8 Lecture 7: Proofs

8.1 Lecture 7: Proof of the Boson Fermion equalities

Proposition 8.1. With notations as in (BosFermmaps), (symms) and (bosfersymm),

$$
\begin{array}{ll}
p_{0} \mathbb{C}[X]=\mathbb{C}[X]^{W_{0}}, & e_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\mathrm{det}}=a_{\rho} \mathbb{C}[X]^{W_{0}} \quad \text { and } a_{\rho}=e_{0} x^{\rho}, \\
\mathbf{1}_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\mathrm{Bos}}=\mathbb{C}\left[X \left[^{W_{0}},\right.\right. & \varepsilon_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\mathrm{Fer}}=A_{\rho} \mathbb{C}[X]^{W_{0}}
\end{array} \text { and } A_{\rho}=\varepsilon_{0} x^{\rho} .
$$

Proof. Recall that

$$
p_{0}=\sum_{w \in S_{n}} w
$$

(1a) If $f \in \mathbb{C}[X]^{S_{n}}$ then $f=p_{0}\left(\frac{1}{n!} f\right)$ so that $f \in p_{0} \mathbb{C}[X]$. So $\mathbb{C}[X]^{S_{n}} \subseteq p_{0} \mathbb{C}[X]$.
(1b) Assume $f \in p_{0} \mathbb{C}[X]$. Then $f=p_{0} g$ and if $w \in S_{n}$ then $w f=w p_{0} g=p_{0} g$, and so $f \in \mathbb{C}[X]^{S_{n}}$. So $p_{0} \mathbb{C}[X] \subseteq \mathbb{C}[X]^{S_{n}}$.
Combining (1a) and (1b) gives $p_{0} \mathbb{C}[X]=\mathbb{C}[X]^{S_{n}}$.
(1c) Let $s_{i j} \in S_{n}$ denote the transposition that switches i and j.
Assume $f \in \mathbb{C}[X]^{\text {det }}$. Then $\left(1-s_{i j}\right) f=0$ and so f is divisible by $x_{j}-x_{i}$. So

$$
f \text { is divisible by } a_{\rho}=\prod_{1 \leq i<j \leq n} x_{j}-x_{i} .
$$

Then $\frac{1}{a_{\rho}} f \in \mathbb{C}[X]^{S_{n}}$. So $f \in a_{\rho} \mathbb{C}[X]^{W_{0}}$. So $\mathbb{C}[X]^{\text {det }} \subseteq a_{\rho} \mathbb{C}[X]^{S_{n}}$.
(1d) Assume $f \in a_{\rho} \mathbb{C}[X]^{S_{n}}$ and let $g \in \mathbb{C}[X]^{S_{n}}$ be such that $f=a_{\rho} g$.
Then $s_{i j} f=\left(s_{i j} a_{\rho}\right)\left(s_{i j} g\right)=-a_{\rho} g=-f$. So $f \in \mathbb{C}[X]^{\text {det }}$. Thus $a_{\rho} \mathbb{C}[X]^{W_{0}} \subseteq \mathbb{C}[X]^{\text {det }}$.
Combining (1c) and (1d) gives $a_{\rho} \mathbb{C}[X]^{W_{0}}=\mathbb{C}[X]^{\text {det }}$.
Recall that

$$
e_{0}=\sum_{w \in S_{n}}(-1)^{\ell(w)} w .
$$

(1e) If $f \in e_{0} \mathbb{C}[X]$ then $s_{\alpha} f=s_{\alpha} e_{0} g=-e_{0} g=-f$. So $f \in \mathbb{C}[X]^{\text {det }}$. So $e_{0} \mathbb{C}[X] \subseteq \mathbb{C}[X]^{\text {det }}$.
(1f) If $f \in \mathbb{C}[X]^{\text {det }}$ then $e_{0} f=\operatorname{Card}\left(W_{0}\right) f$. So $f \in e_{0} \mathbb{C}[X]$. So $\mathbb{C}[X]^{\text {det }} \subseteq e_{0} \mathbb{C}[X]$.
Combining (1e) and (1f) gives $e_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\text {det }}$.
Since $e_{0} x^{\rho} \in e_{0} \mathbb{C}[X] \subseteq a_{\rho} \mathbb{C}[X]^{W_{0}}$ and the top coefficient of $e_{0} x^{\rho}$ is x^{ρ}, which is the same as the top coefficient of a_{ρ}. Hence $e_{0} x^{\rho}=a_{\rho}$.

