GradStudies A Notes, Arun Ram, version: March 1, 2022

14 Lecture 1: Exercises, Remarks and Examples
14.1 HW from in person Lecture 1

HW 1. Recall the W-action on Z". Let Stab(0,0,...,0) = {w e W | w(0,0,...,0)} = (0,0,...,0)}.
Show that
Wy = Stab(0,0, ...,0).

HW 2. Show that
{ve s, |lv)=1} ={s1,...,Sn—1}
HW 3. Show that if w € W then ¢(w) is finite.
HW 4. Show that ¢(7) =0 and ¢(s;) =1 for i € {0,1,...,n — 1}.
HW 5. Show that
{weW | f(w)=0}={r"| kez}.

HW 6. Show that

{weW | f(w)=1} = {rFs; | k€ Zand i € {0,1,...,n —1}}.
HW 7. Let Z(W) ={2z € W | if w € W then zw = wz}. Show that

Z(W) = {z"" | k e Z}.

HW 8. Show that 7" =111 1)
HW 9. Let ¢; = (0,...,0,1,0,...,0) with 1 in the ith spot. Show that

t(1,0,...,0) = TSn—1""" 81 and le, = Si—1- " 8251MSp—1 """ .
HW 10. Is it true that nt, = t;,77
HW 11. Let W24 be the subgroup of W generated by {sg, s1,...,5n_1}. Show that

W ={weW |wl)+ - +wn)=Inn+1)}
HW 12. Explain why it is sensible to define s; = s;4, for ¢ € Z. Then show that
st =1, SiSit15i = Si4+1SiSi+1, Tsim L = sip, and 5155 = Sj5i,
fori,j € Z with j +nZ ¢ {(i — 1) + nZ, (i + 1) + nZ}.
HW 13. Show that if p € Z™ and v € Sy, then vt, = t,,v.
HW 14. Show that
W={t,w|peZ"and v e Sy,}.
HW 15. Show that
W = {7"u | k € Z and u € W2},

HW 16. For € Z" let v, € S,, be minimal length such that v,u is weakly decreasing. Show that
V(0,4,5,1,4) = S45283.
HW 17. For p € Z" let v, € S, be minimal length such that v,u is weakly decreasing. Show that if
r€{l,...,n} then

vu(r) = " > | e <p} + A < | e < pr}
HW 18. Define u,, = tuvgl. Show that u, Wy = t, Wy and

u,, is the unique minimal length element in the coset ¢, Wj.
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14.2 Examples from Supplement
14.2.1 Examples of the inversion set Inv(w).

Define n-periodic permutations = and sg, s1,...,5,—1 € W by
w(i)=i+1, forieZ,
si(i) =i+1,
si(i+1) =1,
An inversion of a bijection w: Z — 7Z is
(j,k) € ZxZ with j <k and w(j) > w(k).
and the affine root corresponding to an inversion
(i,k)=(i,j+¢n) withi,je{l,....n}and € Z, is B =g/ —e] +(K.
Let n = 3. The element
w=s182 has w(l) =2, w(2)=3, w(3)=1,
and w(1) > w(3) and w(2) > w(3) and
Inv(w) = {ay, 5207} = {e3 — 3, e — ez}

The element
w=s2s1 has w(l)=3, w(2)=1, w(3)=2,

and w(1) > w(2) and w(1) > w(3) and
Inv(w) = {af, s105 } = {e] —¢ey,e] —e3 }.

14.2.2 Relations in the affine Weyl group W

The following relations are useful when working with n-periodic permutations.
Proposition 14.1. Then
50 =ty _cySn—1-" 525152 Sp—1, ley = MSp—1 - 5251,
and tely+1 = siteivsi, 7r32-7r_1 = Si+1,
forie{l,...,n—1}.
Proof. Proof of : Ifig {1,n}
tey oy Sn—1"""S28182" - sn,l(i)taY_Ex(i) =1 = 50(i).

If i =1 then
tey _cySn—1-""S28182 " Sp—1(1) = tey_ey (n)=n—n=0=s0(1),

and, if ¢ = n then

t51V_87v18n,1 ©r 828182 Snfl(n) = talv—a;{(l) =1l+n= 50(”)?
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Forie {2,...,n}
TSn—1---81(1) =m(i — 1) =i = t., (i), and Tsp—1---$1(1) =m(n) =n+1=t.,(1).
Proof of :
siteysi(i) = sitey (1 +1) = si(i + 1) =i = toy (d),
siteysi(i+1) = sitey (i) = si(i+n) =i+ 1+n,= tsivﬂ(i +1),
sitevsi(f) = sitey (1) = 5:7) = =ty (i), 5 € {1,...,n} and j ¢ {i,i + 1},
Finally,

msim (i) = wsi(i — 1) =w(i) =i+ 1 = s;41(7), and
msim i+ 1) =msi(i) =w(i+1) =i +2=s;11(i + 1).

