## 14 Lecture 1: Exercises, Remarks and Examples

### 14.1 HW from in person Lecture 1

HW 1. Recall the $W$-action on $\mathbb{Z}^{n}$. Let $\left.\operatorname{Stab}(0,0, \ldots, 0)=\{w \in W \mid w(0,0, \ldots, 0)\}=(0,0, \ldots, 0)\right\}$. Show that

$$
W_{0}=\operatorname{Stab}(0,0, \ldots, 0)
$$

HW 2. Show that

$$
\left\{v \in S_{n} \mid \ell(v)=1\right\}=\left\{s_{1}, \ldots, s_{n-1}\right\}
$$

HW 3. Show that if $w \in W$ then $\ell(w)$ is finite.
HW 4. Show that $\ell(\pi)=0$ and $\ell\left(s_{i}\right)=1$ for $i \in\{0,1, \ldots, n-1\}$.
HW 5. Show that

$$
\{w \in W \mid \ell(w)=0\}=\left\{\pi^{k} \mid k \in \mathbb{Z}\right\}
$$

HW 6. Show that

$$
\{w \in W \mid \ell(w)=1\}=\left\{\pi^{k} s_{i} \mid k \in \mathbb{Z} \text { and } i \in\{0,1, \ldots, n-1\}\right\}
$$

HW 7. Let $Z(W)=\{z \in W \mid$ if $w \in W$ then $z w=w z\}$. Show that

$$
Z(W)=\left\{\pi^{k n} \mid k \in \mathbb{Z}\right\}
$$

HW 8. Show that $\pi^{n}=t_{(1,1, \ldots, 1)}$.
HW 9. Let $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ with 1 in the $i$ th spot. Show that

$$
t_{(1,0, \ldots, 0)}=\pi s_{n-1} \cdots s_{1} \quad \text { and } \quad t_{\varepsilon_{i}}=s_{i-1} \cdots s_{2} s_{1} \pi s_{n-1} \cdots s_{i}
$$

HW 10. Is it true that $\pi t_{\mu}=t_{\pi \mu} \pi$ ?
HW 11. Let $W^{\text {ad }}$ be the subgroup of $W$ generated by $\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$. Show that

$$
W^{\mathrm{ad}}=\left\{w \in W \left\lvert\, w(1)+\cdots+w(n)=\frac{1}{2} n(n+1)\right.\right\} .
$$

HW 12. Explain why it is sensible to define $s_{i}=s_{i+n}$ for $i \in \mathbb{Z}$. Then show that

$$
s_{i}^{2}=1, \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, \quad \pi s_{i} \pi^{-1}=s_{i+1}, \quad \text { and } \quad s_{i} s_{j}=s_{j} s_{i}
$$

for $i, j \in \mathbb{Z}$ with $j+n \mathbb{Z} \notin\{(i-1)+n \mathbb{Z},(i+1)+n \mathbb{Z}\}$.
HW 13. Show that if $\mu \in \mathbb{Z}^{n}$ and $v \in S_{n}$ then $v t_{\mu}=t_{v \mu} v$.
HW 14. Show that

$$
W=\left\{t_{\mu} v \mid \mu \in \mathbb{Z}^{n} \text { and } v \in S_{n}\right\}
$$

HW 15. Show that

$$
W=\left\{\pi^{k} u \mid k \in \mathbb{Z} \text { and } u \in W^{\mathrm{ad}}\right\}
$$

HW 16. For $\mu \in \mathbb{Z}^{n}$ let $v_{\mu} \in S_{n}$ be minimal length such that $v_{\mu} \mu$ is weakly decreasing. Show that $v_{(0,4,5,1,4)}=s_{4} s_{2} s_{3}$.
HW 17. For $\mu \in \mathbb{Z}^{n}$ let $v_{\mu} \in S_{n}$ be minimal length such that $v_{\mu} \mu$ is weakly decreasing. Show that if $r \in\{1, \ldots, n\}$ then

$$
v_{\mu}(r)=\#\left\{r^{\prime}>r \mid \mu_{r^{\prime}}<\mu_{r}\right\}+\#\left\{r^{\prime}<r \mid \mu_{r^{\prime}} \leq \mu_{r}\right\}
$$

HW 18. Define $u_{\mu}=t_{\mu} v_{\mu}^{-1}$. Show that $u_{\mu} W_{0}=t_{\mu} W_{0}$ and

$$
u_{\mu} \text { is the unique minimal length element in the coset } t_{\mu} W_{0} .
$$