Recall that

$$
\mathbf{1}_{0}=\sum_{z \in S_{n}} t^{\frac{1}{2}\left(\ell(z)-\ell\left(w_{0}\right)\right)} T_{z} .
$$

(2a) Show that $\mathbf{1}_{0} \mathbb{C}[X] \subseteq \mathbb{C}[X]^{\text {Bos }}$: Let $h \in \mathbf{1}_{\mathbf{0}} \mathbb{C}[X]$. Write $h=\mathbf{1}_{0} f$ with $f \in \mathbb{C}[X]$. Then

$$
T_{s_{i}} h=T_{s_{i}} \mathbf{1}_{0} f=t^{\frac{1}{2}} \mathbf{1}_{0} f=t^{\frac{1}{2}} h . \quad \text { So } h \in \mathbb{C}[X]^{\text {Bos }} \text { and } \mathbf{1}_{0} \mathbb{C}[X] \subseteq \mathbb{C}[X]^{\text {Bos }}
$$

(2b) Show that $\mathbb{C}[X]^{\text {Bos }} \subseteq \mathbb{C}[X]^{W_{0}}$: Let $f \in \mathbb{C}[X]^{\text {Bos }}$. Then, by Proposition 4.1 and Poinbysymm,

$$
f=\frac{t^{\frac{1}{2} \ell\left(w_{0}\right.}}{W_{0}(t)} \mathbf{1}_{0} f=\frac{1}{[n]!} \sum_{w \in W_{0}} w\left(f \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right) \quad \in \mathbb{C}[X]^{W_{0}} . \quad \text { So } \mathbb{C}[X]^{\text {Bos }} \subseteq \mathbb{C}[X]^{W_{0}} .
$$

(2c) Show that $\mathbb{C}[X]^{W_{0}} \subseteq \mathbf{1}_{0} \mathbb{C}[X]$: Assume $f \in \mathbb{C}[X]^{W_{0}}$. Then, by Proposition 4.1 and Poinbysymm,

$$
\mathbf{1}_{0} \frac{t^{\frac{1}{2} \ell\left(w_{0}\right.}}{W_{0}(t)} f=\frac{1}{[n]!} \sum_{w \in W_{0}} w\left(f \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)=f \frac{1}{[n]!} \sum_{w \in W_{0}} w\left(\prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)=f
$$

So $f \in \mathbf{1}_{0} \mathbb{C}[X]$. Thus, $\mathbb{C}[X]^{W_{0}} \subseteq \mathbf{1}_{0} \mathbb{C}[X]$.
Combining (2a), (2b) and (2c) gives $\mathbf{1}_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\text {Bos }}=\mathbb{C}[X]^{S_{n}}$.
Recall that

$$
\varepsilon_{0}=\sum_{w \in S_{n}}\left(-t^{-\frac{1}{2}}\right)^{\ell(z)-\ell\left(w_{0}\right)} T_{z}
$$

(2d) Show that $\varepsilon_{0} \mathbb{C}[X] \subseteq \mathbb{C}[X]^{\text {Fer }}$: Assume $h=\varepsilon_{0} \mathbb{C}[X]$ and let $f \in \mathbb{C}[X]$ such that $h=\varepsilon_{0} f$. Then

$$
T_{s_{i}} h=T_{s_{i}} \varepsilon_{0} f=-t^{-\frac{1}{2}} \varepsilon_{0} f=-t^{-\frac{1}{2}} h . \quad \text { So } h \in \mathbb{C}[X]^{\mathrm{Fer}} \text { and } \varepsilon_{0} \mathbb{C}[X] \subseteq \mathbb{C}[X]^{\mathrm{Fer}}
$$

(2e) Show that $\mathbb{C}[X]^{\text {Fer }} \subseteq A_{\rho} \mathbb{C}[X]^{W_{0}}$: Let $f \in \mathbb{C}[X]^{\mathrm{Fer}}$. Then $T_{i} f=-t^{-\frac{1}{2}} f$ gives

$$
f=\frac{t^{\frac{1}{2} \ell\left(w_{0}\right)}}{W_{0}(t)} \varepsilon_{0} f=\frac{1}{W_{0}(t)} \frac{A_{\rho}}{a_{\rho}} \sum_{w \in W_{0}} \operatorname{det}(w) w f \quad \in A_{\rho} \mathbb{C}[X]^{W_{0}}
$$