O
14.2.3 The elements u,, v,, 2, and t,.
Let o= (p1, ... pin) € Z%y and let u, be the minimal length n-periodic permutation such that
1, (0,0,...,0) = (f1, .., ftn)-
Let A = (A, ..., \y) be the weakly decreasing rearrangement of 1 and let
2, € S, be minimal length such that 2z, = p, and let
v, € Sy, be minimal length such that v,u is weakly increasing.
Let t,,: Z — Z be the n-periodic permutation determined by
tu() =1+np, tu(2)=2+nps, ..., tu(n)=n+nu,. (14.6)

14.2.4 Relating u,, v, 2, to uy, vy, 2).

Let A= (A1,...,A\n) € Z™ with A\; > --- > \,. Let Sy, = {w € S,, | w\ = A} be the stabilizer of A in
S,,. Let

wo be the longest element in S,,, wo = wrwy and
wy the longest length element in Sy, and so that
w* the minimal length element in the coset wgS), (5) = €lwp) = L(w) + L(w)).

Let p € Z™ and let A be the decreasing rearrangement of A. Let z, € S, be minimal length such that
= zyA. Then zy =1,

t, = uuv, = (Zuun)v, and t) = up\vy = uA(w’\)*l, with

U(tu) = €up) + €(va) = Lz) +L(up) +L(vy) and £(ty) = L(up) + £((w) 7).

Using that zutAzljl = t,,\ = t, gives that the elements u, and v, are given in terms of z,, u) and w?
by
-1,-1 _

uy, = zyuy and v, = U)\Z‘II = (w)‘) z, = (zuw’\)_1 = (zuwow,\)_1 = w,\wozgl,

since vy = (w) 7! and vy = vz, with £((wy) 1) = L(vy) = €(vy) + €(2,).
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14.2.5 Inversions of ., t_., and ¢,

Let t,, be as in (14.6) and let ¢; = (0,...,0,1,0,...,0) where the 1 appears in the ith position. Then
1 2 n
t51:(11)027"'70n): <n+1 2 n) :71-571_1...51’
1 2 n _
t—€1 :(_117027"'a0n): (l—n 9 n) =81 Sp-1T 1,
1 2 3 n
ta1sl:(02’117037“-’0n): <2 1+n 3 ’I’L> = TSp—1" " S92,
1 2 3 n
81t61 = (127017037 N 707’1,) = <2 ‘n 13 n) = §1MSp—1""" 81,
1 2 3 n
t52 = Slt€151 = (017 1270?)) . ,On) = (1 24n 3 ’I’L> = S817TSp—1 """ 89,

and

Inv(t.,) = {(1,2),(1,3),...,(1,n)}

={af,s10,...,81 sno0, 1} ={e —ey,ef —¢e¥,....e] —&.}

Inv(t_.,) ={(2-n,1),3—n,1),...,(n—n, 1)} ={(n,1+n),(n—1,14+n),...,(2,1+n)}
= {ma) |, TSp_ 10, 5, ..., TSy 1520 }
eV (Y — K)oy — (& — K, e — (&) — K))

Inv(t:,s1) =4(2,3),...,(2,n)}
={ay,s00,..., 89 sp_o0, 1} ={ey —e¥,e5 —ef,...,e5 —¢&,.}

Inv(sits,) ={(1,2),(1,3),...,(1,n),(1 —n,2)} ={(1,2),(1,3),...,(1,n),(1,2+n)}
={ay,s10,...,81 - Sp_o0, 1,81 sn_gsn_lﬂ_la}/
={ef —ey,ef —¢€¥,....ef —ey, (e + K) —ey}

Inv(t,) ={((2,3),...,(2,n),(2—n,1)} ={((2,3),...,(2,n),(2,1 +n)}

\Y
n—1>

—e’, (ey + K)—¢},

v v -1 v
={ay,s205,...,52 - Sp_a0x 89+ Sp_2Sp_1T o }

R, (VARY, v v
—{52_53,52_54,...752
where we have used

s1ospam ey =s1ocospam H(ef —ey) =s1-saa((e) + K) —¢gf) = (6 + K) —ey, and

so- Spam oy =89 sy 1((e) A K) —eY) = (e§ + K) — &Y.
14.2.6 The elements u, and v, for ;= (0,4,5,1,4)
Let uy, vy, 2, and t, be as in Section|14.2.3] If p = (0,4,5,1,4) then A = (5,4,4,1,0), and

