = s0(1),

and, if i = n then

t"_1 �"_n
sn�1 · · · s2s1s2 · · · sn�1(n) = t"_1 �"_n

(1) = 1 + n = s0(n),
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For i 2 {2, . . . , n}

⇡sn�1 · · · s1(i) = ⇡(i� 1) = i = t"1(i), and ⇡sn�1 · · · s1(1) = ⇡(n) = n+ 1 = t"1(1).

Proof of (14.10):

sit"_i
si(i) = sit"_i

(i+ 1) = si(i+ 1) = i = t"_i+1
(i),

sit"_i
si(i+ 1) = sit"_i

(i) = si(i+ n) = i+ 1 + n,= t"_i+1
(i+ 1),

sit"_i
si(j) = sit"_i

(j) = si(j) = j = t"_i+1
(j), if j 2 {1, . . . , n} and j 62 {i, i+ 1}.

Finally,

⇡si⇡
�1(i) = ⇡si(i� 1) = ⇡(i) = i+ 1 = si+1(i), and

⇡si⇡
�1(i+ 1) = ⇡si(i) = ⇡(i+ 1) = i+ 2 = si+1(i+ 1).

14.2.3 The elements uµ, vµ, zµ and tµ.

Let µ = (µ1, . . . , µn) 2 Zn

�0 and let uµ be the minimal length n-periodic permutation such that

uµ(0, 0, . . . , 0) = (µ1, . . . , µn).

Let � = (�, . . . ,�n) be the weakly decreasing rearrangement of µ and let

zµ 2 Sn be minimal length such that zµ� = µ, and let

vµ 2 Sn be minimal length such that vµµ is weakly increasing.

Let tµ : Z ! Z be the n-periodic permutation determined by

tµ(1) = 1 + nµ1, tµ(2) = 2 + nµ2, . . . , tµ(n) = n+ nµn. (14.6)

14.2.4 Relating uµ, vµ, zµ to u�, v�, z�.

Let � = (�1, . . . ,�n) 2 Zn with �1 � · · · � �n. Let S� = {w 2 Sn | w� = �} be the stabilizer of � in
Sn. Let

w0 be the longest element in Sn,
w� the longest length element in S�, and
w

� the minimal length element in the coset w0S�,
so that

w0 = w
�
w� and

�
n

2

�
= `(w0) = `(w�) + `(w�).

Let µ 2 Zn and let � be the decreasing rearrangement of �. Let zµ 2 Sn be minimal length such that
µ = zµ�. Then z� = 1,

tµ = uµvµ = (zµu�)vµ and t� = u�v� = u�(w
�)�1

, with

`(tµ) = `(uµ) + `(vµ) = `(zµ) + `(u�) + `(vµ) and `(t�) = `(u�) + `((w�)�1).

Using that zµt�z�1
µ = tzµ� = tµ gives that the elements uµ and vµ are given in terms of zµ, u� and w

�

by
uµ = zµu� and vµ = v�z

�1
µ = (w�)�1

z
�1
µ = (zµw

�)�1 = (zµw0w�)
�1 = w�w0z

�1
µ ,

since v� = (w�)�1 and v� = vµzµ with `((w�)�1) = `(v�) = `(vµ) + `(zµ).
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14.2.5 Inversions of t"1, t�"1 and t"2

Let tµ be as in (14.6) and let "i = (0, . . . , 0, 1, 0, . . . , 0) where the 1 appears in the ith position. Then

t"1 = (11, 02, . . . , 0n) =

✓
1 2 · · · n

n+ 1 2 · · · n

◆
= ⇡sn�1 · · · s1,

t�"1 = (�11, 02, . . . , 0n) =

✓
1 2 · · · n

1� n 2 · · · n

◆
= s1 · · · sn�1⇡

�1
,

t"1s1 = (02, 11, 03, . . . , 0n) =

✓
1 2 3 · · · n

2 1 + n 3 · · · n

◆
= ⇡sn�1 · · · s2,

s1t"1 = (12, 01, 03, . . . , 0n) =

✓
1 2 3 · · · n

2 + n 1 3 · · · n

◆
= s1⇡sn�1 · · · s1,

t"2 = s1t"1s1 = (01, 12, 03, . . . , 0n) =

✓
1 2 3 · · · n

1 2 + n 3 · · · n

◆
= s1⇡sn�1 · · · s2,

and

Inv(t"1) = {(1, 2), (1, 3), . . . , (1, n)}

= {↵
_
1 , s1↵

_
2 , . . . , s1 · · · sn�2↵

_
n�1} = {"

