MAST30026 Metric and Hilbert Spaces Assignment 1

Due: 4pm Thursday August 11, 2022

Question 1. (Existence of eigenvectors)
(a) Let $\theta \in \mathbb{R}_{[0,2 \pi)}$. Find the eigenvectors of $\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right)$ as a linear operator on \mathbb{C}^{2}.
(b) Show that $\left(\begin{array}{cc}\cos \left(\frac{\pi}{4}\right) & \sin \left(\frac{\pi}{4}\right) \\ -\sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right)\end{array}\right)=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ does not have an eigenvector as a linear operator on \mathbb{R}^{2}.
(c) Let $n \in \mathbb{Z}_{>0}$ and let $A \in M_{n}(\mathbb{C})$. Prove carefully that A has an eigenvector as an operator on \mathbb{C}^{n}.

Question 2. (Radius of convergence) Let $\mathbb{C}=\mathbb{R}+i \mathbb{R}$ be the \mathbb{R}-algebra with $i^{2}=-1$ and $-\mathbb{C} \rightarrow \mathbb{C}$ and $\left|\mid: \mathbb{C} \rightarrow \mathbb{R}_{\geq 0}\right.$ given by

$$
\overline{x+i y}=x-i y \quad \text { and } \quad|x+i y|=\sqrt{x^{2}+y^{2}} .
$$

Let $\epsilon \in \mathbb{R}_{>0}$. Let $\left(a_{1}, a_{2}, \ldots\right)$ be a sequence in \mathbb{C} and

$$
\text { assume that } \quad \sum_{n=1}^{\infty} a_{n} \epsilon^{n} \quad \text { exists in } \mathbb{C} \text {. }
$$

Let $B_{\epsilon}(0)=\{z \in \mathbb{C}| | z \mid<\epsilon\}$. Prove carefully that

$$
\text { if } z \in B_{\epsilon}(0) \quad \text { then } \quad \sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { exists in } \mathbb{C} \text {. }
$$

Question 3. (the dual of \mathbb{R}^{2} in the $\left\|\|_{p}\right.$ norm) If V is a normed \mathbb{R}-vector space with norm $\| \|_{V}$ and $\phi: V \rightarrow \mathbb{R}$ is a linear transformation then the operator norm of ϕ is

$$
\|\phi\|=\sup \left\{\left.\frac{\|\phi(v)\|_{V}}{\|v\|_{V}} \right\rvert\, v \in V\right\}
$$

Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a linear functional. Let $a, b \in \mathbb{R}$ such that $\phi\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$. Prove carefully and directly that
(a) If \mathbb{R}^{2} has norm given by $\left\|\left(x_{1}, x_{2}\right)\right\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$ then

$$
\|\phi\|=\max \{|a|,|b|\}
$$

(b) If \mathbb{R}^{2} has norm given by $\left\|\left(x_{1}, x_{2}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$ then

$$
\|\phi\|=|a|+|b| .
$$

(c) If $p \in \mathbb{R}_{>1}$ and \mathbb{R}^{2} has norm given by $\left\|\left(x_{1}, x_{2}\right)\right\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p}$ then

$$
\|\phi\|=\left(|a|^{q}+|b|^{q}\right)^{1 / q}, \quad \text { where } \quad \frac{1}{p}+\frac{1}{q}=1 .
$$

Question 4. Let $\mathbb{R}^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R}\right\}$. For $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}$ define

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots \quad \text { and } \quad\|x\|_{\infty}=\sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\right\} .
$$

Define subspaces of \mathbb{R}^{∞} by

$$
\begin{aligned}
c_{c} & =\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty} \mid \text { all but a finite number of } x_{i} \text { are } 0\right\}, \\
c_{0} & =\left\{x=\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and } \lim _{n \rightarrow \infty} x_{n}=0\right\}, \\
\ell^{1} & =\left\{x=\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|x\|_{1} \text { exists in } \mathbb{R}\right\}, \\
\ell^{\infty} & =\left\{x=\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|x\|_{\infty} \text { exists in } \mathbb{R}\right\},
\end{aligned}
$$

and for $p \in \mathbb{R}_{>1}$ define

$$
\ell^{p}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|x\|_{p} \text { exists in } \mathbb{R}\right\}, \quad \text { where } \quad\|x\|_{p}=\left(\sum_{i \in \mathbb{Z}_{>0}}\left|x_{i}\right|^{p}\right)^{1 / p} .
$$

The purpose of this question is to establish and study the sequence

Part A. (containment of vector spaces)
(a) Show that $c_{c} \subseteq c_{0}$ and $c_{c} \neq c_{0}$.
(b) Show that $c_{c} \subseteq \ell^{1}$ and $c_{c} \neq \ell^{1}$.
(c) Show that $\ell^{1} \subseteq \ell^{2}$ and $\ell^{1} \neq \ell^{2}$.
(d) Show that if $p \in \mathbb{R}_{>1}$ then $\ell^{1} \subseteq \ell^{p}$ and $\ell^{1} \neq \ell^{p}$.
(e) Show that if $p, q \in \mathbb{R}_{>1}$ and $p<q$ then $\ell^{p} \subseteq \ell^{q}$ and $\ell^{p} \neq \ell^{q}$.
(f) Show that if $q \in \mathbb{R}_{>1}$ then $\ell^{q} \subseteq c_{0}$ and $\ell^{q} \neq c_{0}$.
(g) Show that $c_{0} \subseteq \ell^{\infty}$ and $c_{0} \neq \ell^{\infty}$.