2, = 598451525354 since (5,4,4,1,0) 28 (0,5,4,4,1) 4 (0,5,4,1,4) 3 (0,4,5,1,4),

vu(l) =1=1,

Uy = 545253 = <1 3 5 9 4> with vu(3) =5=1+4#{1,2} + #{4},
v,(4) =2=1+#{1},
vul5) =4=1+#{2,4},
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Then Uy = (01,03, 05, 03,04) and

InV(U#) = {(27 4)7 (374)7 (37 5)} = {Oégv S30¢¥, 3332054\1/} = {6?{ - €X75\2/ - 52{75;{ - 5?’)/}

Then, with n = 5,

I

1_ (12345
1425 3

U = byt = (0,45, 55, 12, 44) = <1 ’
Then
(5—4)+ (5 —4) +
Uty) = F(4—-4)+(Ad-1)+(4-0)
M7 +d4-1)+@4-0)
+(1-0)
with

lluy) =64+7-2+3 =23,

> = (01,04, 02,05,03) and

3

4

K(,UH) = 31

{(z,) = 6.

The decreasing rearrangement of u = (0,4,5,1,4) is A = (5,4,4,1,0) and

zy=1, wy=so,

14.2.7 The box greedy reduced word for u,.

V) = WpS2

If p=(0,4,5,1,4) then the box greedy reduced word for u,, is

o)

1 44+4n 2+4n 54+4n 3+5n

S1T S1T S§981T S§981T
O _ 6 7 _
u, = (s17m)°(s2517) " (s382817) =| | 170 s $981T | |S981m | |838981T
S1T
S1T S§981T S§981T S§981T

and the length of u, is

l(uy,) =64 14 + 3 = 23, since {(m)=0 and {(s;)=1.
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Using one-line notation for n-periodic permutations, the computation verifying the expression for u

is

01,43,55, 12,44
01,55, 12,44, 33
01, 19,44, 33,45
01,44, 33,45, 09
01, 33,45,09, 34
01,45, 02,34, 23

01, 02,23, 35,24

01,092, 14,03, 15

01,02,03, 15,04

(
(
(
(
(
(
(01,02, 34,23,
(
(01
(01
(01
(01
(
(

14.2.8 Inversions of u,.

If p=

Inv(u,) =

-1

(0,4,5,1,4) then the inversion set of u,, is

) 23 (43,01, 55, 12, 44) —

1) 25 (55,01, 12,44, 33))

1) 2 (15,01, 44,35, 45))

) =% (44,01, 33,45, 2))7r—>

)) 2% (35,01, 45, 00,34)

)) % (45, 01,02, 34,25))

) %3 (01,34, 0,25, 35)) > (34,01, 0,23, 35)) ™
)) 22 (01,23, 09, 35,24)) = (25,01, 00,35, 24)) =
13)) %3 (01,35, 02,24, 13)) % (35,01, 02,24, 1)
) 3 (01,24,0,13,25)) > (24, 01,0, 13,25)) ™
)) 22 (01, 13,02, 25, 14)) 5 (13,01, 02, 25, 14))
)) %3 (01,25, 05, 14,03)) > (25,04, 05, 14,03)) =
)) 22 (01, 14, 02,05, 15)) =3 (14,01, 0,03, 15))
)) =% (01,09, 15,03,04)) =3 (01, 15, 02, 03, 04)) =

24 (15,01, 02,03,04))

O
w

1
(01,02, 03,04,05))

ey —ef +4K| |ey —eY +3K| |ey —e) +2K| |ey —¢) + K
ey —ey +2K| |ey —ey + K
ey —ef 45K | |ef —ef +4K| |y —e) +3K| |ef —eY +2K| |ef — Y + K
ey —ey +3K| |e¥ —ey +2K| |ef —ey + K
Vv
ey —eg + K
ey —eY + K
Y —el +4K | |ef —ef +3K| |ef —ef +2K| |ef —e/ + K
ey —ey +3K| |ef —ey +2K| |ef —ey+ K
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The following is an example that executes the last line of the proof of |[GR21, Proposition 2.2]. The
factor of s; in the factorization u, = s1mu(g5,1,4,3) gives the root

1 _ —1 — -1
Y0,5,1,4,3)T et —ey) = Y0,5,1,43)T el —ey) = U1, (65 + K) —f)
= 005148 {05,143 — & +K) = 00514365 + 3K — (¢ +0K) + K)

=&y —ef +4K,  since v(gs1,43)(5) = 3.

