MAST30026 Metric and Hilbert Spaces Assignment 3

Due: 4pm Thursday October 6, 2022

Question 1. (Product metric gives product topology) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and let $d:(X \times Y) \times(X \times Y) \rightarrow \mathbb{R}_{\geq 0}$ be defined by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
$$

(a) Prove carefully that d is a metric on $X \times Y$.
(b) Let $\mathbb{E}=\left\{10^{-1}, 10^{-2}, \ldots\right\}$ and let $B_{\epsilon}(p)$ denote the open ball of radius ϵ at p. Using the metrics d_{X}, d_{Y} and d define

$$
\begin{aligned}
& \mathcal{B}_{X \times Y}=\left\{B_{\epsilon}(x, y) \mid \epsilon \in \mathbb{E},(x, y) \in X \times Y\right\}, \quad \text { and } \\
& \mathcal{P}_{X \times Y}=\left\{B_{\epsilon_{1}}(x) \times B_{\epsilon_{2}}(y) \mid \epsilon_{1}, \epsilon_{2} \in \mathbb{E}, x \in X, y \in Y\right\}
\end{aligned}
$$

Let \mathcal{T}_{m} be the topology on $X \times Y$ generated by $\mathcal{B}_{X \times Y}$ and let \mathcal{T} be the topology on $X \times Y$ generated by $\mathcal{P}_{X \times Y}$. Prove carefully that $\mathcal{T}_{m}=\mathcal{T}$.
(c) Carefully sketch the open ball $B_{1}(0)$ in each of the metric spaces $\left(\mathbb{R}^{3}, d_{1}\right),\left(\mathbb{R}^{3}, d_{2}\right)$ and $\left(\mathbb{R}^{3}, d_{\infty}\right)$, where

$$
\begin{aligned}
d_{1}(x, y) & =\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+\left|x_{3}-y_{3}\right| \\
d_{2}(x, y) & =\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}} \\
d_{\infty} & =\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|,\left|x_{3}-y_{3}\right|\right\}
\end{aligned}
$$

for $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ in \mathbb{R}^{3}.
Question 2. The Zariski topology (also called the cofinite topology) on \mathbb{R} is

$$
\mathcal{T}=\left\{U \subseteq \mathbb{R} \mid U^{c} \text { is finite }\right\} \cup\{\emptyset, \mathbb{R}\}, \quad \text { where } U^{c} \text { denotes the complement of } U \text { in } \mathbb{R}
$$

(a) Prove carefully that \mathcal{T} is a topology on \mathbb{R}.
(b) Prove carefully that $(\mathbb{R}, \mathcal{T})$ is not Hausdorff.
(c) Determine (with proof) $\overline{\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}}$ in $(\mathbb{R}, \mathcal{T})$.
(d) Determine (with proof) the connected sets in $(\mathbb{R}, \mathcal{T})$.
(e) Determine (with proof) the compact sets in $(\mathbb{R}, \mathcal{T})$.
(f) Find (with proof) a metric $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ such that the metric space topology on \mathbb{R} determined by the metric d is the same as \mathcal{T}.

Question 3. Let $X=\left\{0_{1}\right\} \cup\left\{0_{2}\right\} \cup \mathbb{R}_{>0}$ and define a function $d: X \times X \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ by

$$
d(y, x)=d(x, y) \quad \text { and } \quad d(x, y)= \begin{cases}|y-x|, & \text { if } x, y \in \mathbb{R}_{>0} \\ y, & \text { if } y \in \mathbb{R}_{>0} \text { and } x \in\left\{0_{1}, 0_{2}\right\}, \\ 0, & \text { if } x=0_{1} \text { and } y=0_{1} \\ 0, & \text { if } x=0_{2} \text { and } y=0_{2} \\ \infty, & \text { if } x=0_{1} \text { and } y=0_{2}\end{cases}
$$

Let $\mathbb{E}=\left\{10^{-1}, 10^{-2}, \ldots\right\}$ and let $B_{\epsilon}(x)=\{y \in X \mid d(y, x)<\epsilon\}$ for $\epsilon \in \mathbb{E}$ and $x \in X$. Let \mathcal{T} be the topology on X generated by

$$
\mathcal{B}=\left\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{E}, x \in X\right\}
$$

(a) Prove carefully that (X, \mathcal{T}) is not Hausdorff.
(b) Determine (with proof) $\overline{\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}}$ in (X, \mathcal{T}).