So $\mathbb{C}[X]^{\text {Fer }} \subseteq A_{\rho} \mathbb{C}[X]^{W_{0}}$.
(2f) Show that $A_{\rho} \mathbb{C}[X]^{W_{0}} \subseteq \mathbb{C}[X]^{F e r}$: Assume $A_{\rho} \mathbb{C}[X]^{W_{0}}$. Let $g \in \mathbb{C}[X]^{S_{n}}$ be such that $f=A_{\rho} g$ and write g as a linear combination, $g=\sum c_{\lambda} s_{\lambda}$, where s_{λ} are Schur functions. Then

$$
f=A_{\rho} g=\sum_{\lambda} c_{\lambda} A_{\rho} s_{\lambda}=\sum_{\lambda} c_{\lambda} \frac{A_{\rho}}{a_{\rho}} \sum_{w \in W_{0}} \operatorname{det}\left(w_{0} w\right) w x^{\lambda+\rho}=\varepsilon_{0}\left(\sum_{\lambda} c_{\lambda} x^{\lambda+\rho}\right)
$$

by (slicksymmA) and the fact that

$$
t^{-\frac{1}{2} \ell\left(w_{0}\right)} \frac{A_{\rho}}{a_{\rho}}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} \prod_{1 \leq i<j \leq n} \frac{x_{j}-t x_{i}}{x_{j}-x_{i}}=\prod_{1 \leq i<j \leq n} \frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} x_{i} x_{j}^{-1}}{1-x_{i} x_{j}^{-1}}=c_{w_{0}}(x)
$$

So $f \in \varepsilon_{0} \mathbb{C}[X]$. Thus, $A_{\rho} \mathbb{C}[X]^{W_{0}} \subseteq \varepsilon_{0} \mathbb{C}[X]$.
Combining (2d), (2e) and (2f) gives $\varepsilon_{0} \mathbb{C}[X]=\mathbb{C}[X]^{\mathrm{Fer}}=A_{\rho} \mathbb{C}[X]^{W_{0}}$.

8.2 Lecture 7: Proof that $(,)_{q, t}$ is normalized Hermitian and nondegenerate

Proposition 8.2.

(a) (sesquilinear) If $f, g \in \mathbb{C}[X]$ and $c \in \mathbb{C}\left[q^{ \pm 1}\right]$ then

$$
(c f, g)_{q, t}=c(f, g)_{q, t}, \quad \text { and } \quad(f, c g)_{q, t}=\bar{c}(f, g)_{q, t}
$$

(b) (nonisotropy) If $f \in \mathbb{C}[X]$ and $f \neq 0$ then $(f, f)_{q, t} \neq 0$.
(c) (nondegeneracy) If F is a subspace of $\mathbb{C}[X]$ and $(,)_{F}: F \times F \rightarrow \mathbb{C}$ is the restriction of $(,)_{q, t}$ to F, then $(,)_{F}$ is nondegenerate.
(d) (normalized Hermitian) If $f_{1}, f_{2} \in \mathbb{C}[X]$ then

$$
\frac{\left(f_{2}, f_{1}\right)_{q, t}}{(1,1)_{q, t}}=\overline{\left(\frac{\left(f_{1}, f_{2}\right)_{q, t}}{(1,1)_{q, t}}\right)}
$$

Proof. (a) Let $f_{1}, f_{2} \in \mathbb{C}[X]$ and $c \in \mathbb{C}\left[q^{ \pm 1}, t^{ \pm 1}\right]$. Then $\left(c f_{1}, f_{2}\right)_{q, t}=\operatorname{ct}\left(c f_{1} \overline{f_{2}}\right)=c \cdot \operatorname{ct}\left(f_{1} \overline{f_{2}}\right)=c(f, g)_{q, t}$ and

$$
\left(f_{1}, c f_{2}\right)_{q, t}=\operatorname{ct}\left(f_{1} \overline{c f_{2}}\right)=\operatorname{ct}\left(f_{1} \bar{c} \overline{f_{2}}\right)=\bar{c} \cdot \operatorname{ct}\left(f_{1} \overline{f_{2}}\right)=\bar{c}(f, g)_{q, t}
$$