### 14.2 Examples from Supplement

### 14.2.1 Examples of the inversion set $\operatorname{Inv}(w)$.

Define $n$-periodic permutations $\pi$ and $s_{0}, s_{1}, \ldots, s_{n-1} \in W$ by

$$
\begin{gather*}
\pi(i)=i+1, \quad \text { for } i \in \mathbb{Z}  \tag{14.1}\\
s_{i}(i)=i+1,  \tag{14.2}\\
s_{i}(i+1)=i,
\end{gather*} \quad \text { and } \quad s_{i}(j)=j \text { for } j \in\{0,1, \ldots, i-1, i+2, \ldots, n-1\} .
$$

An inversion of a bijection $w: \mathbb{Z} \rightarrow \mathbb{Z}$ is

$$
(j, k) \in \mathbb{Z} \times \mathbb{Z} \quad \text { with } \quad j<k \text { and } w(j)>w(k)
$$

and the affine root corresponding to an inversion

$$
\begin{equation*}
(i, k)=(i, j+\ell n) \quad \text { with } i, j \in\{1, \ldots, n\} \text { and } \ell \in \mathbb{Z}, \quad \text { is } \quad \beta^{\vee}=\varepsilon_{i}^{\vee}-\varepsilon_{j}^{\vee}+\ell K \tag{14.3}
\end{equation*}
$$

Let $n=3$. The element

$$
w=s_{1} s_{2} \quad \text { has } \quad w(1)=2, w(2)=3, w(3)=1
$$

and $w(1)>w(3)$ and $w(2)>w(3)$ and

$$
\operatorname{Inv}(w)=\left\{\alpha_{2}^{\vee}, s_{2} \alpha_{1}^{\vee}\right\}=\left\{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}\right\}
$$

The element

$$
w=s_{2} s_{1} \quad \text { has } \quad w(1)=3, w(2)=1, w(3)=2
$$

and $w(1)>w(2)$ and $w(1)>w(3)$ and

$$
\operatorname{Inv}(w)=\left\{\alpha_{1}^{\vee}, s_{1} \alpha_{2}^{\vee}\right\}=\left\{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}\right\}
$$

### 14.2.2 Relations in the affine Weyl group $W$

The following relations are useful when working with $n$-periodic permutations.
Proposition 14.1. Then

$$
\begin{gather*}
s_{0}=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}, \quad t_{\varepsilon_{1}^{\vee}}=\pi s_{n-1} \cdots s_{2} s_{1},  \tag{14.4}\\
\text { and } \quad t_{\varepsilon_{i+1}^{\vee}}=s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}, \quad \pi s_{i} \pi^{-1}=s_{i+1}, \tag{14.5}
\end{gather*}
$$

for $i \in\{1, \ldots, n-1\}$.
Proof. Proof of (14.9): If $i \notin\{1, n\}$

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(i) t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(i)=i=s_{0}(i)
$$

If $i=1$ then

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(1)=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(n)=n-n=0=s_{0}(1)
$$

and, if $i=n$ then

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(n)=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(1)=1+n=s_{0}(n),
$$

For $i \in\{2, \ldots, n\}$

$$
\pi s_{n-1} \cdots s_{1}(i)=\pi(i-1)=i=t_{\varepsilon_{1}}(i), \quad \text { and } \quad \pi s_{n-1} \cdots s_{1}(1)=\pi(n)=n+1=t_{\varepsilon_{1}}(1)
$$

Proof of 14.10):

$$
\begin{aligned}
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(i) & =s_{i} t_{\varepsilon_{i}^{\vee}}(i+1)=s_{i}(i+1)=i=t_{\varepsilon_{i+1}^{\vee}}(i), \\
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(i+1) & =s_{i} t_{\varepsilon_{v}^{\vee}}(i)=s_{i}(i+n)=i+1+n,=t_{\varepsilon_{i+1}^{\vee}}(i+1), \\
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(j) & =s_{i} t_{\varepsilon_{i}^{\vee}}(j)=s_{i}(j)=j=t_{\varepsilon_{i+1}^{\vee}}(j), \quad \text { if } j \in\{1, \ldots, n\} \text { and } j \notin\{i, i+1\} .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\pi s_{i} \pi^{-1}(i) & =\pi s_{i}(i-1)=\pi(i)=i+1=s_{i+1}(i), \quad \text { and } \\
\pi s_{i} \pi^{-1}(i+1) & =\pi s_{i}(i)=\pi(i+1)=i+2=s_{i+1}(i+1)
\end{aligned}
$$

### 14.2.3 The elements $u_{\mu}, v_{\mu}, z_{\mu}$ and $t_{\mu}$.

Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and let $u_{\mu}$ be the minimal length $n$-periodic permutation such that

$$
u_{\mu}(0,0, \ldots, 0)=\left(\mu_{1}, \ldots, \mu_{n}\right) .
$$

Let $\lambda=\left(\lambda, \ldots, \lambda_{n}\right)$ be the weakly decreasing rearrangement of $\mu$ and let

$$
\begin{aligned}
& z_{\mu} \in S_{n} \quad \text { be minimal length such that } \quad z_{\mu} \lambda=\mu, \quad \text { and let } \\
& v_{\mu} \in S_{n} \quad \text { be minimal length such that } v_{\mu} \mu \text { is weakly increasing. }
\end{aligned}
$$

