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2.2 Assignment 2

2.2.1 Question 1: Sketch (selected steps skipped to focus on main points)

(a) Since S = {e1, e2, . . .} is a basis then H = span{e1, e2, . . .} (note that here, basis means topological
basis). Thus, by the construction of projection onto W = span{e1, e2, . . .} for an orthonormal sequence
(e1, e2, . . .), the projection onto W is the map P : H ! H given by

P (x) =
1X

n=1

hx, enien

(in particular, the limit of the partial sums exists in W ).
By the orthogonal decomposition theorem, H = W �W

?.
In this case W = H and W

? = H
? = 0 (the last equality follows from the condition: if v 2 H and

hv, vi = 0 then v = 0).
So x = P (x) + 0 2 H �H

? and

x = P (x) =
1X

n=1

hx, enien.

(c) Let x, y 2 H. By part (a),

y =
1X

n=1

hy, enien = lim
k!1

sk, where sk =
kX

n=1

hy, enien.

Since h, i is continuous and limk!1 sk exists in H and R�0 is complete (this is a run on sentence and
could be expanded to 2 or 3 separate steps) then limk!1hx, ski exists in R�0 and

hx, yi = hx, lim
k!1

ski = lim
k!1

hx, ski

= lim
k!1

⌦
x,

kX

n=1

hy, enien

↵
= lim

k!1

⇣ kX

n=1

hx, enihy, eni

⌘

=
1X

n=1

hx, enihy, eni

(b) Using part (c),

kxk
2 = hx, xi =

1X

n=1

hx, enihx, eni =
1X

n=1

|hx, eni|
2
.

2.2.2 Question 2: computations

(a) The function em(t) is an eigenvector of L with eigenvalue m since

Lem(t) =
d

dt
(eimt) = me

imt = mem(t).

(b) Let m,n 2 Z and assume m 6= n. Then

hem(t), en(t)i =
1

2⇡

Z 2⇡

0
e
imt

eintdt =
1

2⇡

Z 2⇡

0
e
i(m�n)t

dt

=
1

2⇡

⇣ 1

i(m� n)
e
i(m�n)t

⌘i
t=2⇡

t=0
=

1

2⇡
·

1

i(m� n)
(1� 1) = 0.
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Let m,n 2 Z and assume m = n. Then

hen(t), en(t)i =
1

2⇡

Z 2⇡

0
e
int

eintdt =
1

2⇡

Z 2⇡

0
e
i(n�n)t

dt =
1

2⇡

Z 2⇡

0
dt =

1

2⇡
t
⇤
t=2⇡
t=0

=
2⇡

2⇡
= 1.

So (e0, e1, e�1, e2, e�2, . . .) is an orthonormal sequence in L
2([0, 2⇡]).

(c) If n 2 Z 6=0 then

ht, en(t)i =
1

2⇡

Z 2⇡

0
te

int
dt =

1

2⇡
t
e
int

in

i
t=2⇡

t=0
�

1

2⇡

Z 2⇡

0

e
int

in
dt

=
1

2⇡

⇣2⇡
in

� 0
⌘
�

1

2⇡in

e
int

in

i
t=2⇡

t=0
=

1

in
�

1

2⇡in

⇣ 1

in
�

1

in

⌘
=

1

in
,

and

ht, e0(t)i =
1

2⇡

Z 2⇡

0
tdt =

1

2⇡

t
2

2

i
t=2⇡

t=0
=

1

4⇡
(4⇡2

� 0) = ⇡,

then, by Question 1 part (a) (there there is a step skipped to show that span{e0, e1, e�1, . . .} =
L
2([0.2⇡]), as with all steps it might not even be true, but if it is),

t = ⇡ +
1X

n=1

1

in
e
int +

1

�in
e
�int = ⇡ +

1X

n=1

1

in
(eint � e

�int).