Part B. (the standard orthonormal sequence) Let W be a subspace of a normed vector space V. The closure of W is

$$
\bar{W}=\left\{\lim _{n \rightarrow \infty} w_{n} \mid\left(w_{1}, w_{2}, \ldots\right) \text { is a sequence in } W \text { and } \lim _{n \rightarrow \infty} w_{n} \text { exists in } V\right\} .
$$

Let

$$
e_{1}=(1,0,0,0,0, \ldots), \quad e_{2}=(0,1,0,0,0, \ldots), \quad e_{3}=(0,0,1,0,0, \ldots), \quad \ldots,
$$

(a) (the span) Show that $\operatorname{span}\left\{e_{1}, e_{2}, \ldots\right\}=c_{c}$.
(b) (the closure of the span in ℓ^{p}) Let $p \in \mathbb{R}_{>1}$. Show that, in $\ell^{p}, \overline{\operatorname{span}\left\{e_{1}, e_{2}, \ldots\right\}}=\ell^{p}$.
(c) (the closure of the span in ℓ^{1}) Show that, in $\ell^{1}, \overline{\operatorname{span}\left\{e_{1}, e_{2}, \ldots\right\}}=\ell^{1}$.
(d) (the closure of the span in ℓ^{∞}) Show that, in $\ell^{\infty}, \overline{\operatorname{span}\left\{e_{1}, e_{2}, \ldots\right\}}=c_{0}$.

Part D. (Duals) If V is a normed \mathbb{R}-vector space then

$$
V^{*}=\{\phi: V \rightarrow \mathbb{R} \mid \phi \text { is a linear transformation and }\|\phi\| \text { exists in } \mathbb{R}\} .
$$

(a) (Dual of c_{0}) Show that $\ell^{1}=\left(c_{0}\right)^{*}$.
(b) (Dual of an ℓ^{p}-space) Let $p \in \mathbb{R}_{>1}$. Show that $\ell^{q}=\left(\ell^{p}\right)^{*}$, where $\frac{1}{p}+\frac{1}{q}=1$.
(c) (Dual of ℓ^{2}) Show that $\ell^{2}=\left(\ell^{2}\right)^{*}$.
(d) (Dual of ℓ^{1}) Show that $\ell^{\infty}=\left(\ell^{1}\right)^{*}$.
(e) (Dual of the dual of c_{0}) Show that $c_{0} \subseteq\left(\left(c_{0}\right)^{*}\right)^{*}$ and $c_{0} \neq\left(\left(c_{0}\right)^{*}\right)^{*}$.
(f) (Dual of the dual of ℓ^{1}) Show that $\ell^{1} \subseteq\left(\left(\ell^{1}\right)^{*}\right)^{*}$ and $\ell^{1} \neq\left(\left(\ell^{1}\right)^{*}\right)^{*}$.

Part E. (Completeness) Let V be a normed vector space with norm $\left\|\|_{V}\right.$. The tolerance set is $\mathbb{E}=\left\{10^{-1}, 10^{-2}, \ldots\right\}$. For $\epsilon \in \mathbb{E}$, the ϵ-diagonal is

$$
B_{\epsilon}=\left\{(v, w) \in V \times V \mid\|v-w\|_{V}<\epsilon\right\} .
$$

A Cauchy sequence in V is a sequence $\left(v_{1}, v_{2}, \ldots\right)$ such that

$$
\begin{aligned}
& \text { if } \epsilon \in \mathbb{E} \text { then there exists } N \in \mathbb{Z}_{>0} \text { such that } \\
& \text { if } m, n \in \mathbb{Z}_{\geq N} \text { then }\left(v_{m}, v_{n}\right) \in B_{\epsilon}
\end{aligned}
$$

(eventually the sequence is all inside the ϵ-diagonal). The normed vector space V is complete if it satisfies

$$
\text { if }\left(v_{1}, v_{2}, \ldots\right) \text { is a Cauchy sequence in } V \text { then } \lim _{n \rightarrow \infty} v_{n} \text { exists in } V \text {. }
$$

(a) (ℓ^{1} is complete) Show that ℓ^{1} is a complete normed vector space.
(b) (ℓ^{p} is complete) Let $p \in \mathbb{R}_{>1}$. Show that ℓ^{p} is a complete normed vector space.
(c) (ℓ^{∞} is complete) Show that ℓ^{∞} is a complete normed vector space.

Part F. (Completions) Let W be a subspace of a complete normed vector space V. The completion of W in V is

$$
\widehat{W}=\left\{\lim _{n \rightarrow \infty} w_{n} \mid\left(w_{1}, w_{2}, \ldots\right) \text { is a Cauchy sequence in } W\right\} .
$$

(a) (The completion of c_{c} with respect to $\left\|\|_{\infty}\right.$) Show that, in ℓ^{∞}, the completion of c_{c} is c_{0}.
(b) (The completion of c_{c} with respect to $\left\|\|_{p}\right.$) Let $p \in \mathbb{R}_{>1}$. Show that, in ℓ^{p}, the completion of c_{c} is ℓ^{p}.