Let $t_{\mu}: \mathbb{Z} \rightarrow \mathbb{Z}$ be the $n$-periodic permutation determined by

$$
\begin{equation*}
t_{\mu}(1)=1+n \mu_{1}, \quad t_{\mu}(2)=2+n \mu_{2}, \quad \ldots, \quad t_{\mu}(n)=n+n \mu_{n} . \tag{14.6}
\end{equation*}
$$

14.2.4 Relating $u_{\mu}, v_{\mu}, z_{\mu}$ to $u_{\lambda}, v_{\lambda}, z_{\lambda}$.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Let $S_{\lambda}=\left\{w \in S_{n} \mid w \lambda=\lambda\right\}$ be the stabilizer of $\lambda$ in $S_{n}$. Let
$w_{0}$ be the longest element in $S_{n}$,
$w_{\lambda}$ the longest length element in $S_{\lambda}$, and
$w^{\lambda}$ the minimal length element in the coset $w_{0} S_{\lambda}$,

$$
w_{0}=w^{\lambda} w_{\lambda} \quad \text { and }
$$

so that

$$
\binom{n}{2}=\ell\left(w_{0}\right)=\ell\left(w^{\lambda}\right)+\ell\left(w_{\lambda}\right) .
$$

Let $\mu \in \mathbb{Z}^{n}$ and let $\lambda$ be the decreasing rearrangement of $\lambda$. Let $z_{\mu} \in S_{n}$ be minimal length such that $\mu=z_{\mu} \lambda$. Then $z_{\lambda}=1$,

$$
\begin{gathered}
t_{\mu}=u_{\mu} v_{\mu}=\left(z_{\mu} u_{\lambda}\right) v_{\mu} \quad \text { and } \quad t_{\lambda}=u_{\lambda} v_{\lambda}=u_{\lambda}\left(w^{\lambda}\right)^{-1}, \quad \text { with } \\
\ell\left(t_{\mu}\right)=\ell\left(u_{\mu}\right)+\ell\left(v_{\mu}\right)=\ell\left(z_{\mu}\right)+\ell\left(u_{\lambda}\right)+\ell\left(v_{\mu}\right) \quad \text { and } \quad \ell\left(t_{\lambda}\right)=\ell\left(u_{\lambda}\right)+\ell\left(\left(w^{\lambda}\right)^{-1}\right)
\end{gathered}
$$

Using that $z_{\mu} t_{\lambda} z_{\mu}^{-1}=t_{z_{\mu} \lambda}=t_{\mu}$ gives that the elements $u_{\mu}$ and $v_{\mu}$ are given in terms of $z_{\mu}, u_{\lambda}$ and $w^{\lambda}$ by

$$
u_{\mu}=z_{\mu} u_{\lambda} \quad \text { and } \quad v_{\mu}=v_{\lambda} z_{\mu}^{-1}=\left(w^{\lambda}\right)^{-1} z_{\mu}^{-1}=\left(z_{\mu} w^{\lambda}\right)^{-1}=\left(z_{\mu} w_{0} w_{\lambda}\right)^{-1}=w_{\lambda} w_{0} z_{\mu}^{-1}
$$

since $v_{\lambda}=\left(w^{\lambda}\right)^{-1}$ and $v_{\lambda}=v_{\mu} z_{\mu}$ with $\ell\left(\left(w_{\lambda}\right)^{-1}\right)=\ell\left(v_{\lambda}\right)=\ell\left(v_{\mu}\right)+\ell\left(z_{\mu}\right)$.

### 14.2.5 Inversions of $t_{\varepsilon_{1}}, t_{-\varepsilon_{1}}$ and $t_{\varepsilon_{2}}$

Let $t_{\mu}$ be as in (14.6) and let $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ where the 1 appears in the $i$ th position. Then