(d) Since

ht
2
, en(t)i =

1

2⇡

Z 2⇡

0
t
2
e
int

dt =
1

2⇡
t
2 e

int

in

i2⇡
t=0

�
1

2⇡

Z 2⇡

0
2t
e
int

in
dt

=
1

2⇡

⇣
4⇡2 1

in
� 0 ·

1

in

⌘
�

1

⇡in

Z 2⇡

0
te

int
dt =

2⇡

in
�

⇣ 1

⇡in
t
e
int

in

i
t=2⇡

t=0

⌘
+

1

⇡in

Z 2⇡

0

e
int

in
dt

=
2⇡

in
�

1

⇡in

⇣2⇡
in

� 0
⌘
+

�1

⇡n2

e
int

in

i
t=2⇡

t=0
=

2⇡

in
+

2

n2
�

1

⇡n2

⇣ 1

in
�

1

in

⌘
=

2⇡

in
+

2

n2
,

and

ht
2
, e0(t)i =

1

2⇡

Z 2⇡

0
t
2
dt =

1

2⇡

t
3

3

i
t=2⇡

t=0
=

1

6⇡
(8⇡3

� 0) =
4

3
⇡
2
,

then, by Question 1 part (a),

t
2 =

4

3
⇡
2 +

1X

n=1

⇣2⇡
in

+
2

n2

⌘
e
int +

⇣ 2⇡

�in
+

2

n2

⌘
e
�int

.

2.2.3 Question 3: computations

(a) If n 2 Z>0 then

en(t) = e
int = cos(nt) + i sin(nt) =

1
p
2
s�n(t) + i

1
p
2
sn(t) and

e�n(t) = e
�int = cos(nt)� i sin(nt) =

1
p
2
s�n(t)� i

1
p
2
sn(t),

and

sn(t) =

p
2

2i
(en(t)� e�n(t)) and s�n(t) =

p
2

2
(en(t) + e�n(t)).
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If m,n 2 Z>0 and m 6= n then

hsn(t), sm(t)i =
⌦
p
2

2i
(en(t)� e�n(t)),

p
2

2i
(em(t)� e�m(t))

↵
=

1

2ii
(0� 0� 0 + 0) = 0,

and

hsn(t), s�m(t)i =
⌦
p
2

2i
(en(t)� e�n(t)),

p
2

2
(em(t) + e�m(t))

↵
=

1

2i
(0 + 0� 0� 0) = 0.

Then

hsn(t), sn(t)i =
⌦
p
2

2i
(en(t)� e�n(t)),

p
2

2i
(en(t)� e�n(t))

↵
=

1

2ii
(1� 0� 0 + 1) = 1,

and

hsn(t), s�n(t)i =
⌦
p
2

2i
(en(t)� e�n(t)),

p
2

2
(en(t) + e�n(t))

↵
=

1

2i
(1 + 0� 0� 1) = 0.

If n 2 Z>0 then

hs0(t), sn(t)i =
⌦
e0(t),

p
2

2i
(en(t)� e�n(t))

↵
= 0� 0 = 0,

hs0(t), s�n(t)i =
⌦
e0(t),

p
2

2
(en(t) + e�n(t))

↵
= 0� 0 = 0, and

hs0(t), s0(t)i = he0(t), e0(t)i = 1.

So (s0, s1, s�1, s2, s�2, . . .) is an orthonormal sequence in L
2(R[0,2⇡)).

(b) Let n 2 Z>0. Since L = d
2

dt2
then

Lsn(t) =
d
2

dt2
(
p
2 sin(nt)) =

p
2
d

dt
n cos(nt) = �

p
2n2 sin(nt) = �n

2
sn(t),

Ls�n(t) =
d
2

dt2
(
p
2 cos(nt)) = �

p
2
d

dt
n sin(nt) = �

p
2n2 cos(nt) = �n

2
s�n(t),

Ls0(t) =
d
2

dt2
1 = 0 = 0s0(t).

Thus, if n 2 Z then the eigenvalue of L acting on sn(t) is �n
2.

(c) Since f(t) = 2⇡t� t
2 is a concave down parabola which goes through the points (0, 0) and (0, 2⇡)
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the graph of f(t) looks like

graph of f(t) = 2⇡t� t
2 from Wolfram alpha

This graph was obtained by a screenshot from Wolfram alpha by entering plot 2pi*t-t^2.

