4 Existence and uniqueness of limits

The point of this section is to determine conditions on a space for limits to exist (comapactness) and for limits to be unique (Hausdorff spaces).

4.1 Compactness in metric spaces

A strict metric space is a set X with a function $d: X \times X \to \mathbb{R}_{>0}$ such that

- (a) (diagonal condition) If $x \in X$ then d(x, x) = 0,
- (b) (diagonal condition) If $x, y \in X$ and d(x, y) = 0 then x = y,
- (c) (symmetry condition) If $x, y \in X$ then d(x, y) = d(y, x),
- (d) (the triangle inequality) If $x, y, z \in X$ then $d(x, y) \leq d(x, z) + d(z, y)$.

The goal of this section is to explain that if (X, d) is a strict metric space then

$$\begin{array}{ccc} \text{cover compact} & \Longrightarrow & \text{ball compact} & \Longrightarrow & \text{bounded} \\ & & & \uparrow & & & \\ \text{sequentially compact} & \Longrightarrow & \text{Cauchy compact} & \Longrightarrow & \text{closed in } X \end{array}$$
(MC)

The properties appearing in (MC) are defined below. *Sequential compactness* is a condition stated purely in terms of sequences and *cover compactness* is a condition stated purely in terms of open sets (topology) and so, a priori, it is amazing that they turn out to be equivalent.

In addition to (MC) the following results are of importance.

Theorem 4.1. Let (X, d) be a metric space and let $A \subseteq X$. If A is ball compact and Cauchy compact then A is cover compact.

 $\begin{array}{rcl} cover \ compact & \Longrightarrow & ball \ compact & \Longrightarrow & bounded \\ & \Downarrow & \uparrow & \longleftarrow & + \\ sequentially \ compact & \Longrightarrow & Cauchy \ compact & \Longrightarrow & closed \ in \ X \end{array}$

Theorem 4.2. Let $X = \mathbb{R}^n$ with metric given by d(x, y) = |x - y|. Let $A \subseteq X$. If A is closed in X and bounded then A is cover compact.

 $\begin{array}{ccc} cover \ compact & \Longrightarrow & ball \ compact & \stackrel{\text{in } \mathbb{R}^n}{\iff} & bounded \\ & & & & \\ & & & & \\ sequentially \ compact & \Longrightarrow & Cauchy \ compact & \stackrel{\text{in } \mathbb{R}^n}{\Longrightarrow} \ closed \ in \ X \end{array}$

4.1.1 Definitions of the types of compactness

The set

 $\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\} = \{10^{-k} \mid k \in \mathbb{Z}_{>0}\}$ is the accuracy set.

Specifying an element of \mathbb{E} specifies the desired number of decimal places of accuracy.

Let (X, d) be a strict metric space.

A sequence in X is

a function
$$\vec{x} \colon \mathbb{Z}_{>0} \to X$$

 $n \mapsto x_n$

Let (x_1, x_2, \ldots) be a sequence in X. A limit point of (x_1, x_2, \ldots) is $z \in X$ such that

if $\epsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $d(x_n, z) < \epsilon$.

Write $z = \lim_{k \to \infty} x_k$ if z is a limit point of (x_1, x_2, \ldots) . A *cluster point of* (x_1, x_2, \ldots) is $z \in X$ such that

there exists a subsequence $(x_{n_1}, x_{n_2}, \ldots)$ of (x_1, x_2, \ldots) such that $z = \lim_{k \to \infty} x_{n_k}$.

A Cauchy sequence in X is a sequence $(x_1, x_2, ...)$ in X such that

if $\epsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{\geq \ell}$ then $d(x_m, x_n) < \epsilon$.

Let $x \in X$ and let $\epsilon \in \mathbb{E}$. The open ball of radius ϵ at x is

$$B_{\epsilon}(x) = \{ y \in X \mid d(x, y) < \epsilon \}.$$

The metric space topology on X is

 $\mathcal{T}_d = \{ U \subseteq X \mid \text{if } x \in U \text{ then there exists } \epsilon \in \mathbb{E} \text{ such that } B_{\epsilon}(x) \subseteq U \}.$

An open set in X is a set in \mathcal{T}_d .

Let (X, d) be a strict metric space and let $A \subseteq X$.