$$
\begin{aligned}
t_{\varepsilon_{1}} & =\left(1_{1}, 0_{2}, \ldots, 0_{n}\right)=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n+1 & 2 & \cdots & n
\end{array}\right)=\pi s_{n-1} \cdots s_{1} \\
t_{-\varepsilon_{1}} & =\left(-1_{1}, 0_{2}, \ldots, 0_{n}\right)=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1-n & 2 & \cdots & n
\end{array}\right)=s_{1} \cdots s_{n-1} \pi^{-1}, \\
t_{\varepsilon_{1}} s_{1} & =\left(0_{2}, 1_{1}, 0_{3}, \ldots, 0_{n}\right)=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
2 & 1+n & 3 & \cdots & n
\end{array}\right)=\pi s_{n-1} \cdots s_{2} \\
s_{1} t_{\varepsilon_{1}} & =\left(1_{2}, 0_{1}, 0_{3}, \ldots, 0_{n}\right)=\left(\begin{array}{crrrr}
1 & 2 & 3 & \cdots & n \\
2+n & 1 & 3 & \cdots & n
\end{array}\right)=s_{1} \pi s_{n-1} \cdots s_{1} \\
t_{\varepsilon_{2}} & =s_{1} t_{\varepsilon_{1}} s_{1}=\left(0_{1}, 1_{2}, 0_{3}, \ldots, 0_{n}\right)=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
1 & 2+n & 3 & \cdots & n
\end{array}\right)=s_{1} \pi s_{n-1} \cdots s_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Inv}\left(t_{\varepsilon_{1}}\right) & =\{(1,2),(1,3), \ldots,(1, n)\} \\
& =\left\{\alpha_{1}^{\vee}, s_{1} \alpha_{2}^{\vee}, \ldots, s_{1} \cdots s_{n-2} \alpha_{n-1}^{\vee}\right\}=\left\{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}, \ldots, \varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}\right\} \\
\operatorname{Inv}\left(t_{-\varepsilon_{1}}\right) & =\{(2-n, 1),(3-n, 1), \ldots,(n-n, 1)\}=\{(n, 1+n),(n-1,1+n), \ldots,(2,1+n)\} \\
& =\left\{\pi \alpha_{n-1}^{\vee}, \pi s_{n-1} \alpha_{n-2}^{\vee}, \ldots, \pi s_{n-1} \cdots s_{2} \alpha_{1}^{\vee}\right\} \\
& =\left\{\varepsilon_{n}^{\vee}-\left(\varepsilon_{1}^{\vee}-K\right), \varepsilon_{n-1}^{\vee}-\left(\varepsilon_{1}^{\vee}-K\right), \ldots \varepsilon_{2}^{\vee}-\left(\varepsilon_{1}^{\vee}-K\right)\right\} \\
\operatorname{Inv}\left(t_{\varepsilon_{1}} s_{1}\right) & =\{(2,3), \ldots,(2, n)\} \\
& =\left\{\alpha_{2}^{\vee}, s_{2} \alpha_{3}^{\vee}, \ldots, s_{2} \cdots s_{n-2} \alpha_{n-1}^{\vee}\right\}=\left\{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee}, \varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee}, \ldots, \varepsilon_{2}^{\vee}-\varepsilon_{n}^{\vee}\right\} \\
\operatorname{Inv}\left(s_{1} t_{\varepsilon_{1}}\right) & =\{(1,2),(1,3), \ldots,(1, n),(1-n, 2)\}=\{(1,2),(1,3), \ldots,(1, n),(1,2+n)\} \\
& =\left\{\alpha_{1}^{\vee}, s_{1} \alpha_{2}^{\vee}, \ldots, s_{1} \cdots s_{n-2} \alpha_{n-1}^{\vee}, s_{1} \cdots s_{n-2} s_{n-1} \pi^{-1} \alpha_{1}^{\vee}\right\} \\
& =\left\{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}, \varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee}, \ldots, \varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee},\left(\varepsilon_{1}^{\vee}+K\right)-\varepsilon_{2}^{\vee}\right\} \\
\operatorname{Inv}\left(t_{\varepsilon_{2}}\right) & =\{((2,3), \ldots,(2, n),(2-n, 1)\}=\{((2,3), \ldots,(2, n),(2,1+n)\} \\
& =\left\{\alpha_{2}^{\vee}, s_{2} \alpha_{3}^{\vee}, \ldots, s_{2} \cdots s_{n-2} \alpha_{n-1}^{\vee}, s_{2} \cdots s_{n-2} s_{n-1} \pi^{-1} \alpha_{1}^{\vee}\right\} \\
& =\left\{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee}, \varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee}, \ldots, \varepsilon_{2}^{\vee}-\varepsilon_{n}^{\vee},\left(\varepsilon_{2}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right\},
\end{aligned}
$$

where we have used

$$
\begin{aligned}
& s_{1} \cdots s_{n-1} \pi^{-1} \alpha_{1}^{\vee}=s_{1} \cdots s_{n-1} \pi^{-1}\left(\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}\right)=s_{1} \cdots s_{n-1}\left(\left(\varepsilon_{n}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right)=\left(\varepsilon_{1}^{\vee}+K\right)-\varepsilon_{2}^{\vee}, \quad \text { and } \\
& s_{2} \cdots s_{n-1} \pi^{-1} \alpha_{1}^{\vee}=s_{2} \cdots s_{n-1}\left(\left(\varepsilon_{n}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right)=\left(\varepsilon_{2}^{\vee}+K\right)-\varepsilon_{1}^{\vee}
\end{aligned}
$$