_
1 � "

_
2 , "

_
1 � "

_
3 , . . . , "

_
1 � "

_
n}

Inv(t�"1) = {(2� n, 1), (3� n, 1), . . . , (n� n, 1)} = {(n, 1 + n), (n� 1, 1 + n), . . . , (2, 1 + n)}

= {⇡↵
_
n�1,⇡sn�1↵

_
n�2, . . . ,⇡sn�1 · · · s2↵

_
1 }

= {"
_
n � ("_1 �K), "_n�1 � ("_1 �K), . . . "_2 � ("_1 �K)}

Inv(t"1s1) = {(2, 3), . . . , (2, n)}

= {↵
_
2 , s2↵

_
3 , . . . , s2 · · · sn�2↵

_
n�1} = {"

_
2 � "

_
3 , "

_
2 � "

_
4 , . . . , "

_
2 � "

_
n}

Inv(s1t"1) = {(1, 2), (1, 3), . . . , (1, n), (1� n, 2)} = {(1, 2), (1, 3), . . . , (1, n), (1, 2 + n)}

= {↵
_
1 , s1↵

_
2 , . . . , s1 · · · sn�2↵

_
n�1, s1 · · · sn�2sn�1⇡

�1
↵
_
1 }

= {"
_
1 � "

_
2 , "

_
1 � "

_
3 , . . . , "

_
1 � "

_
n , ("

_
1 +K)� "

_
2 }

Inv(t"2) = {((2, 3), . . . , (2, n), (2� n, 1)} = {((2, 3), . . . , (2, n), (2, 1 + n)}

= {↵
_
2 , s2↵

_
3 , . . . , s2 · · · sn�2↵

_
n�1, s2 · · · sn�2sn�1⇡

�1
↵
_
1 }

= {"
_
2 � "

_
3 , "

_
2 � "

_
4 , . . . , "

_
2 � "

_
n , ("

_
2 +K)� "

_
1 },

where we have used

s1 · · · sn�1⇡
�1

↵
_
1 = s1 · · · sn�1⇡

�1("_1 � "
_
2 ) = s1 · · · sn�1(("

_
n +K)� "

_
1 ) = ("_1 +K)� "

_
2 , and

s2 · · · sn�1⇡
�1

↵
_
1 = s2 · · · sn�1(("

_
n +K)� "

_
1 ) = ("_2 +K)� "

_
1 .

14.2.6 The elements uµ and vµ for µ = (0, 4, 5, 1, 4)

Let uµ, vµ, zµ and tµ be as in Section 14.2.3. If µ = (0, 4, 5, 1, 4) then � = (5, 4, 4, 1, 0), and

zµ = s2s4s1s2s3s4 since (5, 4, 4, 1, 0)
s1s2s3s4
! (0, 5, 4, 4, 1)

s4
! (0, 5, 4, 1, 4)

s2
! (0, 4, 5, 1, 4),

vµ = s4s2s3 =

✓
1 2 3 4 5
1 3 5 2 4

◆
with

vµ(1) = 1 = 1,
vµ(2) = 3 = 1 +#{1},
vµ(3) = 5 = 1 +#{1, 2}+#{4},
vµ(4) = 2 = 1 +#{1},
vµ(5) = 4 = 1 +#{2, 4},
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Then vµ = (01, 03, 05, 03, 04) and

Inv(vµ) = {(2, 4), (3, 4), (3, 5)} = {↵
_
3 , s3↵

_
2 , s3s2↵

_
4 } = {"

_
3 � "

_
4 , "

_
2 � "

_
4 , "

_
3 � "

_
5 }.