- The set A is sequentially compact if every sequence in A has a cluster point in A.
- The set A is *Cauchy compact*, or *complete*, if every Cauchy sequence in A has a limit point in A. (In English: A is complete if every Cauchy sequence in A converges in A.)
- The set A is closed in X if A satisfies:
 if (a₁, a₂,...) is a sequence in A and z ∈ X is a limit point of (a₁, a₂,...) then z ∈ A.
 (In English: A is closed if every limit point for A is in A.)
- The set A is bounded if there exists $x_1 \in X$ and $\epsilon \in \mathbb{R}_{>0}$ such that $A \subseteq B_{\epsilon}(x_1)$. (In English: A is bounded if can be covered by a single open ball.)
- The set A is ball compact in X if A satisfies if $\epsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $x_1, x_2, \ldots, x_\ell \in X$ such that

$$A \subseteq B_{\epsilon}(x_1) \cup B_{\epsilon}(x_2) \cup \cdots B_{\epsilon}(x_{\ell}).$$

(In English: A can be covered by a finite number of balls of radius ϵ .)

• The set A is *cover compact* if A satisfies

if
$$\mathcal{S} \subseteq \mathcal{T}_d$$
 and $A \subseteq \left(\bigcup_{U \in \mathcal{S}} U\right)$ then there exists $\ell \in \mathbb{Z}_{>0}$ and
 $U_1, U_2, \dots, U_\ell \in \mathcal{S}$ such that $A \subseteq U_1 \cup U_2 \cup \dots \cup U_\ell$.
(C4)

(In English: every open cover has a finite subcover.)

• Synonyms for ball compact are precompact and totally bounded.

cartoon of the finite subcover property (C4)

4.1.2 Cluster and limit points; Cauchy and convergent sequences

The proof of part (e) of Proposition 4.3 uses Proposition 4.4(a).

Proposition 4.3. Let (X, d) be a metric space. Let $A \subseteq X$ and let (a_1, a_2, \ldots) be a sequence in A.

- (a) (Limit points are unique) If $z_1, z_2 \in X$ are limit points of $(a_1, a_2, ...)$ then $z_1 = z_2$.
- (b) (Limit points are cluster points) If $z \in X$ is a limit point of $(a_1, a_2, ...)$ then z is a cluster point of $(a_1, a_2, ...)$.
- (c) (Cluster points of Cauchy sequences are limit points) If $(a_1, a_2, ...)$ is a Cauchy sequence and z is a cluster point of $(a_1, a_2, ...)$ then z is a limit point of $(a_1, a_2, ...)$.
- (d) (Convergent sequences are Cauchy) If there exists $z \in X$ such that z is a limit point of $(a_1, a_2, ...)$ then $(a_1, a_2, ...)$ is Cauchy sequence.
- (e) If A is ball compact in X then $(a_1, a_2, ...)$ has a Cauchy subsequence.

4.1.3 Compactness and subspaces

Proposition 4.4. Let (X, d) be a metric space and let $A \subseteq X$. Let $B \subseteq A$.

(a) If B is ball compact in A then B is ball compact in B.

- (b) If A is bounded then B is bounded.
- (c) If A is cover compact and B is closed in A then B is cover compact.
- (d) If A is sequentially compact and B is closed in A then B is sequentially compact.
- (e) If A is Cauchy compact and B is closed in A then B is Cauchy compact.

Sketch of proof of Proposition 4.4.

(a) Since $A \supseteq B$ then a finite cover of A by $B_{\epsilon}(x)$ is a finite cover of B by $B_{\epsilon}(x)$.

(b) Since $A \supseteq B$ then $B_M(x) \supseteq A$ implies $B_M(x) \supseteq B$.

(c) If $(b_1, b_2, ...)$ is a sequence in B then it is also a sequence in A and since B is closed a cluster point of $(b_1, b_2, ...)$ in A will also be in B.

(d) If $(b_1, b_2, ...)$ is a Cauchy sequence in B then it is also a sequence in A and since B is closed a limit point of $(b_1, b_2, ...)$ in A will also be in B.

4.1.4 The additional statements in Theorem 4.2

Proposition 4.5. Let \mathbb{R}^n have the standard metric and let $A \subseteq \mathbb{R}^n$.

(a) (Bounded subsets of \mathbb{R}^n are ball compact) If A is bounded then A is ball compact.

(b) (Closed subsets of \mathbb{R}^n are Cauchy compact) If A is closed in \mathbb{R}^n then A is Cauchy compact.

Proof. (Sketch) If A is bounded of diameter M then (by the Archimedean property of \mathbb{R}) A can be covered with a finite number (about $10^{\ell}M$) of cubes of width $10^{-\ell}$. Since \mathbb{R}^n is complete part (b) follows from Proposition 4.4(e).