### 14.2.6 The elements $u_{\mu}$ and $v_{\mu}$ for $\mu=(0,4,5,1,4)$

Let $u_{\mu}, v_{\mu}, z_{\mu}$ and $t_{\mu}$ be as in Section 14.2.3. If $\mu=(0,4,5,1,4)$ then $\lambda=(5,4,4,1,0)$, and

$$
\begin{aligned}
& z_{\mu}=s_{2} s_{4} s_{1} s_{2} s_{3} s_{4} \quad \text { since } \quad(5,4,4,1,0) \xrightarrow{s_{1} s_{2} s_{3} s_{4}}(0,5,4,4,1) \xrightarrow{s_{4}}(0,5,4,1,4) \xrightarrow{s_{2}}(0,4,5,1,4), \\
& v_{\mu}(1)=1=1, \\
& v_{\mu}=s_{4} s_{2} s_{3}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 2 & 4
\end{array}\right) \quad \text { with } \quad \begin{array}{l}
v_{\mu}(2)=3=1+\#\{1\}, \\
v_{\mu}(3)=5=1+\#\{1,2\}+\#\{4\}, \\
v_{\mu}(4)=2=1+\#\{1\}, \\
v_{\mu}(5)=4=1+\#\{2,4\},
\end{array}
\end{aligned}
$$

Then $v_{\mu}=\left(0_{1}, 0_{3}, 0_{5}, 0_{3}, 0_{4}\right)$ and

$$
\operatorname{Inv}\left(v_{\mu}\right)=\{(2,4),(3,4),(3,5)\}=\left\{\alpha_{3}^{\vee}, s_{3} \alpha_{2}^{\vee}, s_{3} s_{2} \alpha_{4}^{\vee}\right\}=\left\{\varepsilon_{3}^{\vee}-\varepsilon_{4}^{\vee}, \varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee}, \varepsilon_{3}^{\vee}-\varepsilon_{5}^{\vee}\right\}
$$

Then, with $n=5$,

$$
\begin{aligned}
v_{\mu}^{-1} & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 5 & 3
\end{array}\right)=\left(0_{1}, 0_{4}, 0_{2}, 0_{5}, 0_{3}\right) \quad \text { and } \\
u_{\mu} & =t_{\mu} v_{\mu}^{-1}=\left(0_{1}, 4_{3}, 5_{5}, 1_{2}, 4_{4}\right)=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 4+n & 2+4 n & 5+4 n & 3+5 n
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 5 & 10 & 25 & 28
\end{array}\right)
\end{aligned}
$$

Then

$$
\ell\left(t_{\lambda}\right)=\left(\begin{array}{l}
(5-4)+(5-4)+(5-1)+(5-0) \\
+(4-4)+(4-1)+(4-0) \\
+(4-1)+(4-0) \\
+(1-0)
\end{array}\right)=26=\ell\left(t_{\mu}\right)=\ell\left(u_{\mu}\right)+\ell\left(v_{\mu}\right)
$$

with

$$
\ell\left(u_{\mu}\right)=6+7 \cdot 2+3=23, \quad \ell\left(v_{\mu}\right)=3, \quad \ell\left(z_{\mu}\right)=6 .
$$

The decreasing rearrangement of $\mu=(0,4,5,1,4)$ is $\lambda=(5,4,4,1,0)$ and

$$
z_{\lambda}=1, \quad w_{\lambda}=s_{2}, \quad v_{\lambda}=w_{0} s_{2}
$$

### 14.2.7 The box greedy reduced word for $u_{\mu}$.

If $\mu=(0,4,5,1,4)$ then the box greedy reduced word for $u_{\mu}$ is

$$
u_{\mu}^{\square}=\left(s_{1} \pi\right)^{6}\left(s_{2} s_{1} \pi\right)^{7}\left(s_{3} s_{2} s_{1} \pi\right)=\left\lvert\, \begin{array}{|c|c|}
\hline & \begin{array}{|c|}
\hline s_{1} \pi \\
\hline s_{2} s_{1} \pi \\
\hline s_{3} s_{2} s_{1} \pi \\
\hline
\end{array} \tag{14.7}
\end{array}\right.
$$

and the length of $u_{\mu}$ is

$$
\ell\left(u_{\mu}\right)=6+14+3=23, \quad \text { since } \quad \ell(\pi)=0 \quad \text { and } \quad \ell\left(s_{i}\right)=1
$$