Then, with n = 5,

v
�1
µ =

✓
1 2 3 4 5
1 4 2 5 3

◆
= (01, 04, 02, 05, 03) and

uµ = tµv
�1
µ = (01, 43, 55, 12, 44) =

✓
1 2 3 4 5
1 4 + n 2 + 4n 5 + 4n 3 + 5n

◆
=

✓
1 2 3 4 5
1 5 10 25 28

◆

Then

`(t�) =

0

BB@

(5� 4) + (5� 4) + (5� 1) + (5� 0)
+(4� 4) + (4� 1) + (4� 0)
+(4� 1) + (4� 0)
+(1� 0)

1

CCA = 26 = `(tµ) = `(uµ) + `(vµ)

with
`(uµ) = 6 + 7 · 2 + 3 = 23, `(vµ) = 3, `(zµ) = 6.

The decreasing rearrangement of µ = (0, 4, 5, 1, 4) is � = (5, 4, 4, 1, 0) and

z� = 1, w� = s2, v� = w0s2

14.2.7 The box greedy reduced word for uµ.

If µ = (0, 4, 5, 1, 4) then the box greedy reduced word for uµ is

u
⇤
µ = (s1⇡)

6(s2s1⇡)
7(s3s2s1⇡) =

s1⇡ s1⇡ s2s1⇡ s2s1⇡

s1⇡ s1⇡ s2s1⇡ s2s1⇡ s3s2s1⇡

s1⇡

s1⇡ s2s1⇡ s2s1⇡ s2s1⇡

(14.7)

and the length of uµ is

`(uµ) = 6 + 14 + 3 = 23, since `(⇡) = 0 and `(si) = 1.
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Using one-line notation for n-periodic permutations, the computation verifying the expression for u⇤µ
is

(01, 43, 55, 12, 44)
s1
! (43, 01, 55, 12, 44)

⇡
�1

!

(01, 55, 12, 44, 33))
s1
! (55, 01, 12, 44, 33))

⇡
�1

!

(01, 12, 44, 33, 45))
s1
! (12, 01, 44, 33, 45))

⇡
�1

!

(01, 44, 33, 45, 02))
s1
! (44, 01, 33, 45, 02))

⇡
�1

!

(01, 33, 45, 02, 34))
s1
! (33, 01, 45, 02, 34))

⇡
�1

!

(01, 45, 02, 34, 23))
s1
! (45, 01, 02, 34, 23))

⇡
�1

!

(01, 02, 34, 23, 35))
s2
! (01, 34, 02, 23, 35))

s1
! (34, 01, 02, 23, 35))

⇡
�1

!

(01, 02, 23, 35, 24))
s2
! (01, 23, 02, 35, 24))

s1
! (23, 01, 02, 35, 24))

⇡
�1

!

(01, 02, 35, 24, 13))
s2
! (01, 35, 02, 24, 13))

s1
! (35, 01, 02, 24, 13))

⇡
�1

!

(01, 02, 24, 13, 25))
s2
! (01, 24, 02, 13, 25))

s1
! (24, 01, 02, 13, 25))

⇡
�1

!

(01, 02, 13, 25, 14))
s2
! (01, 13, 02, 25, 14))

s1
! (13, 01, 02, 25, 14))

⇡
�1

!

(01, 02, 25, 14, 03))
s2
! (01, 25, 02, 14, 03))

s1
! (25, 01, 02, 14, 03))

⇡
�1

!

(01, 02, 14, 03, 15))
s2
! (01, 14, 02, 03, 15))

s1
! (14, 01, 02, 03, 15))

⇡
�1

!