4.1.5 Sketch of the proof of the implications in (MC)

Cover compact \Rightarrow **ball compact**: If $\varepsilon \in \mathbb{E}$ then $S_{\varepsilon} = \{B_{\varepsilon}(a) \mid a \in A\}$ is a cover of A.

Ball compact \Rightarrow **bounded**: If A is ball compact and $A \subseteq B_1(x_1) \cup \cdots B_1(x_\ell)$ then $x = x_1$ and $M = \max\{d(x_1, x_2), d(x_1, x_3), \dots, d(x_1, x_\ell)\} + 2$ should do to get $A \subseteq B_M(x)$.

Cover compact \Rightarrow **sequentially compact**: Assume (a_1, a_2, \ldots) is a sequence with no cluster point. For $x \in X$ let U_x be open such that $x \in U_x$ and U_x does not contain all but a finite number of points of (a_1, a_2, \ldots) . Then $S = \{U_x \mid x \in X\}$ is an open cover with no finite subcover.

Sequentially compact \Rightarrow **Cauchy compact**: If $(a_1, a_2, ...)$ is a Cauchy sequence, it has a cluster point since A is seq. compact, and this cluster point is a limit point since $(a_1, a_2, ...)$ is Cauchy.

Cauchy compact \Rightarrow **closed**: If A is Cauchy compact and z is a close point to A then there is a sequence (a_1, a_2, \ldots) that converges to z. Since convergent sequences are Cauchy, this is a Cauchy sequence in A. Since A is Cauchy compact, its limit point z is in A.

Sequentially compact \Rightarrow **ball compact**: Assume A is not ball compact. Let $\epsilon \in \mathbb{E}$ such that $\mathcal{S}_{\epsilon} = \{B_{\epsilon}(a) \mid a \in A\}$ does not have a finite subcover. Let $a_1, a_2, \ldots \in A$ such that

$$a_1 \in A$$
 and $a_{k+1} \in (B_{\epsilon}(a_1) \cup \cdots \cup B_{\epsilon}(a_{k-1}))^c$.

Then (a_1, a_2, \ldots) is a sequence in A which has no cluster point since $d(a_i, a_j) \ge \epsilon$ for $i \ne j$.

Ball compact and Cauchy compact \Rightarrow **sequentially compact**: Assume $(a_1, a_2, ...)$ is a sequence in A. Since A is ball compact $(a_1, a_2, ...)$ has a Cauchy subsequence which converges in A, since A is Cauchy compact. This limit point is a cluster point of $(a_1, a_2, ...)$.

Ball compact and Cauchy compact \Rightarrow **cover compact**: Assume *A* is ball compact and not cover compact. Let \mathcal{S} be an open cover of *A* with no finite subcover. Using that *A* is ball compact, choose a "bad ball" (there will be at least one) $B_{10^{-1}}(a_1)$ of radius 10^{-1} from a finite 10^{-1} -cover of *A*, i.e. $B_{10^{-1}}(a_1) \cap A$ cannot be covered by a finite subset of \mathcal{S} . Next pick a "bad ball" (there will be at least one) $B_{10^{-2}}(a_2)$ of radius 10^{-2} from a finite 10^{-2} -cover of $A \cap B_{10^{-1}}(a_1)$, i.e. $B_{10^{-2}}(a_2) \cap B_{10^{-1}}(a_1) \cap A$ cannot be covered by a finite subset of \mathcal{S} . Continue this process to produce a Cauchy sequence (a_1, a_2, \ldots) in *A*. This Cauchy sequence does not have a limit point. So *A* is not Cauchy compact.

4.2 Hausdorff and compact topological spaces

4.2.1 Topological spaces

A topological space is a set X with a specification of the open subsets of X where it is required that

- (a) \emptyset is open in X and X is open in X,
- (b) Unions of open sets in X are open in X,

(c) Finite intersections of open sets in X are open in X.

In other words, a *topology* on X is a set \mathcal{T} of subsets of X such that

- (a) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- (b) If $\mathcal{S} \subseteq \mathcal{T}$ then $\left(\bigcup_{U \in \mathcal{S}} U\right) \in \mathcal{T}$,
- (c) If $\ell \in \mathbb{Z}_{>0}$ and $U_1, U_2, \ldots, U_\ell \in \mathcal{T}$ then $U_1 \cap U_2 \cap \cdots \cap U_\ell \in \mathcal{T}$.

A topological space is a set X with a topology \mathcal{T} on X. An open set in X is a set in \mathcal{T} .