Using one-line notation for $n$-periodic permutations, the computation verifying the expression for $u_{\mu}^{\square}$ is

$$
\begin{aligned}
& \left(0_{1}, 4_{3}, 5_{5}, 1_{2}, 4_{4}\right) \xrightarrow{s_{1}}\left(4_{3}, 0_{1}, 5_{5}, 1_{2}, 4_{4}\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 5_{5}, 1_{2}, 4_{4}, 3_{3}\right)\right) \xrightarrow{s_{1}}\left(5_{5}, 0_{1}, 1_{2}, 4_{4}, 3_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 1_{2}, 4_{4}, 3_{3}, 4_{5}\right)\right) \xrightarrow{s_{4}}\left(1_{2}, 0_{1}, 4_{4}, 3_{3}, 4_{5}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 4_{4}, 3_{3}, 4_{5}, 0_{2}\right)\right) \xrightarrow{s_{1}}\left(4_{4}, 0_{1}, 3_{3}, 4_{5}, 0_{2}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 3_{3}, 4_{5}, 0_{2}, 3_{4}\right)\right) \xrightarrow{s_{1}}\left(3_{3}, 0_{1}, 4_{5}, 0_{2}, 3_{4}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left(0_{1}, 4_{5}, 0_{2}, 3_{4}, 2_{3}\right)\right) \xrightarrow{s_{1}}\left(4_{5}, 0_{1}, 0_{2}, 3_{4}, 2_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 3_{4}, 2_{3}, 3_{5}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 3_{4}, 0_{2}, 2_{3}, 3_{5}\right)\right) \xrightarrow{s_{5}}\left(3_{4}, 0_{1}, 0_{2}, 2_{3}, 3_{5}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 2_{3}, 3_{5}, 2_{4}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 2_{3}, 0_{2}, 3_{5}, 2_{4}\right)\right) \xrightarrow{s_{7}}\left(2_{3}, 0_{1}, 0_{2}, 3_{5}, 2_{4}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 3_{5}, 2_{4}, 1_{3}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 3_{5}, 0_{2}, 2_{4}, 1_{3}\right)\right) \xrightarrow{s_{1}}\left(3_{5}, 0_{1}, 0_{2}, 2_{4}, 1_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 2_{4}, 1_{3}, 2_{5}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 2_{4}, 0_{2}, 1_{3}, 2_{5}\right)\right) \xrightarrow{s_{1}}\left(2_{4}, 0_{1}, 0_{2}, 1_{3}, 2_{5}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 1_{3}, 2_{5}, 1_{4}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 1_{3}, 0_{2}, 2_{5}, 1_{4}\right)\right) \xrightarrow{s_{3}}\left(1_{3}, 0_{1}, 0_{2}, 2_{5}, 1_{4}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 2_{5}, 1_{4}, 0_{3}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 2_{5}, 0_{2}, 1_{4}, 0_{3}\right)\right) \xrightarrow{s_{1}}\left(2_{5}, 0_{1}, 0_{2}, 1_{4}, 0_{3}\right)\right) \xrightarrow{\pi^{-1}} \\
& \left.\left.\left.\left(0_{1}, 0_{2}, 1_{4}, 0_{3}, 1_{5}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 1_{4}, 0_{2}, 0_{3}, 1_{5}\right)\right) \xrightarrow{s_{1}}\left(1_{4}, 0_{1}, 0_{2}, 0_{3}, 1_{5}\right)\right) \xrightarrow{\pi_{-1}} \\
& \left.\left.\left.\left.\left.\left(0_{1}, 0_{2}, 0_{3}, 1_{5}, 0_{4}\right)\right) \xrightarrow{s_{3}}\left(0_{1}, 0_{2}, 1_{5}, 0_{3}, 0_{4}\right)\right) \xrightarrow{s_{2}}\left(0_{1}, 1_{5}, 0_{2}, 0_{3}, 0_{4}\right)\right) \xrightarrow{s_{3}}\left(1_{5}, 0_{1}, 0_{2}, 0_{3}, 0_{4}\right)\right) \xrightarrow{\pi^{-1}}\left(0_{1}, 0_{2}, 0_{3}, 0_{4}, 0_{5}\right)\right)
\end{aligned}
$$

### 14.2.8 Inversions of $u_{\mu}$.

If $\mu=(0,4,5,1,4)$ then the inversion set of $u_{\mu}$ is

The following is an example that executes the last line of the proof of [GR21, Proposition 2.2]. The factor of $s_{1}$ in the factorization $u_{\mu}=s_{1} \pi u_{(0,5,1,4,3)}$ gives the root

$$
\begin{gathered}
u_{(0,5,1,4,3)}^{-1} \pi^{-1}\left(\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}\right)=u_{(0,5,1,4,3)}^{-1} \pi^{-1}\left(\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee}\right)=u_{(0,5,1,4,3)}^{-1}\left(\left(\varepsilon_{5}^{\vee}+K\right)-\varepsilon_{1}^{\vee}\right) \\
=v_{(0,5,1,4,3)} t_{(0,5,1,4,3)}^{-1}\left(\varepsilon_{5}^{\vee}-\varepsilon_{1}^{\vee}+K\right)=v_{(0,5,1,4,3)}^{\vee}\left(\varepsilon_{5}^{\vee}+3 K-\left(\varepsilon_{1}^{\vee}+0 K\right)+K\right) \\
=\varepsilon_{3}^{\vee}-\varepsilon_{1}^{\vee}+4 K, \quad \text { since } v_{(0,5,1,4,3)}(5)=3
\end{gathered}
$$

