MAST30026 Metric and Hilbert Spaces Assignment 1

Due: 4pm Thursday August 11, 2022

Question 1. (Existence of eigenvectors)

- (a) Let $\theta \in \mathbb{R}_{[0,2\pi)}$. Find the eigenvectors of $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ as a linear operator on \mathbb{C}^2 .
- (b) Show that $\begin{pmatrix} \cos(\frac{\pi}{4}) & \sin(\frac{\pi}{4}) \\ -\sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ does not have an eigenvector as a linear operator on \mathbb{R}^2 .
- (c) Let $n \in \mathbb{Z}_{>0}$ and let $A \in M_n(\mathbb{C})$. Prove carefully that A has an eigenvector as an operator on \mathbb{C}^n .

Question 2. (Radius of convergence) Let $\mathbb{C} = \mathbb{R} + i\mathbb{R}$ be the \mathbb{R} -algebra with $i^2 = -1$ and $\overline{} : \mathbb{C} \to \mathbb{C}$ and $||: \mathbb{C} \to \mathbb{R}_{\geq 0}$ given by

$$\overline{x+iy} = x - iy$$
 and $|x+iy| = \sqrt{x^2 + y^2}.$

Let $\epsilon \in \mathbb{R}_{>0}$. Let (a_1, a_2, \ldots) be a sequence in \mathbb{C} and

assume that
$$\sum_{n=1}^{\infty} a_n \epsilon^n$$
 exists in \mathbb{C} .

Let $B_{\epsilon}(0) = \{z \in \mathbb{C} \mid |z| < \epsilon\}$. Prove carefully that

if
$$z \in B_{\epsilon}(0)$$
 then $\sum_{n=1}^{\infty} a_n z^n$ exists in \mathbb{C} .

Question 3. (the dual of \mathbb{R}^2 in the $\| \|_p$ norm) If V is a normed \mathbb{R} -vector space with norm $\| \|_V$ and $\phi: V \to \mathbb{R}$ is a linear transformation then the *operator norm* of ϕ is

$$\|\phi\| = \sup \left\{ \frac{\|\phi(v)\|_V}{\|v\|_V} \mid v \in V \right\}.$$

Let $\phi \colon \mathbb{R}^2 \to \mathbb{R}$ be a linear functional. Let $a, b \in \mathbb{R}$ such that $\phi(x_1, x_2) = ax_1 + bx_2$. Prove carefully and directly that

(a) If \mathbb{R}^2 has norm given by $||(x_1, x_2)||_1 = |x_1| + |x_2|$ then

$$\|\phi\| = \max\{|a|, |b|\}$$

(b) If \mathbb{R}^2 has norm given by $||(x_1, x_2)||_{\infty} = \max\{|x_1|, |x_2|\}$ then

$$\|\phi\| = |a| + |b|$$

(c) If $p \in \mathbb{R}_{>1}$ and \mathbb{R}^2 has norm given by $\|(x_1, x_2)\|_p = (|x_1|^p + |x_2|^p)^{1/p}$ then

$$\|\phi\| = (|a|^q + |b|^q)^{1/q}, \quad \text{where} \quad \frac{1}{p} + \frac{1}{q} = 1$$

Question 4. Let $\mathbb{R}^{\infty} = \{(x_1, x_2, \ldots) \mid x_i \in \mathbb{R}\}$. For $x = (x_1, x_2, \ldots) \in \mathbb{R}^{\infty}$ define

$$||x||_1 = |x_1| + |x_2| + \cdots$$
 and $||x||_{\infty} = \sup\{|x_1|, |x_2|, \dots\}$

Define subspaces of \mathbb{R}^{∞} by

$$c_c = \{x = (x_1, x_2, \ldots) \in \mathbb{R}^{\infty} \mid \text{all but a finite number of } x_i \text{ are } 0\}$$

$$c_0 = \{x = (x_1, x_2, \ldots) \mid x_i \in \mathbb{R} \text{ and } \lim_{n \to \infty} x_n = 0\},$$

$$\ell^1 = \{x = (x_1, x_2, \ldots) \mid x_i \in \mathbb{R} \text{ and } \|x\|_1 \text{ exists in } \mathbb{R}\},$$

$$\ell^{\infty} = \{x = (x_1, x_2, \ldots) \mid x_i \in \mathbb{R} \text{ and } \|x\|_{\infty} \text{ exists in } \mathbb{R}\},$$

and for $p \in \mathbb{R}_{>1}$ define

$$\ell^p = \{x = (x_1, x_2, \ldots) \mid x_i \in \mathbb{R} \text{ and } \|x\|_p \text{ exists in } \mathbb{R}\}, \text{ where}$$

$$|x||_p = \left(\sum_{i \in \mathbb{Z}_{>0}} |x_i|^p\right)^{1/p}.$$

The purpose of this question is to establish and study the sequence

Part A. (containment of vector spaces)