The four possible topologies on $X = \{0, 1\}$.

In a topological space, perhaps even more important than the open sets are the neighborhoods. Let (X, \mathcal{T}) be a topological space. Let $x \in X$. The *neighborhood filter of* x is

 $\mathcal{N}(x) = \{ N \subseteq X \mid \text{there exists } U \in \mathcal{T} \text{ such that } x \in U \text{ and } N \supseteq U \}.$

A neighborhood of x is a set in $\mathcal{N}(x)$.

Neighborhoods of x.

Let (X, \mathcal{T}) be a topological space.

A closed set in X is $K \subseteq X$ such that the complement X - K is open.

Let $A \subseteq X$. A close point to A is an element $x \in X$ such that

if
$$N \in \mathcal{N}(x)$$
 then $N \cap A \neq \emptyset$.

The closure of A is the subset \overline{A} of X such that

- (a) \overline{A} is closed in X and $\overline{A} \supseteq A$,
- (b) If C is closed in X and $C \supseteq A$ then $C \supseteq \overline{A}$.

Proposition 4.6. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. The closure of A is the set of close points of A.

4.3 Filters

Let X be a set. A filter on X is a collection \mathcal{F} of subsets of X such that

- (a) $\emptyset \notin \mathcal{F}$.
- (b) (upper ideal) If $N \in \mathcal{F}$ and E is a subset of X with $N \subseteq E$ then $E \in \mathcal{F}$,
- (c) (closed under finite intersection) If $\ell \in \mathbb{Z}_{>0}$ and

 $N_1, N_2, \ldots, N_\ell \in \mathcal{F}$ then $N_1 \cap N_2 \cap \cdots \cap N_\ell \in \mathcal{F}$,

An ultrafilter on X is a maximal filter on X, i.e. an ultrafilter on X is a filter \mathcal{G} on X such that

if \mathcal{F} is a filter on X and $\mathcal{F} \supseteq \mathcal{G}$ then $\mathcal{F} = \mathcal{G}$.

Let (X, \mathcal{T}) be a topological space and let $z \in Z$. The neighborhood filter of z is

$$\mathcal{N}(z) = \{N \subseteq X \mid \text{there exists } U \in \mathcal{T} \text{ such that } x \in U \text{ and } N \supseteq U\}$$

Let (X, \mathcal{T}) be a topological space and let \mathcal{F} be a filter on X.

A limit point of \mathcal{F} is $z \in X$ such that $\mathcal{F} \supseteq \mathcal{N}(z)$.

A cluster point of \mathcal{F} is $z \in X$ such that there exists a filter \mathcal{G} on X with $\mathcal{G} \supseteq \mathcal{F}$ and z is a limit point of \mathcal{G} .

4.4 Hausdorff topological spaces

The goal of this section is to explain that if (X, \mathcal{T}) is a topological space then

limit unique \Leftrightarrow Hausdorff \Leftrightarrow separated \Leftrightarrow neighborhood pinpointed (H)

The definitions of these terms are as follows. Let (X, \mathcal{T}) be a topological space.

- The space (X, \mathcal{T}) is *limit unique* if every filter on X has at most one limit point.
- The space (X, \mathcal{T}) is *Hausdorff* if (X, \mathcal{T}) satisfies

if $x, y \in X$ and $x \neq y$ then there exists $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$,

The Hausdorff property

• The space (X, \mathcal{T}) is separated if

 $\Delta(X) = \{(x, x) \mid x \in X\} \text{ is a closed subset of } X \times X$

(with the product topology on $X \times X$).

• The space (X, \mathcal{T}) is neighborhood pinpointed if (X, \mathcal{T}) satisfies

if
$$x \in X$$
 then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}$

4.4.1 Sketch of the proof of the equivalences in (H)

Theorem 4.7. The following conditions on a topological space (X, \mathcal{T}) are equivalent.

(limit unique) If \mathcal{G} is a filter on X then \mathcal{G} has at most one limit point.

(cluster unique) If \mathcal{F} is a filter on X and x is a limit point of \mathcal{F} then x is the only cluster piont of \mathcal{F} . (neighborhood pinpointed) If $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}$.

(Hausdorff) If $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

(separated) $\Delta(X) = \{(x, x) \mid x \in X\}$ is a closed subset of $X \times X$ (with the product topology on $X \times X$).

Sketch of proof.

