MAST30026 Metric and Hilbert Spaces
 Assignment 2: Updated 26.08.2022

Due: 4pm Thursday September 8, 2022

As usual, part of the exercise is to correct any typos and, in your solutions, to explain carefully to the marker what you corrected and why.

Question 1. (Parseval's identities) Let $S=\left\{e_{1}, e_{2}, \ldots\right\}$ be a countable orthonormal basis for a separable Hilbert space H. Prove that
(a) $x=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle e_{n}$ (Fourier expansion),
(b) $\|x\|^{2}=\sum_{n=1}^{\infty}\left|\left\langle x, e_{n}\right\rangle\right|^{2}$ (Parseval's identity for norms),
(c) $\langle x, y\rangle=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle \overline{\left\langle y, e_{n}\right\rangle}$ (Parseval's identity for inner products).

Question 2 (Fourier decomposition for complex valued funcrions). Let

$$
L^{2}([0,2 \pi])=\left\{f:[0,2 \pi] \rightarrow \mathbb{C} \mid\|f\|_{2} \text { exists in } \mathbb{R}_{\geq 0}\right\}
$$

where the norm $\left\|\|_{2}: L^{2}([0,2 \pi]) \rightarrow \mathbb{R}_{\geq 0}\right.$ and the sesquilinear form $\langle\rangle:, L^{2}([0,2 \pi]) \times L^{2}([0,2 \pi]) \rightarrow \mathbb{C}$ are given by

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t \quad \text { and } \quad\|f\|_{2}=\sqrt{\langle f, f\rangle}
$$

Define

$$
e_{m}(t)=e^{i m t}, \quad \text { for } m \in \mathbb{Z} \text { and } t \in \mathbb{R}_{[0,2 \pi]}
$$

Let $L: L^{2}\left(\mathbb{R}_{[0,2 \pi]}\right) \rightarrow L^{2}\left(\mathbb{R}_{[0,2 \pi]}\right)$ be the operator on $L^{2}\left(\mathbb{R}_{[0,2 \pi]}\right)$ given by $\quad L=\frac{d}{d t}$.
(a) Let $m \in \mathbb{Z}$. Show that e_{m} is an eigenvector of L and compute the eigenvalue.
(b) Show that $\left(e_{0}, e_{1}, e_{-1}, e_{2}, e_{-2}, \ldots\right)$ is an orthonormal sequence in $L^{2}([0,2 \pi])$.
(c) Determine $a_{0}, a_{1}, a_{-1}, a_{2}, a_{-2}, \ldots \in \mathbb{C}$ such that $t=a_{0} e_{0}+a_{1} e_{1}+a_{-1} e_{-1}+a_{2} e_{2}+a_{-2} e_{-2}+\cdots$.
(d) Determine $c_{0}, c_{1}, c_{-1}, c_{2}, c_{-2}, \ldots \in \mathbb{C}$ such that $t^{2}=c_{0} e_{0}+c_{1} e_{1}+c_{-1} e_{-1}+c_{2} e_{2}+c_{-2} e_{-2}+\cdots$.

Question 3 (Fourier decomposition for real valued functions). Let

$$
L^{2}([0,2 \pi])=\left\{f:[0,2 \pi] \rightarrow \mathbb{R} \mid\|f\|_{2} \text { exists in } \mathbb{R}_{\geq 0}\right\}
$$

where the norm $\left\|\|_{2}: L^{2}([0,2 \pi]) \rightarrow \mathbb{R}_{\geq 0}\right.$ and the sesquilinear form $\langle\rangle:, L^{2}([0,2 \pi]) \times L^{2}([0,2 \pi]) \rightarrow \mathbb{R}$ are given by

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) g(x) d x \quad \text { and } \quad\|f\|_{2}=\sqrt{\langle f, f\rangle}
$$

Let $s_{0}(t)=1$ for $t \in \mathbb{R}_{[0,2 \pi]}$. For $n \in \mathbb{Z}_{>0}$ and $t \in \mathbb{R}_{[0,2 \pi]}$ define

$$
s_{n}(t)=\sqrt{2} \sin (n t), \quad \text { and } \quad s_{-n}(t)=\sqrt{2} \cos (n t)
$$