Question 4. Let (X, \mathcal{T}) be a topological space. Let $S \subseteq X$.
(a) Carefully define what it means for S to be connected.
(b) Carefully define what it means for S to be path connected.
(c) Prove carefully that if S is path connected then S is connected.
(d) Give an explicit example of subset S of \mathbb{R}^{2} (with the standard metric topology) such that S is connected but S is not path connected. Be sure to prove carefully that the S in your example is connected and is not path connected.

Question 5. Let t be a formal variable and define the field of formal power series $\mathbb{C}((t))$ and its ring of integers $\mathbb{C}[[t]]$ by

$$
\begin{aligned}
& \mathbb{C}((t))=\left\{a_{k} t^{k}+a_{k+1} t^{k+1}+\cdots \mid k \in \mathbb{Z}, a_{i} \in \mathbb{C} \text { and } a_{k} \neq 0\right\} \cup\{0\}, \\
& \cup \mid \\
& \mathbb{C}[[t]]=\left\{a_{0}+a_{1} t+a_{2} t^{2}+\cdots \mid a_{i} \in \mathbb{C}\right\} .
\end{aligned}
$$

Define functions $\left|\mid: \mathbb{C}((t)) \rightarrow \mathbb{R}_{\geq 0}\right.$ and $d: \mathbb{C}((t)) \times \mathbb{C}((t)) \rightarrow \mathbb{R}_{\geq 0}$ by

$$
d(a, b)=|b-a|, \quad \text { where } \quad\left|a_{k} t^{k}+a_{k+1} t^{k+1}+\cdots\right|=10^{-k} \quad \text { if } a_{k} \neq 0
$$

(a) Prove carefully that

$$
\mathbb{C}((t))=\left\{\left.\frac{f(t)}{g(t)} \right\rvert\, f(t), g(t) \in \mathbb{C}[[t]] \text { and } g(t) \neq 0\right\}
$$

(b) Prove carefully that $d: \mathbb{C}((t)) \times \mathbb{C}((t)) \rightarrow \mathbb{R}_{\geq 0}$ is a metric on $\mathbb{C}((t))$.
(c) Prove that $\mathbb{C}[[t]]$ is the completion of $\mathbb{C}[t]$.
(d) Prove that $\mathbb{C}((t))$ is the completion of $\mathbb{C}(t)$, where

$$
\mathbb{C}(t)=\left\{\left.\frac{f(t)}{g(t)} \right\rvert\, f(t), g(t) \in \mathbb{C}[t] \text { and } g(t) \neq 0\right\}
$$

(e) For $z(t) \in \mathbb{C}((t))$ define

$$
\exp (z(t))=\sum_{n \in \mathbb{Z}_{>0}} \frac{z(t)^{n}}{n!}
$$

Prove carefully that the radius of convergence of $\exp (z(t))$ is 1 i.e., prove that if $|z(t)|<1$ then $\exp (z(t))$ converges to an element of $\mathbb{C}((t))$ and if $|z(t)|>1$ then $\exp (z(t))$ does not converge to an element of $\mathbb{C}((t))$. Give an example of $z(t) \in \mathbb{C}((t))$ such that $|z(t)|=1$ and $\exp (z(t))$ does not converge to an element of $\mathbb{C}((t))$, and also give an example of $z(t) \in \mathbb{C}((t))$ with $|z(t)|=1$ such that $\exp (z(t))$ does converge to an element of $\mathbb{C}((t))$.