(01, 02, 03, 15, 04))
s3
! (01, 02, 15, 03, 04))

s2
! (01, 15, 02, 03, 04))

s1
! (15, 01, 02, 03, 04))

⇡
�1

! (01, 02, 03, 04, 05))

14.2.8 Inversions of uµ.

If µ = (0, 4, 5, 1, 4) then the inversion set of uµ is

Inv(uµ) =

"
_
3 � "

_
1 + 4K "

_
3 � "

_
1 + 3K "

_
3 � "

_
1 + 2K

"
_
3 � "

_
2 + 2K

"
_
3 � "

_
1 +K

"
_
3 � "

_
2 +K

"
_
5 � "

_
1 + 5K "

_
5 � "

_
1 + 4K "

_
5 � "

_
1 + 3K

"
_
5 � "

_
2 + 3K

"
_
5 � "

_
1 + 2K

"
_
5 � "

_
2 + 2K

"
_
5 � "

_
1 +K

"
_
5 � "

_
2 +K

"
_
5 � "

_
3 +K

"
_
2 � "

_
1 +K

"
_
4 � "

_
1 + 4K "

_
4 � "

_
1 + 3K

"
_
4 � "

_
2 + 3K

"
_
4 � "

_
1 + 2K

"
_
4 � "

_
2 + 2K

"
_
4 � "

_
1 +K

"
_
4 � "

_
2 +K
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The following is an example that executes the last line of the proof of [GR21, Proposition 2.2]. The
factor of s1 in the factorization uµ = s1⇡u(0,5,1,4,3) gives the root

u
�1
(0,5,1,4,3)⇡

�1("_1 � "
_
2 ) = u

�1
(0,5,1,4,3)⇡

�1("_1 � "
_
2 ) = u

�1
(0,5,1,4,3)(("

_
5 +K)� "

_
1 )

= v(0,5,1,4,3)t
�1
(0,5,1,4,3)("

_
5 � "

_
1 +K) = v(0,5,1,4,3)("

_
5 + 3K � ("_1 + 0K) +K)

= "
_
3 � "

_
1 + 4K, since v(0,5,1,4,3)(5) = 3.

14.2.9 The column-greedy reduced word for uµ.

Let µ = (µ1, . . . , µn) 2 Zn

�0. Let J = (j1 < . . . < jr) be the sequence of positions of the nonzero
entries of µ and let ⌫ be the composition defined by

⌫j = µj � 1 if j 2 J and ⌫k = 0 if k 62 J ,

so that ⌫ is the composition which has one fewer box than µ in each (nonempty) row. Define the
column-greedy reduced word for the element uµ inductively by setting

u
#
µ =

⇣ rY

m=1

sjm�1 · · · sm+1sm

⌘
⇡
r
u
#
⌫ , (14.8)

where the product is taken in increasing order.
For example, if � = (5, 4, 4, 1, 0) then z� = 1, w� = s2, v� = w0s2 and the column greedy reduced

word for u� is

u
#
�
= ⇡

4
s1s2s3⇡

3(s2s1s3s2s4s3⇡
3)2s2s1⇡ =

s1 s2s1 s2s1 s2s1

s2 s3s2 s3s2

s3 s4s3 s4s3

⇡
4

⇡
3

⇡
3

⇡
3

⇡

The computation verifying the expression for u#
�
is

(5, 4, 4, 1, 0)
⇡
�4

!

(0, 4, 3, 3, 0)
s1s2s3
! (4, 3, 3, 0, 0)

⇡
�3

!

(0, 0, 3, 2, 2)
s2s1s3s2s4s3

! (3, 2, 2, 0, 0)
⇡
�3

!

(0, 0, 2, 1, 1)
s2s1s3s2s4s3

! (2, 1, 1, 0, 0)
⇡
�3

!

(0, 0, 2, 0, 0)
s2s1
! (1, 0, 0, 0, 0)

⇡
�1

! (0, 0, 0, 0, 0)

If µ = (0, 4, 5, 1, 4) then the column greedy reduced word for uµ is

u
#
µ = s1s2s3s4⇡

4
· s1s2s4s3⇡

3
· s2s1s3s2s4s3⇡

3
· s2s1s3s2s4s3⇡

3
· s3s2s1⇡.

This follows from (14.7) by using that ⇡si⇡�1 = si+1.
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14.3 Presentations

Proposition 14.2. Then

s0 = t"_1 �"_n
sn�1 · · · s2s1s2 · · · sn�1, t"_1

= ⇡sn�1 · · · s2s1, (14.9)

and t"_i+1
= sit"_i

si, ⇡si⇡
�1 = si+1, (14.10)

for i 2 {1, . . . , n� 1}.