(a) Show that $\left(s_{0}, s_{1}, s_{-1}, s_{2}, s_{-2}, \ldots\right)$ form an orthonormal sequence in $L^{2}([0,2 \pi])$.
(b) Let $L: L^{2}\left(\mathbb{R}_{[0,2 \pi]}\right) \rightarrow L^{2}\left(\mathbb{R}_{[0,2 \pi]}\right)$ be the operator on $L^{2}\left(\mathbb{R}_{[0,2 \pi]}\right)$ given by

$$
L=\frac{d^{2}}{d t^{2}} .
$$

Let $n \in \mathbb{Z}_{\geq 0}$. Show that s_{n} and s_{-n} are eigenvectors of L and compute the eigenvalues.
(c) Carefully graph the function $f: \mathbb{R}_{[0,2 \pi]} \rightarrow \mathbb{R}$ given by $f(t)=2 \pi t-t^{2}$.
(d) Expand the function $f: \mathbb{R}_{[0,2 \pi]} \rightarrow \mathbb{R}$ given by $f(t)=2 \pi t-t^{2}$ in terms of the orthonormal sequence $\left(s_{0}, s_{1}, s_{-1}, s_{2}, s_{-2}, \ldots\right)$.
(e) Carefully compute $A, B \in \mathbb{C}$ such that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=A \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=B
$$

Question 4 (Hermite polynomials). Define a norm $\left\|\|_{w}: \mathbb{C}[x] \rightarrow \mathbb{R}_{\geq 0}\right.$ and a sesquilinear form $\langle\rangle:, \mathbb{C}[x] \times \mathbb{C}[x] \rightarrow \mathbb{C}$ by

$$
\langle f, g\rangle_{w}=\int_{-\infty}^{\infty} f(x) \overline{g(x)} e^{-\frac{1}{2} x^{2}} d x \quad \text { and } \quad\|f\|_{w}=\sqrt{\langle f, f\rangle_{w}}
$$

Define the Hermite polynomials $P_{n}(x)$ by

$$
P_{n}(x)=(-1)^{n} e^{\frac{1}{2} x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-\frac{1}{2} x^{2}}\right), \quad \text { for } n \in \mathbb{Z}_{>0}
$$

Let $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_{>0}$.
(a) Carefully graph the "bell curve" $w: \mathbb{R} \rightarrow \mathbb{R}$ and the "normal distribution" $N_{\mu, \sigma}: \mathbb{R} \rightarrow \mathbb{R}$ which are given by

$$
w(x)=e^{-\frac{1}{2} x^{2}} \quad \text { and } \quad N_{\mu, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

(b) Carefully prove that

$$
\langle 1,1\rangle_{w}=\int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}} d x=\sqrt{2 \pi} \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=1
$$

Explain why these integrals are vital to every data analyst, statistician and probabilist.
(c) Define operators $D: \mathbb{C}[[x]] \rightarrow \mathbb{C}[[x]], X: \mathbb{C}[[x]] \rightarrow \mathbb{C}[[x]], S: \mathbb{C}[[x]] \rightarrow \mathbb{C}[[x]]$ and $E: \mathbb{C}[[x]] \rightarrow$ $\mathbb{C}[[x]]$ by

$$
D f=\frac{d f}{d x}, \quad X f=x f, \quad S f=e^{\frac{1}{2} x^{2}} f, \quad \text { and } \quad E=S D S^{-1} .
$$

Carefully prove the following identities:

$$
\begin{aligned}
& E^{n}=S D^{n} S^{-1}, \quad X D=D X-1, \quad S D=D S-X S, \quad S X=X S, \quad S D S^{-1}=D-X, \\
& D E^{n}=E^{n+1}+X E^{n}, \quad X D^{n}=D^{n} X-n D^{n-1}, \\
& D X^{n}=X^{n} D+n X^{n-1}, \quad X E^{n}=E^{n} X-n E^{n-1} \text {. }
\end{aligned}
$$

