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8 Lecture 7: Proofs

8.1 Lecture 7: Proof of the Boson Fermion equalities

Proposition 8.1. With notations as in (BosFermmaps), (symms) and (bosfersymm),

poC[X] = C[X]Wo, eoC[X] = C[X]% = q,C[X]"0  and a, = epz?,

10C[X] = C[X]B* = C[X["0,  £oC[X] = C[X]F = A,C[X]" and A, = coa”.

=) w

’LUGSn
(1a) If f € C[X]5" then f = p0<%f> so that f € poC[X]. So C[X]5" C poC[X].
(1b) Assume f € poC[X]. Then f = pog and if w € S,, then wf = wpog = poy, and so f € C[X]*"
So poC[X] C C[X]%"
Combining (1a) and (1b) gives poC[X] = C[X]%".

(1c) Let s;; € S, denote the transposition that switches i and j.
Assume f € C[X]4*. Then (1 — s;;)f = 0 and so f is divisible by x; — ;. So

Proof. Recall that

f is divisible by a, = H Tj— T
1<i<j<n
Then - f € C[X]%". So f € a,C[X]"0. So C[X]*" C a,C[X]%"

(1d) Assume f € a,C[X]" and let g € C[X]" be such that f = a,g.
Then s;;f = (sija,)(sijg) = —a,g = —f. So f € C[X]%. Thus a,C[X]"0 C C[X]det,
Combining (1c) and (1d) gives a,C[X]"0 = C[X]det.

Recall that
€y — Z (—l)é(w)’w.
’LUeSn

(le) If f € egC[X] then s,f = sqe0g = —e0g = —f. So f € C[X]4. So egC[X] C C[X]det.

(1f) If f € C[X]9 then eof = Card(Wy)f. So f € eoC[X]. So C[X]dt C ¢,C[X].

Combining (1e) and (1f) gives egC[X] = C[X]det,

Since egz? € egC[X] C a,C[X]"0 and the top coefficient of egz? is x”, which is the same as the top
coefficient of a,. Hence ez’ = a,.

Recall that

19 = Z +3 (€(z)—E(wo))

zE€S,
(2a) Show that 1oC[X] C C[X]B*: Let h € 1oC[X]. Write h = 1of with f € C[X]. Then

Ty h =Ty lof = t21of = t2h. So h € C[X]B* and 1,C[X] C C[X]Bes.

(2b) Show that C[X]B° C C[X]"°: Let f € C[X]B*. Then, by Proposition and (Poinbysymm),

o Z w(f II ° tmﬂ) ec[x™.  So C[X]B* C C[X]Wo

1<7,<]<’n

t%ﬂ(wo

f= Wo(t)
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(2c) Show that C[X]"° C 14C[X]: Assume f € C[X]"°. Then, by Propositionand ,

t2€(w0

Wi =g 2o o0 T 5= =g 2w T 5=07) =7

1<z<j<n weWy 1<z<]<n

So f € 1oC[X]. Thus, C[X]"0 C 1,C[X].
Combining (2a), (2b) and (2¢) gives 10C[X] = C[X]B° = C[X]*".

Recall that )
g0 = Z (—t~2) )~ wo)

wESh
(2d) Show that £oC[X] C C[X]": Assume h = 9C[X] and let f € C[X] such that h = g¢f. Then

Ty h=Tseof = —t 2eof = —t 2h. So h € C[X]Fer and £,C[X] C C[X]Fer.

(2¢) Show that C[X]Fe" C A,C[X]"0: Let f € C[X]F". Then T)f = —t~2 f gives

34(wo) 1 A
f= L eof = =L Z det(w)wf € A,C[X]"°
So C[X|Fer C A4,C[x]Wo

(2f) Show that A,C[X]"o C C[X]F*": Assume A,C[X]"0. Let g € C[X]*" be such that f = A,g and
write g as a linear combination, g = ) ¢)sy, where sy are Schur functions. Then

f=A4,9= ZC)\A sy = Zc,\— Z det(wow)wzx e = ao(Zch)‘“)
UIEWO
by (slicksymmA|) and the fact that

—Lowo) Ap _ 4~ Le(wo) I %= te; _ 11
t™2 =t = = Cyp ()
.. —1 0
Gp 1<idjen T T i, 1T T
So f € oC[X]. Thus, A,C[X]"° C £,C[X].
Combining (2d), (2e) and (2f) gives £¢C[X] = C[X]" = 4,C[Xx]"0 O

8.2 Lecture 7: Proof that (,),; is normalized Hermitian and nondegenerate

Proposition 8.2.
(a) (sesquilinear) If f,g € C[X] and c € C[g*?] then

(Cfa g)q,t = C(f7 g)q,ta and (f) Cg)q,t = 6(]0) g)‘]:t

(b) (nonisotropy) If f € C[X] and f # 0 then (f, f)q: # 0.

(¢) (nondegeneracy) If F is a subspace of C[X] and (,)p: F x F — C is the restriction of (,)q+ to F,
then (,)F is nondegenerate.

(d) (normalized Hermitian) If f1, fo € C[X] then

(f2, 1)t _ ((fl, f2)q,t)
(171)QJ (171)QJ .
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Proof. (a) Let f1, fo € C[X] and ¢ € Clg*!, t*!]. Then (cfi, f2)gt = ctlcfifz) = c-ct(fifz) = c(f, 9)qt
and

(f1,¢f2)qt = ct(ficfz) = ct(ficfe) =€ - ct(fif2) = E(f, 9)gs-

(b) Let f € C[X] with f # 0. By clearing denominators appropriately, renormalize f so that f
specializes to something nonzero at ¢ = 1. If

F=Sfa  then  (f P =(f D = 3.1l € Roo.
" 1

So (f, f)e # 0.
(c) Let f € F with f # 0. Since (f, f)q: # 0 then there exists p € F such that (f,p)q: # 0. So the
restriciton of (,)q: to F' is nondegenerate.