From Question 2 parts (d) and (e),

t = ⇡ +
1X

n=1

1

in
e
int +

1

�in
e
�int = ⇡ +

1X

n=1

1

in
(eint � e

�int)

and

t
2 =

4

3
⇡
2 +

1X

n=1

2⇡

in
(eint � e

�int) +
2

n2
(eint + e

�int)

Thus (here there is a step skipped to show that span{s0, s1, s�1, . . .} = L
2(R[0.2⇡]), as with all steps it

might not even be true, but if it is),

2⇡t� t
2 =

⇣
2⇡2

�
4

3
⇡
2)
⌘
+

1X

n=1

�2

n2
(eint + e

�int) =
2

3
⇡
2
�

1X

n=1

4

n2
cos(nt).

Evaluating at t = 2⇡ gives

0 =
2

3
⇡
2
� 4

1X

n=1

1

n2
so that

⇡
2

6
=

1X

n=1

1

n2
.

Evaluating at t = ⇡ gives

⇡
2 =

2

3
⇡
2
� 4

1X

n=1

(�1)n

n2
so that

1X

n=1

(�1)n

n2
= �

⇡
2

12
.
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2.2.4 Question 4: computations

The graph of Nµ,�(x) = 1
�
p
2⇡
e
� (x�µ)2

2� is obtained from the graph of w(x) = e
� 1

2x
2
by shifting and

scaling (shift x by µ, scale the x-axis by �
2 and scale the y-axis by �

p
2⇡). The resulting graph is a

bell curve symmetric about µ with standard deviation � and with area under the curve equal to 1 so
that it is the graph is the graph of a probability distribution.

Since the graph of y = x
2 is a parabola (symmetric about 0 and concave up) and the graph

of g = e
�y is decreasing to approach the line g = 0 then the graph of w = e

� 1
2x

2 is a bell curve
approaching w = 0 as x ! 1 and x ! �1 and going through the point (0, 1).

graph of w(t) = e
� 1

2x
2
from Wolfram alpha

This graph was obtained by a screenshot from Wolfram alpha by entering plot e^-(1/2)x^2 .

graph of Nµ,�(x) from Wolfram alpha

This graph was obtained by a screenshot from Wolfram alpha by entering
plot normal distribution mean mu standard deviation sigma.
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Every data analyst, statistician and probabilist must know these curves because of the central
limit theorem, which says that the sum of a large number of independent variables will behave like a
bell curve (see https://en.wikipedia.org/wiki/Central limit theorem).

Part (c): By definition, the Hermite polynomials P0, P1, P2, . . . . are

Pn(x) = (�1)ne
1
2x

2 d
n

dxn

�
e
� 1

2x
2�

Since

d
0

dx0
(e�

1
2x

2
) = e

� 1
2x

2
,

d

dx
(e�

1
2x

2
) = �xe

� 1
2x

2
,

d
2

dx2
(e�

1
2x

2
) = (�x)2e�

1
2x

2
� e

� 1
2x

2
= (x2 � 1)e�

1
2x

2
,

d
3

dx3
(e�

1
2x

2
) = (�x)(x2 � 1)e�

1
2x

2
+ 2xe�

1
2x

2
= (�x

3 + 3x)e�
1
2x

2
,

d
4

dx4
(e�

1
2x

2
) = ((�x)(�x

3 + 3x) + (�3x2 + 3))e�
1
2x

2
= (x4 � 6x2 + 3)e�

1
2x

2
,

then

P0 = 1,

P1 = x,

P2 = x
2
� 1,

P3 = x
3
� 3x,

P4 = x
4
� 6x2 + 3.

Define operators D : C[[x]] ! C[[x]], X : C[[x]] ! C[[x]], S : C[[x]] ! C[[x]] and E : C[[x]] ! C[[x]] by

Df =
df

dx
, Xf = xf, Sf = e

1
2x

2
f, and E = SDS

�1
.

Then

E
n = SD

n
S
�1

, XD = DX � 1, SD = DS �XS, and SX = XS.

Hence SDS
�1 = D �X. Then

DE
n = DSD

n
S
�1 = (SD +XS)Dn

S
�1 = SD

n+1
S
�1 +XSD

n
S
�1 = E

n+1 +XE
n
.

Since Pn = (�1)nEn
· 1 = �E(�1)n�1

E
n�1

· 1 = �EPn�1(x) then

d

dx
Pn(x) = (�1)nDE

n
· 1 = (�1)n(En+1 +XE

n) · 1 = �Pn+1(x) + xPn(x).