(c) Carefully compute $P_{0}, P_{1}, P_{2}, P_{3}$ and P_{4} and prove that

$$
\frac{d}{d x} P_{n}(x)=x P_{n}(x)-P_{n+1}(x), \quad P_{n+1}(x)=x P_{n}(x)-n P_{n-1}(x), \quad \text { and } \quad \frac{d}{d x} P_{n}(x)=n P_{n-1}(x) .
$$

(d) Show that if $k, n \in \mathbb{Z} \geq 0$ and $k<n$ then $\left\langle P_{k}, P_{n}\right\rangle_{w}=0$.
(e) Prove carefully that if $n \in \mathbb{Z}_{\geq 0}$ then $\left\langle P_{n}, P_{n}\right\rangle_{w}=\sqrt{2 \pi} n$!.
(f) Prove that $\left(P_{0}, P_{1}, P_{2}, \ldots\right)$ is an orthogonal basis of $\mathbb{C}[x]$ with respect to \langle,\rangle_{w}.

Question 5 (The quantum harmonic oscillator). Let

$$
L^{2}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{C} \mid\|f\| \text { exists in } \mathbb{R}_{\geq 0}\right\}
$$

where the norm $\left\|\|: L^{2}(\mathbb{R}) \rightarrow \mathbb{R}_{\geq 0}\right.$ and the sesquilinear form $\langle\rangle:, L^{2}(\mathbb{R}) \times L^{2}(\mathbb{R}) \rightarrow \mathbb{C}$ are given by

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x \quad \text { and } \quad\|f\|=\sqrt{\langle f, f\rangle} .
$$

Let $m, \omega, \hbar \in \mathbb{R}_{>0}$ and define

$$
h_{r}(x)=\frac{1}{\sqrt{r!}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} P_{r}\left(\left(\frac{2 m \omega}{\hbar}\right)^{\frac{1}{2}} x\right), \quad \text { for } r \in \mathbb{Z}_{\geq 0},
$$

where $P_{r}(x)$ are the Hermite polynomials of Question 4. Let $i=\sqrt{-1}$ and define operators

$$
p=-i \hbar \frac{d}{d x} \quad \text { and } \quad H=\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} x^{2} .
$$

More explicitly, if $f \in L^{2}(\mathbb{R})$ then $\quad H f=\frac{-\hbar^{2}}{2 m} \frac{d^{2} f}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} f$.
(a) Show that $\left(h_{0}, h_{1}, h_{2}, \ldots\right)$ is an orthonormal sequence in $L^{2}(\mathbb{R})$.
(b) Define operators a, a^{\dagger} and N on $L^{2}(\mathbb{R})$ by

$$
a=\left(\frac{m \omega}{2 \hbar}\right)^{\frac{1}{2}}\left(x+i \frac{1}{m \omega} p\right), \quad a^{\dagger}=\left(\frac{m \omega}{2 \hbar}\right)^{\frac{1}{2}}\left(x-i \frac{1}{m \omega} p\right), \quad \text { and } \quad N=a^{\dagger} a .
$$

Prove that

$$
N=\left(\frac{m \omega}{2 \hbar}\right)\left(x^{2}-\frac{\hbar^{2}}{m^{2} \omega^{2}} \frac{d^{2}}{d x^{2}}\right)-\frac{1}{2}, \quad a a^{\dagger}-a^{\dagger} a=1, \quad N a^{\dagger}-a^{\dagger} N=a^{\dagger}, \quad N a-a N=-a
$$

(c) Show that, as operators on $L^{2}(\mathbb{R})$,

$$
H=\hbar \omega\left(N+\frac{1}{2}\right) .
$$

(d) Prove carefully that

$$
a^{\dagger} h_{n}=(n+1)^{\frac{1}{2}} h_{n+1}, \quad a h_{n}=n^{\frac{1}{2}} h_{n-1}, \quad \text { and } \quad N h_{n}=n h_{n} .
$$

(e) Show that h_{n} is an eigenvector of H and compute the eigenvalue.

2.3 Assignment 3