Hausdorff \Leftrightarrow separated: The point here is that if $x, y \in X$ with $x \neq y$ then $(x, y) \in X \times X$ is not a close point to $\Delta(X)$ if and only if there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $(U \times V) \cap \Delta(X) = \emptyset$ and this happens if and only if there exists $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

Hausdorff \Leftrightarrow neighborhood pinpointed \Leftrightarrow (H6) \Leftrightarrow limit unique: The point here is that if (X, \mathcal{T}) is Hausdroff holds and $x, y \in X$ with $y \neq x$ then $y \notin \bigcap_{U \in \mathcal{N}(x)} \overline{U}$ which is equivalent to $\{x\} = \bigcap_{U \in \mathcal{N}(x)} \overline{U}$ so that x is the only cluster point of $\mathcal{N}(x)$. If \mathcal{F} is a filter with x as a limit point then x is also a cluster point of \mathcal{F} and

$$x \in \bigcap_{M \in \mathcal{F}} \overline{M} \subseteq \bigcap_{U \in \mathcal{N}(x)} \overline{U} = \{x\}.$$

4.5 Compact topological spaces

The goal of this section is to explain that if (X, \mathcal{T}) is a topological space then

filter compact \Leftrightarrow ultrafilter compact \Leftrightarrow exclusion compact \Leftrightarrow cover compact (C)

The definitions of these terms are as follows. Let (X, \mathcal{T}) be a topological space.

- The space (X, \mathcal{T}) is *filter compact* if every filter has a cluster point.
- The space (X, \mathcal{T}) is *ultrafilter compact* if every ultrafilter has a limit point.
- The space (X, \mathcal{T}) is exclusion compact if every closed exclusion contains a finite exclusion, i.e.

If \mathcal{C} is a collection of closed sets of X such that $\bigcap K = \emptyset$

then there exists $\ell \in \mathbb{Z}_{>0}$ and $K_1, K_2, \ldots, K_\ell \in \mathcal{C}$ such that $K_1 \cap K_2 \cap \cdots \cap K_\ell = \emptyset$.

• The space (X, \mathcal{T}) is cover compact if every open cover has a finite subcover, i.e.

If \mathcal{S} is a collection of open sets of X such that $\bigcup_{U \in \mathcal{S}} U = X$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $U_1, U_2, \ldots, U_\ell \in \mathcal{S}$ such that $U_1 \cup U_2 \cup \cdots \cup U_\ell = X$.

4.5.1 Sketch of the proof of the equivalences in (C)

Theorem 4.8. The following conditions on a topological space (X, \mathcal{T}) are equivalent.

(C1: filter compact) If \mathcal{F} is an filter on X then there exists $x \in X$ such that x is a cluster point of \mathcal{F} . (C2: ultrafilter compact) If \mathcal{G} is an ultrafilter on X then there exists $x \in X$ such that x is a limit point of \mathcal{G} .

(C3: exclusion compact) If \mathcal{C} is a collection of closed sets of X such that $\bigcap_{X \in \mathcal{C}} K = \emptyset$ then there exists

 $\ell \in \mathbb{Z}_{>0}$ and $K_1, K_2, \ldots, K_\ell \in \mathcal{C}$ such that $K_1 \cap K_2 \cap \cdots \cap K_\ell = \emptyset$.

(C4: cover compact) If S is a collection of open sets of X such that $\bigcup_{U \in S} U = X$ then there exists $\ell \in \mathbb{Z}_{>0}$

and $U_1, U_2, \ldots, U_{\ell} \in \mathcal{S}$ such that $U_1 \cup U_2 \cup \cdots \cup U_{\ell} = X$.

Sketch of proof.

exclusion compact \Leftrightarrow cover compact: By taking complements.

(not exclusion compact) \Leftrightarrow (not filter compact): Produce a filter \mathcal{F} with no cluster point from a collection of closed sets \mathcal{C} with does not satisfy (C3) by letting

$$\mathcal{F} = \{ N \subseteq X \mid \text{there exists } K \in \mathcal{C} \text{ with } N \supseteq K \}$$

and produce a set of closed sets C that does not satisfy (C3) from a filter \mathcal{F} with no cluster point by setting

$$\mathcal{C} = \{ N \mid N \in \mathcal{F} \}.$$

filter compact \Leftrightarrow ultrafilter compact: The point is that every filter \mathcal{F} is contained an ultrafilter \mathcal{G} and every cluster point of an ultrafilter is a limit point.

4.5.2 Cover compactness and subspaces

Proposition 4.9. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$.

(a) If X is Hausdorff and A is cover compact then A is closed in X.