(b) Let $f \in \mathbb{C}[X]$ with $f \neq 0$. By clearing denominators appropriately, renormalize f so that f specializes to something nonzero at $q=1$. If

$$
f=\sum_{\mu} f_{\mu} x^{\mu} \quad \text { then } \quad(f, f)_{1,1}=(f, f)_{1,1^{k}}=\sum_{\mu}\left|f_{\mu}\right|^{2} \in \mathbb{R}_{>0}
$$

So $(f, f)_{t} \neq 0$.
(c) Let $f \in F$ with $f \neq 0$. Since $(f, f)_{q, t} \neq 0$ then there exists $p \in F$ such that $(f, p)_{q, t} \neq 0$. So the restriciton of $(,)_{q, t}$ to F is nondegenerate.
(d) Let

$$
f_{1}=\sum_{\lambda} a_{\lambda} x^{\lambda}, \quad f_{2}=\sum_{\mu} b_{\mu} x^{\mu}, \quad \text { and } \quad \frac{\Delta_{q, t}}{(1,1)_{q, t}}=\frac{\Delta_{q, t}}{\operatorname{ct}(\Delta)}=\sum_{\mu \in \mathbb{Z}^{n}} d_{\mu}(q, t) x^{\mu}
$$

Then

$$
\frac{\left(f_{2}, f_{1}\right)_{q, t}}{(1,1)_{q, t}}=\sum_{\lambda, \mu \in \mathbb{Z}^{n}} \overline{a_{\lambda}} b_{\mu} d_{\lambda-\mu}=\sum_{\lambda, \mu \in \mathbb{Z}^{n}} \overline{a_{\lambda} \overline{b_{\mu}} d_{\mu-\lambda}}=\overline{\left(\frac{\left(f_{1}, f_{2}\right)_{q, t}}{(1,1)_{q, t}}\right)}
$$

8.3 Lecture 7: Proof of the inner product characterization of E_{μ} and P_{λ}

Proposition 8.3. Let $\mu \in \mathbb{Z}^{n}$. The nonsymmetric Macdonald polynomial E_{μ} is the unique element of $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ such that
(a) $E_{\mu}=x^{\mu}+($ lower terms $)$;
(b) If $\nu \in \mathbb{Z}^{n}$ and $\nu<\mu$ then $\left(E_{\mu}, x^{\nu}\right)_{q, t}=0$.

Proof. Let $W=\operatorname{span}\left\{x^{\mu} \mid \nu \in \mathbb{Z}^{n}\right.$ and $\left.\nu \leq \mu\right\}$,

$$
S=\operatorname{span}\left\{x^{\nu} \mid \nu \in \mathbb{Z}^{n} \text { and } \nu<\mu\right\} \quad \text { and } \quad S^{\perp}=\left\{f \in \mathbb{C}[X] \mid \text { if } p \in S \text { then }(f, p)_{q, t}=0\right\}
$$

Since the inner product $(,)_{q, t}$ is nonisotropic then the restriction of $(,)_{q, t}$ to W is nondegenerate and so $\operatorname{dim}\left(S^{\perp}\right)=1$. Then the normalization of $E_{\mu} \in S^{\perp}$ is determined by condition (a).

Proposition 8.4. Let $\lambda \in\left(\mathbb{Z}^{n}\right)^{+}$. The symmetric Macdonald polynomial P_{λ} is the unique element of $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]^{S_{n}}$ such that
(a) $P_{\lambda}=m_{\lambda}+($ lower terms $)$;
(b) If $\gamma \in\left(\mathbb{Z}^{n}\right)^{+}$and $\gamma<\lambda$ then $\left(P_{\lambda}, m_{\gamma}\right)_{q, t}=0$.

Proof. The proof is completed in the same manner as the proof of Proposition 8.3 .