### 14.2.9 The column-greedy reduced word for $u_{\mu}$.

Let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Let $J=\left(j_{1}<\ldots<j_{r}\right)$ be the sequence of positions of the nonzero entries of $\mu$ and let $\nu$ be the composition defined by

$$
\nu_{j}=\mu_{j}-1 \quad \text { if } j \in J \quad \text { and } \quad \nu_{k}=0 \quad \text { if } k \notin J
$$

so that $\nu$ is the composition which has one fewer box than $\mu$ in each (nonempty) row. Define the column-greedy reduced word for the element $u_{\mu}$ inductively by setting

$$
\begin{equation*}
u_{\mu}^{\downarrow}=\left(\prod_{m=1}^{r} s_{j_{m}-1} \cdots s_{m+1} s_{m}\right) \pi^{r} u_{\nu}^{\downarrow} \tag{14.8}
\end{equation*}
$$

where the product is taken in increasing order.
For example, if $\lambda=(5,4,4,1,0)$ then $z_{\lambda}=1, w_{\lambda}=s_{2}, v_{\lambda}=w_{0} s_{2}$ and the column greedy reduced word for $u_{\lambda}$ is

The computation verifying the expression for $u_{\lambda}^{\downarrow}$ is

$$
\begin{array}{r}
(5,4,4,1,0) \xrightarrow{\pi^{-4}} \\
(0,4,3,3,0) \xrightarrow{s_{1} s_{2} s_{3}}(4,3,3,0,0) \xrightarrow{\pi^{-3}} \\
(0,0,3,2,2) \xrightarrow{s_{2} s_{1} s_{3} s_{2} s_{4} s_{3}}(3,2,2,0,0) \xrightarrow{\pi^{-3}} \\
(0,0,2,1,1) \\
(0,0,2,0,0) \xrightarrow{s_{2} s_{1} s_{3} s_{2} s_{4} s_{3}}(2,1,1,0,0) \xrightarrow{\pi^{-3}}(1,0,0,0,0) \xrightarrow{\pi_{2} s_{1}}(0,0,0,0,0)
\end{array}
$$

If $\mu=(0,4,5,1,4)$ then the column greedy reduced word for $u_{\mu}$ is

$$
u_{\mu}^{\downarrow}=s_{1} s_{2} s_{3} s_{4} \pi^{4} \cdot s_{1} s_{2} s_{4} s_{3} \pi^{3} \cdot s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} \pi^{3} \cdot s_{2} s_{1} s_{3} s_{2} s_{4} s_{3} \pi^{3} \cdot s_{3} s_{2} s_{1} \pi
$$

This follows from 14.7 by using that $\pi s_{i} \pi^{-1}=s_{i+1}$.

### 14.3 Presentations

Proposition 14.2. Then

$$
\begin{gather*}
s_{0}=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}, \quad t_{\varepsilon_{1}^{\vee}}=\pi s_{n-1} \cdots s_{2} s_{1},  \tag{14.9}\\
\text { and } \quad t_{\varepsilon_{i+1}^{\vee}}=s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}, \quad \pi s_{i} \pi^{-1}=s_{i+1} \tag{14.10}
\end{gather*}
$$

for $i \in\{1, \ldots, n-1\}$.
Proof. Proof of (14.9): If $i \notin\{1, n\}$

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(i) t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(i)=i=s_{0}(i) .
$$

If $i=1$ then

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(1)=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}(n)=n-n=0=s_{0}(1),
$$

and, if $i=n$ then

$$
t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}^{v} s_{n-1} \cdots s_{2} s_{1} s_{2} \cdots s_{n-1}(n)=t_{\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}}^{\vee}(1)=1+n=s_{0}(n),
$$

For $i \in\{2, \ldots, n\}$

$$
\begin{aligned}
\pi s_{n-1} \cdots s_{1}(i) & =\pi(i-1)=i=t_{\varepsilon_{1}}(i), \\
\pi s_{n-1} \cdots s_{1}(1) & =\pi(n)=n+1=t_{\varepsilon_{1}}(1) .
\end{aligned}
$$

