MAST30026 Metric and Hilbert Spaces Assignment 3

Due: 4pm Thursday October 6, 2022

Question 1. (Product metric gives product topology) Let (X, d_X) and (Y, d_Y) be metric spaces and let $d: (X \times Y) \times (X \times Y) \to \mathbb{R}_{\geq 0}$ be defined by

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

- (a) Prove carefully that d is a metric on $X \times Y$.
- (b) Let $\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}$ and let $B_{\epsilon}(p)$ denote the open ball of radius ϵ at p. Using the metrics d_X, d_Y and d define

$$\mathcal{B}_{X \times Y} = \{ B_{\epsilon}(x, y) \mid \epsilon \in \mathbb{E}, (x, y) \in X \times Y \}, \text{ and} \\ \mathcal{P}_{X \times Y} = \{ B_{\epsilon_1}(x) \times B_{\epsilon_2}(y) \mid \epsilon_1, \epsilon_2 \in \mathbb{E}, x \in X, y \in Y \}.$$

Let \mathcal{T}_m be the topology on $X \times Y$ generated by $\mathcal{B}_{X \times Y}$ and let \mathcal{T} be the topology on $X \times Y$ generated by $\mathcal{P}_{X \times Y}$. Prove carefully that $\mathcal{T}_m = \mathcal{T}$.

(c) Carefully sketch the open ball $B_1(0)$ in each of the metric spaces $(\mathbb{R}^3, d_1), (\mathbb{R}^3, d_2)$ and (\mathbb{R}^3, d_∞) , where

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + |x_3 - y_3|,$$

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2},$$

$$d_{\infty} = \max\{|x_1 - y_1|, |x_2 - y_2|, |x_3 - y_3|\}.$$

for $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ in \mathbb{R}^3 .

Question 2. The Zariski topology (also called the *cofinite topology*) on \mathbb{R} is

 $\mathcal{T} = \{ U \subseteq \mathbb{R} \mid U^c \text{ is finite} \} \cup \{ \emptyset, \mathbb{R} \}, \qquad \text{where } U^c \text{ denotes the complement of } U \text{ in } \mathbb{R}.$

- (a) Prove carefully that \mathcal{T} is a topology on \mathbb{R} .
- (b) Prove carefully that $(\mathbb{R}, \mathcal{T})$ is not Hausdorff.
- (c) Determine (with proof) $\overline{\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}}$ in $(\mathbb{R}, \mathcal{T})$.
- (d) Determine (with proof) the connected sets in $(\mathbb{R}, \mathcal{T})$.
- (e) Determine (with proof) the compact sets in $(\mathbb{R}, \mathcal{T})$.
- (f) Find (with proof) a metric $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$ such that the metric space topology on \mathbb{R} determined by the metric d is the same as \mathcal{T} .

Question 3. Let $X = \{0_1\} \cup \{0_2\} \cup \mathbb{R}_{>0}$ and define a function $d: X \times X \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ by

$$d(y,x) = d(x,y) \quad \text{and} \quad d(x,y) = \begin{cases} |y-x|, & \text{if } x, y \in \mathbb{R}_{>0}, \\ y, & \text{if } y \in \mathbb{R}_{>0} \text{ and } x \in \{0_1, 0_2\}, \\ 0, & \text{if } x = 0_1 \text{ and } y = 0_1, \\ 0, & \text{if } x = 0_2 \text{ and } y = 0_2, \\ \infty, & \text{if } x = 0_1 \text{ and } y = 0_2. \end{cases}$$

Let $\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}$ and let $B_{\epsilon}(x) = \{y \in X \mid d(y, x) < \epsilon\}$ for $\epsilon \in \mathbb{E}$ and $x \in X$. Let \mathcal{T} be the topology on X generated by

 $\mathcal{B} = \{ B_{\epsilon}(x) \mid \epsilon \in \mathbb{E}, x \in X \}.$

- (a) Prove carefully that (X, \mathcal{T}) is not Hausdorff.
- (b) Determine (with proof) $\overline{\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}}$ in (X, \mathcal{T}) .

Question 4. Let (X, \mathcal{T}) be a topological space. Let $S \subseteq X$.

- (a) Carefully define what it means for S to be connected.
- (b) Carefully define what it means for S to be path connected.
- (c) Prove carefully that if S is path connected then S is connected.
- (d) Give an explicit example of subset S of \mathbb{R}^2 (with the standard metric topology) such that S is connected but S is not path connected. Be sure to prove carefully that the S in your example is connected and is not path connected.

Question 5. Let t be a formal variable and define the field of formal power series $\mathbb{C}((t))$ and its ring of integers $\mathbb{C}[[t]]$ by

$$\mathbb{C}((t)) = \{a_k t^k + a_{k+1} t^{k+1} + \dots \mid k \in \mathbb{Z}, a_i \in \mathbb{C} \text{ and } a_k \neq 0\} \cup \{0\}.$$
$$\cup |$$
$$\mathbb{C}[[t]] = \{a_0 + a_1 t + a_2 t^2 + \dots \mid a_i \in \mathbb{C}\}.$$

Define functions $| : \mathbb{C}((t)) \to \mathbb{R}_{\geq 0}$ and $d: \mathbb{C}((t)) \times \mathbb{C}((t)) \to \mathbb{R}_{\geq 0}$ by

$$d(a,b) = |b-a|,$$
 where $|a_k t^k + a_{k+1} t^{k+1} + \dots | = 10^{-k}$ if $a_k \neq 0.$

(a) Prove carefully that

$$\mathbb{C}((t)) = \left\{ \frac{f(t)}{g(t)} \mid f(t), g(t) \in \mathbb{C}[[t]] \text{ and } g(t) \neq 0 \right\}.$$

- (b) Prove carefully that $d: \mathbb{C}((t)) \times \mathbb{C}((t)) \to \mathbb{R}_{\geq 0}$ is a metric on $\mathbb{C}((t))$.
- (c) Prove that $\mathbb{C}[[t]]$ is the completion of $\mathbb{C}[t]$.
- (d) Prove that $\mathbb{C}((t))$ is the completion of $\mathbb{C}(t)$, where

$$\mathbb{C}(t) = \Big\{ \frac{f(t)}{g(t)} \ \Big| \ f(t), g(t) \in \mathbb{C}[t] \text{ and } g(t) \neq 0 \Big\}.$$

(e) For $z(t) \in \mathbb{C}((t))$ define

$$\exp(z(t)) = \sum_{n \in \mathbb{Z}_{>0}} \frac{z(t)^n}{n!}.$$

Prove carefully that the radius of convergence of $\exp(z(t))$ is 1 i.e., prove that if |z(t)| < 1 then $\exp(z(t))$ converges to an element of $\mathbb{C}((t))$ and if |z(t)| > 1 then $\exp(z(t))$ does not converge to an element of $\mathbb{C}((t))$. Give an example of $z(t) \in \mathbb{C}((t))$ such that |z(t)| = 1 and $\exp(z(t))$ does not converge to an element of $\mathbb{C}((t))$, and also give an example of $z(t) \in \mathbb{C}((t))$ with |z(t)| = 1 such that $\exp(z(t))$ does converge to an element of $\mathbb{C}((t))$.