By induction,

XD
n = D

n
X � nD

n�1 which gives XE
n = E

n
X � nE

n�1
,
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since XE
n = XSD

n
S
�1 = SXD

n
S
�1 = S(Dn

X � nD
n�1)S�1 = SD

n
S
�1

X � nSD
n�1

S
�1 =

E
n
X � nE

n�1. Thus

xPn(x) = X(�1)nEn
· 1 = (�1)n(En

X � nE
n�1) · 1

= (�1)nEn
P1(x) + nPn�1(x) = Pn+1(x) + nPn�1(x).

So Pn+1(x) = xPn(x)� nPn�1(x).
Since

d

dx
Pn(x) = �Pn+1(x) + xPn(x) = �Pn+1(x) + (Pn+1(x) + nPn�1(x)) = nPn�1(x).

Applying the operator identity DX
n = X

n
D + nX

n�1 to the polynomial 1 gives

d

dx
x
n = DX

n
· 1 = X

n
D · 1 + nX

n�1
· 1 = 0 + nx

n�1 = nx
n�1

.

(b) The favourite integral is

J =

Z 1

�1
e
� 1

2x
2
dx.

then, putting x = r cos ✓ and y = r sin ✓ so that r2 = x
2 + y

2,

J
2 =

Z 1

�1
e
� 1

2x
2
e
� 1

2y
2
dx dy =

Z
r=1

r=0

Z
✓=2⇡

✓=0
e
� 1

2 r
2
rdr d✓

= 2⇡

Z 1

0
re

� 1
2 r

2
dr = �2⇡

Z 1

0

�
�

1
22r

�
e
� 1

2 r
2
dr

= �2⇡

Z �1

0
e
s
ds = �2⇡es

i
s=�1

s=0
= �2⇡(0� 1) = 2⇡.

Thus

J =

Z 1

�1
e
� 1

2x
2
dx =

p
2⇡.

A good reference is Exercise 51 of Chapter 2 of J. Rice, Mathematical statistics and data analysis,
Duxbury Press 1995. This gives that

hP0, P0i =
p
2⇡.

Using

Pn(x) = (�1)ne
1
2x

2 d
n

dxn

�
e
� 1

2x
2�

and hf, giw =

Z 1

�1
f(x)g(x)e�

1
2x

2
dx

then

(�1)nhxk, Pn(x)iw =

Z 1

�1
(�1)nxkPn(x)e

� 1
2x

2
dx =

Z 1

�1
x
k
d
n

dxn
(e�

1
2x

2
)dx

=

Z 1

�1
x
k
d
n

dxn
(e�

1
2x

2
)dx

= x
k
d
n�1

dxn�1
(e�

1
2x

2
)
i1
�1

�

Z 1

�1
kx

k�1 d
n�1

dxn�1
(e�

1
2x

2
)dx

= x
k
d
n�1

dxn�1
(e�

1
2x

2
)
i1
�1

� k(�1)n�1
hx

k�1
, Pn�1(x)iw

= x
k
Pn�1(x)e

� 1
2x

2
i1
�1

� 0

= lim
x!1

x
k
Pn�1(x)

e
1
2x

2
� lim

x!�1

x
k
Pn�1(x)

e
1
2x

2
= 0� 0 = 0.
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Then

hPn(x), Pn(x)iw =

Z 1

�1
Pn(x)Pn(x)e

� 1
2x

2
dx

=

Z 1

�1
Pn(x)

1

n+ 1

d

dx

�
Pn+1

�
e
� 1

2x
2
dx

= Pn(x)
1

n+ 1
Pn+1e

� 1
2x

2
i1
�1

�

Z 1

�1

d

dx

�
Pn(x)e

� 1
2x

2� 1

n+ 1
Pn+1dx

= 0�

Z 1

�1

�
nPn�1(x)� xPn(x)

�
e
� 1

2x
2 1

n+ 1
Pn+1(x)dx

=
n

n+ 1
hPn�1(x), Pn+1(x)iw +

1

n+ 1
hxPn(x), Pn+1(x)iw

= 0 +
1

n+ 1
hPn+1(x) + nPn�1(x), Pn+1(x)iw

=
1

n+ 1
hPn+1(x), Pn+1(x)iw.