Proof of 14.10):

$$
\begin{aligned}
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(i) & =s_{i} t_{\varepsilon_{i}^{\vee}}(i+1)=s_{i}(i+1)=i=t_{\varepsilon_{i+1}^{\vee}}(i), \\
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(i+1) & =s_{i} t_{\varepsilon_{i}^{\vee}}(i)=s_{i}(i+n)=i+1+n,=t_{\varepsilon_{i+1}^{\vee}}(i+1), \\
s_{i} t_{\varepsilon_{i}^{\vee}} s_{i}(j) & =s_{i} t_{\varepsilon_{i}^{\vee}}(j)=s_{i}(j)=j=t_{\varepsilon_{i+1}^{\vee}}(j), \quad \text { if } j \in\{1, \ldots, n\} \text { and } j \notin\{i, i+1\} .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \pi s_{i} \pi^{-1}(i)=\pi s_{i}(i-1)=\pi(i)=i+1=s_{i+1}(i), \quad \text { and } \\
& \pi s_{i} \pi^{-1}(i+1)=\pi s_{i}(i)=\pi(i+1)=i+2=s_{i+1}(i+1) .
\end{aligned}
$$

### 14.4 The "affine Weyl group" and the "extended affine Weyl group"

The type $G L_{n}$ affine Weyl group $W$ is generated by $s_{1}, \ldots, s_{n}$ and $\pi$. The group $W$ contains also $s_{0}$ and all the elements $t_{\mu}$ for $\mu \in \mathbb{Z}^{n}$. The projection homomorphism is the group homomorphism
: $W \rightarrow S_{n}$ given by

$$
\begin{equation*}
\overline{t_{\mu} v}=v, \quad \text { for } \mu \in \mathbb{Z}^{n} \text { and } v \in S_{n} . \tag{14.11}
\end{equation*}
$$

The type $P G L_{n}$-affine Weyl group is the subgroup $W_{P G L_{n}}$ generated by $s_{0}, s_{1}, \ldots, s_{n-1}$.

$$
\begin{aligned}
W_{P G L_{n}} & =\left\{t_{\mu} v \mid \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n} \text { with } \mu_{1}+\cdots+\mu_{n}=0 \text { and } v \in S_{n}\right\}, \quad \text { and } \\
W_{G L_{n}} & =W=\left\{t_{\mu} v \mid \mu \in \mathbb{Z}^{n}, v \in S_{n}\right\}=\left\{\pi^{h} w \mid h \in \mathbb{Z}, w \in W_{P G L_{n}}\right\} .
\end{aligned}
$$

Then

$$
W_{G L_{n}}=\mathbb{Z}^{n} \rtimes S_{n}=\Omega \ltimes W_{P G L_{n}}, \quad \text { where } \quad \Omega=\left\{\pi^{h} \mid h \in \mathbb{Z}\right\} \quad \text { with } \quad \Omega \cong \mathbb{Z} .
$$

The symbols $\ltimes$ and $\rtimes$ are brief notations whose purpose is to indicate that the relations in 14.10 hold.

The group $W_{P G L_{n}}$ is also a quotient of $W_{G L_{n}}$, by the relation $\pi=1$. The type $S L_{n}$ affine Weyl group is the quotient of $W_{G L_{n}}$ by the relation $\pi^{n}=1$. This is equivalent to putting a relation requiring

$$
t_{\mu}=t_{\nu} \quad \text { if } \mu_{i}=\nu_{i} \bmod n \text { for } i \in\{1, \ldots, n\}
$$

As explained in [St67, Ch. 3, Exercise after Corollary 5], there is a Chevalley group $G_{d}$ for each positive integer $d$ dividing $n$. The group $G_{d}$ is a central extension of $P G L_{n}$ by $\mathbb{Z} / d \mathbb{Z}$ (so that $G_{1}=P G L_{n}$ and $G_{n}=S L_{n}$ ). Each of these groups $G_{d}$ has an affine Weyl group $W_{G_{d}}$. The group $W_{G_{d}}$ is the quotient of $W_{G L_{n}}$ by the relation $\pi^{d}=1$, and is an extension of $W_{P G L_{n}}$ by $\mathbb{Z} / d \mathbb{Z}$. The group $W_{P G L_{n}}$ is sometimes called the "affine Weyl group of type $A$ " and the groups $W_{G L_{n}}$ and $W_{G_{d}}$ for $d \neq 1$ are sometimes called the "extended affine Weyl groups of type $A$ ". We prefer the more specific terminologies "affine Weyl group of type $P G L_{n}$ " for $W_{P G L_{n}}$, "affine Weyl group of type $S L_{n}$ " for $W_{S L_{n}}$, "affine Weyl group of type $G L_{n}$ " for $W_{G L_{n}}$, and "affine Weyl group of type $P G L_{n} \times(\mathbb{Z} / d \mathbb{Z})$ " for $W_{G_{d}}$ (the symbol $x$ indicates a central extension).