8.4 Lecture 7: Proof for going up a level from t to $q t$

Proposition 8.5. Let $f, g \in \mathbb{C}[X]^{S_{n}}$ so that f and g are symmetric functions. Then

$$
(f, g)_{q, q t}=\frac{W_{0}(q t)}{W_{0}\left(t^{-1}\right)}\left(A_{\rho} f, A_{\rho} g\right)_{q, t} .
$$

Proof. As in arhoArhodefn and slicksymmA, let

$$
c_{w_{0}}(x ; t)=\prod_{1 \leq i<j \leq n} \frac{t^{-\frac{1}{2}}-t^{\frac{1}{2}} x_{i} x_{j}^{-1}}{1-x_{i} x_{j}^{-1}}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} \prod_{1 \leq i<j \leq n} \frac{x_{j}-t x_{i}}{x_{j}-x_{i}}=t^{-\frac{1}{2} \ell\left(w_{0}\right)} \frac{A_{\rho}(x, t)}{a_{\rho}} .
$$

By (DnabladefnGL),

$$
\Delta_{q, t}=\nabla_{q, t} \prod_{i<j} \frac{1-t x_{i} x_{j}^{-1}}{1-x_{i} x_{j}^{-1}} ?=? t^{\frac{1}{2} \ell\left(w_{0}\right)} \nabla_{q, t} c_{w_{0}}\left(x^{-1} ; t\right)
$$

(Dnablacomp)

By (DnabladefnGL),

$$
\begin{aligned}
\nabla_{q, q t} & =\prod_{i \neq j} \frac{\left(x_{i} x_{j}^{-1} ; q\right)_{\infty}}{\left(q t x_{i} x_{j}^{-1} ; q\right)_{\infty}}=\left(\prod_{i \neq j} \frac{\left(x_{i} x_{j}^{-1} ; q\right)_{\infty}}{\left(t x_{i} x_{j}^{-1} ; q\right)_{\infty}}\right)\left(\prod_{i \neq j}\left(1-t x_{i} x_{j}^{-1}\right)\right. \\
& =\nabla_{q, t} \cdot \prod_{1 \leq i<j \leq n}\left(1-t x_{j} x_{i}^{-1}\right)\left(1-t x_{i} x_{j}^{-1}\right)=\nabla_{q, t} \cdot \prod_{1 \leq i<j \leq n}\left(x_{j}^{-1}-t x_{i}\right)\left(x_{j}-t x_{i}\right)
\end{aligned}
$$

so that

$$
\nabla_{q, q t}=\nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right),
$$

If $f \in \mathbb{C}[X]$ and $w \in A_{n}$ then

$$
\operatorname{ct}(f)=\operatorname{ct}(w f), \quad \text { and so } \quad \operatorname{ct}(f)=\frac{1}{n!} \sum_{w \in S_{n}} \operatorname{ct}(w f) .
$$

(cttosymct)

With these identities in hand, let $f, g \in \mathbb{C}[X]^{S_{n}}$. Then

$$
\begin{array}{rlrl}
(f, g)_{q, q t} & =\operatorname{ct}\left(f \bar{g} \Delta_{q, q t}\right) & & \text { (by (binnproddefnA)) } \\
& =\operatorname{ct}\left(f \bar{g} \nabla_{q, q t} c_{w_{0}}\left(x^{-1} ; q t\right)\right) & \text { (by Dnablacomp) }) \\
& =\operatorname{ct}\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right) c_{w_{0}}\left(x^{-1} ; q t\right)\right) & & \text { (by nablaqtreln) }) \\
& =\frac{1}{\left|W_{0}\right|} \operatorname{ct}\left(\sum_{w \in W_{0}} w\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right) c_{w_{0}}\left(x^{-1} ; q t\right)\right)\right) & \quad \text { (by (cttosymct)) } \\
& =\frac{1}{\left|W_{0}\right|} \operatorname{ct}\left(\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right)\left(\sum_{w \in W_{0}} w\left(c_{w_{0}}\left(x^{-1} ; q t\right)\right)\right)\right)\right. & \left(f, g, \nabla_{q, t} \in \mathbb{C}[X]{ }^{W_{0}}\right) \\
& =\frac{W_{0}(q t)}{\left|W_{0}\right|} \operatorname{ct}\left(\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right)\right)\right. & & \text { (by (Poinbysymm}))
\end{array}
$$