(d) Let
Ayt Ay
fi= arz?, fo= b,x", and VI —" L d,(q,t)xt.
o 5Eh S - 2= T

ez

Then -
(f2, f)at _ S @b = Y by = ((fl’fQ)q,t).

(1’ 1)‘17t )\,MEZ” AvNGZn (17 1)‘]715

8.3 Lecture 7: Proof of the inner product characterization of F, and P,

Proposition 8.3. Let y € Z". The nonsymmetric Macdonald polynomial E,, is the unique element
of Clzi?, ...,z such that

(a) E, =zt + (lower terms);
(b) If v € Z" and v < p then (E,,x")q¢ = 0.
Proof. Let W = span{z* | v € Z" and v < pu},
S =span{z” | v € Z™ and v < u} and St ={feC[X]|ifpe S then (f,p)g: =0}

Since the inner product (, )q,¢ is nonisotropic then the restriction of (, )4+ to W is nondegenerate and
so dim(S+) = 1. Then the normalization of E,, € S* is determined by condition (a). O

Proposition 8.4. Let A € (Z™)*. The symmetric Macdonald polynomial Py is the unique element of
Clz, ..., 2F% such that

(a) Py =my + (lower terms);

(b) If v € (Z")* andy < X then (Py,my)q = 0.

Proof. The proof is completed in the same manner as the proof of Proposition O
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8.4 Lecture 7: Proof for going up a level from ¢ to qt
Proposition 8.5. Let f,g € C[X]®" so that f and g are symmetric functions. Then

Wo(qt)

(f, Q)q,qt = W

(Apfa Apg)q,t-

Proof. As in (arhoArhodefn)) and (slicksymmA}), let

S
Cup (T51) = H % — 45 t(wo) H Ty —iw; _ t—%e(wo)Ap(x,t)'
1<idj<n LT T I1<icj<n T3 T M ap
By (DnabladetnGL),
1—tezae!
Aq,t = Vq,t H #? :?t%ﬁ(wo)vqicwo (x—l; t). (Dnablacomp)
i<j i

By (DnabladefnGL),

Vou =[] iy @ (11 M’O) (T102 -t )

so that

1<i<j<n 1<i<j<n

Vaat = Ve Ap(a;t) Ap(a™ht), (nablagtreln)

If f € C[X] and w € A,, then

ct(f) = ct(wf), and so ct(f) = % Z ct(wf). (cttosymct)

" weSy

With these identities in hand, let f, g € C[X]*". Then

(f) g)q,qt

= ct(fglqqt) (by (innproddefnAl)
= ct(fgVg.qucun(z; 1)) (by (Dnablacomp))
= ct(fgVguAp(w; t)Ap(m71§ t)cwy (715 qt)) (by (nablaqtreln))
( Z w( fqu,tAp(:U;t)Ap(x_l;t)cwo(az_l;qt) )) (by )

1 t
—C
‘Wo‘ weWy

— Wlo‘ct ((fqu,tAp(x; t)Ap(x_l; t) ( Z w(Cuy (g;_l; qt)))) (f, 9, Vi € (C[X]WO)
weWy

Wo (gt
= ) (19 (s ) 405 50) (by (Poinbysymm))
0
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and
(Apf, Apg)gt = Ct( of Apg Aqt) (by (innproddefnAl))
= Ct(f AgiAp(; t)Ap(xilétil)) (by )
ALY ay(xh)
— A A A 1. P ) P
Ct( FaRqpAp(; ) Ap(z5 1) a,(z~1) Ap(:v—l;t)>
=ct((fg 7t)Ap(a:; A7) Cuy (x_l;t_l)))
= bV Ap (i) A, (a ey (a1 7Y) (by (Dmablacomp)
‘Wo,ct( w(9VaaAp(@ ) Ay (@ s w75 7Y))) (by (cttosymet))
weWp
ct( F3VaaAp(@ ) Ap(a™58) (D2 wlews (@™587))) (f,9, Vs € CIX]WO)
‘W ’ weWy
_ Wt _ . = -
SRR TR (A MERELERED) (by (Poinbysymm))
0
which gives the result. O

8.5 Lecture 7: Proof of the Weyl character formula for Macdonald polynomials
Theorem 8.6. Let A € Z™ with A\ > X g > --- > \,,. Then

A)H—p(‘]a t)
Ap(t)

P)\ (q7 qt) =
Proof. Since Ay,, = t%awo)eoEAﬂ, then Ay;, € C[X]¥er. Thus, by Proposition
there exists f eC[x]% such that Axip=A,f.
If € Z" is such that the coefficient of 2* in Ay, is nonzero then pu < wo(A + p). So

f =my + (lower terms).

The E-expansion for Ay, gives that

Axgp = Z d‘)fﬂ) = Euo(rp) T (lower terms)
HESn (A+p)

and, from the definitions of A, and m,,
Aym, = 2 +P) 1 (lower terms).
Since (Eyg(r+p)s 7 )ge = 0 for v € Z"™ with v < wo(A + p), then
(Apf, Apmy) g = (Axsp, Apmy)gr = 0, for v € (Z™)* with v < \.
Thus, by , since f € C[X]%" and m, € C[X]%" then
(f,mu)gr = (Apf, Apmy)gqt = 0, for v € (Z™)" with v < \.

Thus, by Proposition f=Px(q,t). O

44