14.2.9 The column-greedy reduced word for u,.

Let pp = (p1,...,pn) € Z5g. Let J = (j1 < ... < jr) be the sequence of positions of the nonzero
entries of u and let ¥ be the composition defined by

vi=pu;—1 ifjeJ and =0 ifk¢gJ,

so that v is the composition which has one fewer box than p in each (nonempty) row. Define the
column-greedy reduced word for the element u,, inductively by setting

T
ut = ( H Sj—1""" smHsm)W’"ui, (14.8)
m=1

where the product is taken in increasing order.
For example, if A = (5,4,4,1,0) then z\ = 1, wy = s2, vy = wpsz and the column greedy reduced
word for wu) is

S$281 S$251 $251
59 53592 5359
uﬁ = 7r43132337r3(3231333234337r3)232517r = . 3 3
5453 | |S4S3
P & 73 3 T

The computation verifying the expression for uf\ is

P

5,4,4,1,0) —

LG'

™

(0,4,3,3,0) 3% (4,3,3,0,0) =

:1
w

CO

™

(0,0,2,1, 1) 2717252545 N

( )

( )
(0,0,3,2,2) 218545 (3 9 9 0,0)

(2,1,1,0,0)

(1, ) =

—1
(0,0,2,0,0) *23' (1,0,0,0,0) = (0,0,0,0,0)
If p=(0,4,5,1,4) then the column greedy reduced word for u, is
o 4 3 3 3
uu — 8189283847 - 818284837 - §25183525483T - 5981835984837 + 838281 7.

This follows from (14.7) by using that 7s;7 71 = s;41.

70



GradStudies A Notes, Arun Ram, version: March 1, 2022

14.3 Presentations

Proposition 14.2. Then
S0 = ley _cySn—1°"" 525152 Sn—1, bey = MSp—1- " 5251, (14.9)
and tEiV+1 = sitey i, TS L = Sit1, (14.10)
forie{l,...,n—1}.
Proof. Proof of : Ifi ¢ {1,n}
bey oy Sn—1-"-S28182" - Sn—l(i)te\{—a;{(i) =1 = 50(1).

If : =1 then
tey oy Sn—1"""S28182 " - Sp—1(1) = tey —ey (n)=n—n=0=sp(1),

and, if 7 = n then
tEY,ExSn_l T 828182 Sn—l(n) = ts}/feX(l) =1l+n= So(n),
Fori e {2,...,n}

TSp—1---51(1) =7(i — 1) =i = tg, (), and
m(n) =n+1=1t,(1).

TSp—1---51(1)

Proof of (14.10):
sitevsi(i) = sitey (i +1) = si(i+1) =i = teivﬂ(i),
siteysi(i +1) = sitey (i) = si(i+n) =i+ 1+n,=ty (i+1),
siteysil) = sitey(7) = i(7) = j = tey i)y i3 € {1,...,n} and j & {i,i + 1},
Finally,

msim (i) = wsi(i — 1) =w(i) =i+ 1=s5;,41(i), and
msim i+ 1) =msi(i) =n(i+1) =i+2=s;11(i + 1).

14.4 The “affine Weyl group” and the “extended affine Weyl group”

The type GL, affine Weyl group W is generated by si1,...,s, and m. The group W contains also
sp and all the elements ¢, for u € Z". The projection homomorphism is the group homomorphism
: W — S, given by

tuv =, for p € Z™ and v € S,,. (14.11)
The type PG Ly -affine Weyl group is the subgroup Wpqy, generated by so, S1,...,Sn—1.

Wpear, = {tuv | = (p1,...,pn) € Z" with p1 +--- + pp =0 and v € Sy, }, and
Wer, =W ={t,w | peZ"ve S} ={r"w|he€Z,weWpgr,}.

Then
War, =7Z" xS, =Qx Wpar,, where Q= {z"|heZ} with Q=Z.
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The symbols x and x are brief notations whose purpose is to indicate that the relations in
hold.

The group Wpgr,, is also a quotient of Wy, , by the relation # = 1. The type SL, affine Weyl
group is the quotient of W, by the relation 7™ = 1. This is equivalent to putting a relation requiring

t,=t, if u; = v; mod n for i € {1,...,n}.

As explained in [St67, Ch. 3, Exercise after Corollary 5], there is a Chevalley group G for each positive
integer d dividing n. The group G is a central extension of PGL,, by Z/dZ (so that G; = PGL,, and
Gy = SLy,). Each of these groups G4 has an affine Weyl group W¢,. The group W, is the quotient of
War,, by the relation 7% =1, and is an extension of Wpar, by Z/dZ. The group Wpay, is sometimes
called the “affine Weyl group of type A” and the groups Wgr, and Wg, for d # 1 are sometimes
called the “extended affine Weyl groups of type A”. We prefer the more specific terminologies “affine
Weyl group of type PGL,” for Wpqgr, , “affine Weyl group of type SL,,” for Wgy, , “affine Weyl
group of type GL,,” for Wgr,,, and “affine Weyl group of type PGL,, x (Z/dZ)” for W¢, (the symbol
x indicates a central extension).
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