Using the base case hP0(x), P0(x)iw = h1, 1iw =
p
2⇡ from part (b), then the induction step gives

hPn(x), Pn(x)iw = n!
p
2⇡.

2.2.5 Question 5: computations

(a) Let K =
⇣
m!

⇡~

⌘ 1
4
and y =

⇣2m!

~

⌘ 1
2
x, then

hr(x) =
1

p
r!

⇣
m!

⇡~

⌘1/4
e
�m!

2~ x
2
Pr

⇣�2m!

~
� 1

2x

⌘
=

1
p
r!

⇣
m!

⇡~

⌘ 1
4
e
� 1

4y
2
Pr(y),

and, using that hPr, Psiw =
p
2⇡s! from Question 4 part (?),

hhr(x), hs(x)i =
D 1
p
r!
Ke

� 1
2y

2
Pr(y),

1
p
s!
Ke

� 1
2y

2
Ps(y)

E
=

1
p
r!s!

K
2
he

� 1
4y

2
Pr(y), e

� 1
4y

2
Ps(y)i

=
1

p
r!s!

K
2
Z 1

�1
e
� 1

4y
2
Pr(y)e

� 1
4y

2
Ps(y)dx

=
1

p
r!s!

K
2
Z 1

�1
e
� 1

2y
2
Pr(y)Ps(y)

⇣ ~
2m!

⌘ 1
2
dy =

1
p
r!s!

⇣
m!

⇡~

⌘ 1
2
⇣ ~
2m!

⌘ 1
2
hPr, Psiw

=

8
<

:
1
s!

⇣
1
2⇡

⌘ 1
2p

2⇡ s!, if r = s,

0, if r 6= s,

which gives that hhr, hsi = �rs.
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(b)

a =
⇣
m!

2~

⌘ 1
2 �
x+ i

1

m!
p
�
=

⇣
m!

2~

⌘ 1
2 �
x+ i

1

m!
(�i~) @

@x

�
=

⇣
m!

2~

⌘ 1
2 �
x+

~
m!

(�i~) d
dx

�
,

a
† =

⇣
m!

2~

⌘ 1
2 �
x� i

1

m!
p
�
=

⇣
m!

2~

⌘ 1
2 �
x� i

1

m!
(�i~) @

@x

�
=

⇣
m!

2~

⌘ 1
2 �
x�

~
m!

(�i~) d
dx

�
,

N = a
†
a =

m!

2~

⇣
x
2
�

~2
m2!2

d
2

dx2
�

~
m!

d

dx
x+

~
m!

x
d

dx

⌘

=
m!

2~

⇣
x
2
�

~2
m2!2

d
2

dx2
�

~
m!

�
x
d

dx
+ 1

�
+

~
m!

x
d

dx

⌘
=

m!

2~

⇣
x
2
�

~2
m2!2

d
2

dx2
�

~
m!

⌘
,

aa
† =

m!

2~

⇣
x
2
�

~2
m2!2

d
2

dx2
+

~
m!

d

dx
x�

~
m!

x
d

dx

⌘

=
m!

2~

⇣
x
2
�

~2
m2!2

d
2

dx2
+

~
m!

�
x
d

dx
+ 1

�
�

~
m!

x
d

dx

⌘
=

m!

2~

⇣
x
2
�

~2
m2!2

d
2

dx2
+

~
m!

⌘
.

So

aa
†
� a

†
a =

m!

2~

⇣ ~
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+
~
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⌘
= 1.

Then
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†
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†
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†
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†
a
†
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†
a
†
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†
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†
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†
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(c)
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⇣
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�
x
2
�
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m2!2

d
2

dx2
�

~
m!

�
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2

⌘
= 1

2m!
2
x
2
�

~2
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d
2

dx2
�

1
2~! + 1

2~!
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2m!

2
x
2
�

~2
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dx2
= 1

2m!
2
x
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1
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(�i~)2 d

2

dx2
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2m!
2
x
2 +

1

2m
p
2 = H.

That achieves the bulk of the marks for this assignment, we’ll stop there.
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