- (a) Show that $c_c \subseteq c_0$ and $c_c \neq c_0$.
- (b) Show that $c_c \subseteq \ell^1$ and $c_c \neq \ell^1$.
- (c) Show that $\ell^1 \subseteq \ell^2$ and $\ell^1 \neq \ell^2$.
- (d) Show that if $p \in \mathbb{R}_{>1}$ then $\ell^1 \subseteq \ell^p$ and $\ell^1 \neq \ell^p$.
- (e) Show that if $p, q \in \mathbb{R}_{>1}$ and p < q then $\ell^p \subseteq \ell^q$ and $\ell^p \neq \ell^q$.
- (f) Show that if $q \in \mathbb{R}_{>1}$ then $\ell^q \subseteq c_0$ and $\ell^q \neq c_0$.
- (g) Show that $c_0 \subseteq \ell^{\infty}$ and $c_0 \neq \ell^{\infty}$.

Part B. (the standard orthonormal sequence) Let W be a subspace of a normed vector space V. The *closure* of W is

$$\overline{W} = \Big\{ \lim_{n \to \infty} w_n \ \Big| \ (w_1, w_2, \ldots) \text{ is a sequence in } W \text{ and } \lim_{n \to \infty} w_n \text{ exists in } V \Big\}.$$

Let

$$e_1 = (1, 0, 0, 0, 0, \ldots), \quad e_2 = (0, 1, 0, 0, 0, \ldots), \quad e_3 = (0, 0, 1, 0, 0, \ldots), \quad \ldots$$

(a) (the span) Show that span $\{e_1, e_2, \ldots\} = c_c$.

- (b) (the closure of the span in ℓ^p) Let $p \in \mathbb{R}_{>1}$. Show that, in ℓ^p , $\overline{\operatorname{span}\{e_1, e_2, \ldots\}} = \ell^p$.
- (c) (the closure of the span in ℓ^1) Show that, in ℓ^1 , $\overline{\text{span}\{e_1, e_2, \ldots\}} = \ell^1$.
- (d) (the closure of the span in ℓ^{∞}) Show that, in ℓ^{∞} , $\overline{\text{span}\{e_1, e_2, \ldots\}} = c_0$.

Part D. (Duals) If V is a normed \mathbb{R} -vector space then

 $V^* = \{\phi \colon V \to \mathbb{R} \mid \phi \text{ is a linear transformation and } \|\phi\| \text{ exists in } \mathbb{R}\}.$

- (a) (Dual of c_0) Show that $\ell^1 = (c_0)^*$.
- (b) (Dual of an ℓ^p -space) Let $p \in \mathbb{R}_{>1}$. Show that $\ell^q = (\ell^p)^*$, where $\frac{1}{p} + \frac{1}{q} = 1$.
- (c) (Dual of ℓ^2) Show that $\ell^2 = (\ell^2)^*$.
- (d) (Dual of ℓ^1) Show that $\ell^{\infty} = (\ell^1)^*$.
- (e) (Dual of the dual of c_0) Show that $c_0 \subseteq ((c_0)^*)^*$ and $c_0 \neq ((c_0)^*)^*$.
- (f) (Dual of the dual of ℓ^1) Show that $\ell^1 \subseteq ((\ell^1)^*)^*$ and $\ell^1 \neq ((\ell^1)^*)^*$.

Part E. (Completeness) Let V be a normed vector space with norm $|| ||_V$. The tolerance set is $\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}$. For $\epsilon \in \mathbb{E}$, the ϵ -diagonal is

$$B_{\epsilon} = \{(v, w) \in V \times V \mid ||v - w||_{V} < \epsilon\}.$$

A Cauchy sequence in V is a sequence $(v_1, v_2, ...)$ such that

if $\epsilon \in \mathbb{E}$ then there exists $N \in \mathbb{Z}_{>0}$ such that

if $m, n \in \mathbb{Z}_{>N}$ then $(v_m, v_n) \in B_{\epsilon}$

(eventually the sequence is all inside the ϵ -diagonal). The normed vector space V is *complete* if it satisfies

if (v_1, v_2, \ldots) is a Cauchy sequence in V then $\lim_{n \to \infty} v_n$ exists in V.

- (a) $(\ell^1 \text{ is complete})$ Show that ℓ^1 is a complete normed vector space.
- (b) (ℓ^p is complete) Let $p \in \mathbb{R}_{>1}$. Show that ℓ^p is a complete normed vector space.
- (c) (ℓ^{∞} is complete) Show that ℓ^{∞} is a complete normed vector space.

Part F. (Completions) Let W be a subspace of a complete normed vector space V. The completion of W in V is

$$\widehat{W} = \Big\{ \lim_{n \to \infty} w_n \ \Big| \ (w_1, w_2, \ldots) \text{ is a Cauchy sequence in } W \Big\}.$$

- (a) (The completion of c_c with respect to $\| \|_{\infty}$) Show that, in ℓ^{∞} , the completion of c_c is c_0 .
- (b) (The completion of c_c with respect to $|| ||_p$) Let $p \in \mathbb{R}_{>1}$. Show that, in ℓ^p , the completion of c_c is ℓ^p .