and

$$
\begin{array}{rlr}
\left(A_{\rho} f, A_{\rho} g\right)_{q, t} & =\operatorname{ct}\left(A_{\rho} f \overline{A_{\rho} g} \Delta_{q, t}\right) \\
& =\operatorname{ct}\left(f \bar{g} \Delta_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t^{-1}\right)\right) \\
& =\operatorname{ct}\left(\left(f \bar{g} \Delta_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right) \frac{A_{\rho}\left(x^{-1}, t^{-1}\right)}{a_{\rho}\left(x^{-1}\right)} \frac{a_{\rho}\left(x^{-1}\right)}{A_{\rho}\left(x^{-1} ; t\right)}\right)\right. \\
& =\operatorname{ct}\left(\left(f \bar{g} \frac{\Delta_{q, t}}{c_{w_{0}}\left(x^{-1} ; t\right)} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right) c_{w_{0}}\left(x^{-1} ; t^{-1}\right)\right)\right) \\
& =\operatorname{ct}\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right) c_{w_{0}}\left(x^{-1} ; t^{-1}\right)\right) \\
& =\frac{1}{\left|W_{0}\right|} \operatorname{ct}\left(\sum_{w \in W_{0}} w\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right) c_{w_{0}}\left(x^{-1} ; t^{-1}\right)\right)\right) \\
& =\frac{1}{\left|W_{0}\right|} \operatorname{ct}\left(\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right)\left(\sum_{w \in W_{0}} w\left(c_{w_{0}}\left(x^{-1} ; t^{-1}\right)\right)\right)\right) \quad\left(f, g, \nabla_{q, t} \in \mathbb{C}[X]^{W_{0}}\right)\right. \\
& =\frac{W_{0}\left(t^{-1}\right)}{\left|W_{0}\right|} \operatorname{ct}\left(\left(f \bar{g} \nabla_{q, t} A_{\rho}(x ; t) A_{\rho}\left(x^{-1} ; t\right)\right)\right. & (\text { by })
\end{array}
$$

which gives the result.

8.5 Lecture 7: Proof of the Weyl character formula for Macdonald polynomials

Theorem 8.6. Let $\lambda \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then

$$
P_{\lambda}(q, q t)=\frac{A_{\lambda+\rho}(q, t)}{A_{\rho}(t)} .
$$

Proof. Since $A_{\lambda+\rho}=t^{\frac{1}{2} \ell\left(w_{0}\right)} \varepsilon_{0} E_{\lambda+\rho}$ then $A_{\lambda+\rho} \in \mathbb{C}[X]^{\text {Fer }}$. Thus, by Proposition 7.1

$$
\text { there exists } \quad f \in \mathbb{C}[X]^{S_{n}} \quad \text { such that } \quad A_{\lambda+\rho}=A_{\rho} f
$$

If $\mu \in \mathbb{Z}^{n}$ is such that the coefficient of x^{μ} in $A_{\lambda+\rho}$ is nonzero then $\mu \leq w_{0}(\lambda+\rho)$. So

$$
f=m_{\lambda}+(\text { lower terms }) .
$$

The E-expansion for $A_{\lambda+\rho}$ gives that

$$
A_{\lambda+\rho}=\sum_{\mu \in S_{n}(\lambda+\rho)} d_{\lambda+\rho}^{\mu} E_{\mu}=E_{w_{0}(\lambda+\rho)}+(\text { lower terms })
$$

and, from the definitions of A_{ρ} and m_{ν},

$$
A_{\rho} m_{\nu}=x^{w_{0}(\nu+\rho)}+(\text { lower terms })
$$

Since $\left(E_{w_{0}(\lambda+\rho)}, x^{\gamma}\right)_{q, t}=0$ for $\gamma \in \mathbb{Z}^{n}$ with $\gamma<w_{0}(\lambda+\rho)$, then

$$
\left(A_{\rho} f, A_{\rho} m_{\nu}\right)_{q, t}=\left(A_{\lambda+\rho}, A_{\rho} m_{\nu}\right)_{q, t}=0, \quad \text { for } \nu \in\left(\mathbb{Z}^{n}\right)^{+} \text {with } \nu<\lambda
$$

Thus, by 7.5 , since $f \in \mathbb{C}[X]^{S_{n}}$ and $m_{\nu} \in \mathbb{C}[X]^{S_{n}}$ then

$$
\left(f, m_{\nu}\right)_{q, t}=\left(A_{\rho} f, A_{\rho} m_{\nu}\right)_{q, q t}=0, \quad \text { for } \nu \in\left(\mathbb{Z}^{n}\right)^{+} \text {with } \nu<\lambda
$$

Thus, by Proposition 7.4, $f=P_{\lambda}(q, t)$.