Proof. Proof of (14.9): If i 62 {1, n}

t"_1 �"_n
sn�1 · · · s2s1s2 · · · sn�1(i)t"_1 �"_n

(i) = i = s0(i).

If i = 1 then
t"_1 �"_n

sn�1 · · · s2s1s2 · · · sn�1(1) = t"_1 �"_n
(n) = n� n = 0 = s0(1),

and, if i = n then

t"_1 �"_n
sn�1 · · · s2s1s2 · · · sn�1(n) = t"_1 �"_n

(1) = 1 + n = s0(n),

For i 2 {2, . . . , n}

⇡sn�1 · · · s1(i) = ⇡(i� 1) = i = t"1(i), and

⇡sn�1 · · · s1(1) = ⇡(n) = n+ 1 = t"1(1).

Proof of (14.10):

sit"_i
si(i) = sit"_i

(i+ 1) = si(i+ 1) = i = t"_i+1
(i),

sit"_i
si(i+ 1) = sit"_i

(i) = si(i+ n) = i+ 1 + n,= t"_i+1
(i+ 1),

sit"_i
si(j) = sit"_i

(j) = si(j) = j = t"_i+1
(j), if j 2 {1, . . . , n} and j 62 {i, i+ 1}.

Finally,

⇡si⇡
�1(i) = ⇡si(i� 1) = ⇡(i) = i+ 1 = si+1(i), and

⇡si⇡
�1(i+ 1) = ⇡si(i) = ⇡(i+ 1) = i+ 2 = si+1(i+ 1).

14.4 The “a�ne Weyl group” and the “extended a�ne Weyl group”

The type GLn a�ne Weyl group W is generated by s1, . . . , sn and ⇡. The group W contains also
s0 and all the elements tµ for µ 2 Zn. The projection homomorphism is the group homomorphism
: W ! Sn given by

tµv = v, for µ 2 Zn and v 2 Sn. (14.11)

The type PGLn-a�ne Weyl group is the subgroup WPGLn generated by s0, s1, . . . , sn�1.

WPGLn = {tµv | µ = (µ1, . . . , µn) 2 Zn with µ1 + · · ·+ µn = 0 and v 2 Sn}, and

WGLn = W = {tµv | µ 2 Zn
, v 2 Sn} = {⇡

h
w | h 2 Z, w 2 WPGLn}.

Then
WGLn = Zn o Sn = ⌦nWPGLn , where ⌦ = {⇡

h
| h 2 Z} with ⌦ ⇠= Z.
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The symbols n and o are brief notations whose purpose is to indicate that the relations in (14.10)
hold.

The group WPGLn is also a quotient of WGLn , by the relation ⇡ = 1. The type SLn a�ne Weyl
group is the quotient of WGLn by the relation ⇡

n = 1. This is equivalent to putting a relation requiring

tµ = t⌫ if µi = ⌫i mod n for i 2 {1, . . . , n}.

As explained in [St67, Ch. 3, Exercise after Corollary 5], there is a Chevalley group Gd for each positive
integer d dividing n. The group Gd is a central extension of PGLn by Z/dZ (so that G1 = PGLn and
Gn = SLn). Each of these groups Gd has an a�ne Weyl group WGd . The group WGd is the quotient of
WGLn by the relation ⇡

d = 1, and is an extension of WPGLn by Z/dZ. The group WPGLn is sometimes
called the “a�ne Weyl group of type A” and the groups WGLn and WGd for d 6= 1 are sometimes
called the “extended a�ne Weyl groups of type A”. We prefer the more specific terminologies “a�ne
Weyl group of type PGLn” for WPGLn , “a�ne Weyl group of type SLn” for WSLn , “a�ne Weyl
group of type GLn” for WGLn , and “a�ne Weyl group of type PGLn n (Z/dZ)” for WGd (the symbol

n indicates a central extension).
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