(b) Let $B \subseteq A$. If A is cover compact and B is closed in X then B is cover compact.

4.6 Notes and references

Theorem 4.10. (see [Ra1]) Let (X, d) be a strict metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq X$. Then

 $\overline{A} = \{ z \in X \mid \text{there exists a sequence } (a_1, a_2, \ldots) \text{ in } A \text{ such that } z = \lim_{n \to \infty} a_n \},$

where \overline{A} is the closure of A in X.

4.6.1 Spaces

Although it is traditional to define topological spaces via axioms for **open sets**, there are equivalent (and useful!) definitions of topological spaces by axioms for the **closed sets**, and via axioms for **neighborhoods**. Another important and useful point of view is to view the topological spaces as a category with morphisms the **continuous functions**. From this point of view the notion of *topological space* and the notion of *continuous function* are "equivalent data".

4.6.2 Filters, Hausdorff and Compact spaces

The treatment of filters here is a distillation of material found in Bourbaki: the definition of filter, is in <u>Bou</u>, Top. Ch. I §6 no. 1], the definition of limit point and cluster point of a filter are <u>Bou</u>, Top. Ch. I, §7 Def. 1 and 2] and the definition of limit point and cluster point of a function are <u>Bou</u>, Top. Ch. I §7 Def. 3]. Theorem **??** is <u>Bou</u>, Top. Ch. I §7 Prop. 9] and Proposition **??** is Example 1 in <u>Bou</u>, Top. Ch. I §7 no. 3].

The presentation of the equivalent conditions for **Hausdorff spaces**, Theorem 4.7, follows Bourbaki Bou, Top. Ch. I §8 no. 1].

- (H3) The condition that $\Delta(X)$ is closed in $X \times X$ is the condition used in algebraic geometry for a separated scheme (see Ha, Ch. II §4] and Macdonald (1.11) in CSM).
- (H5) Hausdorff spaces are the spaces such that limits are unique, when they exist.
- (H1) The condition (H1) is the separation axiom that is used often as the definition of a Hausdorff topological space.

The presentation of the equivalent conditions for **compact spaces**, Theorem 4.8 follows Bou Top. Ch. I §9 no. 1]. The second and third conditions in the definition of a filter say that finite intersections of elements of a filter cannot be empty. This is the rigidity condition that plays an important role in arguments relating limit points and compactness.

4.7 Some proofs

4.7.1 Cluster and limit points; Cauchy and convergent sequences

The proof of part (e) of Proposition 4.11 uses Proposition 4.12(a).

Proposition 4.11. Let (X, d) be a metric space. Let $A \subseteq X$ and let $(a_1, a_2, ...)$ be a sequence in A.

- (a) (Limit points are unique) If $z_1, z_2 \in X$ are limit points of $(a_1, a_2, ...)$ then $z_1 = z_2$.
- (b) (Limit points are cluster points) If $z \in X$ is a limit point of $(a_1, a_2, ...)$ then z is a cluster point of $(a_1, a_2, ...)$.
- (c) (Cluster points of Cauchy sequences are limit points) If $(a_1, a_2, ...)$ is a Cauchy sequence and z is a cluster point of $(a_1, a_2, ...)$ then z is a limit point of $(a_1, a_2, ...)$.
- (d) (Convergent sequences are Cauchy) If there exists $z \in X$ such that z is a limit point of $(a_1, a_2, ...)$ then $(a_1, a_2, ...)$ is Cauchy sequence.
- (e) If A is ball compact in X then $(a_1, a_2, ...)$ has a Cauchy subsequence.

Proof.

(a) Assume $z_1, z_2 \in X$ are limit points of $(a_1, a_2, ...)$. To show: $z_1 = z_2$. To show: $d(z_1, z_2) = 0$. To show: If $\epsilon \in \mathbb{E}$ then $d(z_1, z_2) < \epsilon$. Assume $\epsilon \in \mathbb{E}$. To show: $d(z_1, z_2) < \epsilon$. Let $\ell_1 \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell_1}$ then $d(a_n, z_1) < \frac{1}{2}\epsilon$. Let $\ell_2 \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell_2}$ then $d(a_n, z_2) < \frac{1}{2}\epsilon$. Let $\ell = \max(\ell_1, \ell_2)$. By the triangle inequality,

 $d(z_1, z_2) \le d(z_1, a_\ell) + d(a_\ell, z_2) < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon.$

So $d(z_1, z_2) = 0$. So $z_1 = z_2$.

(b) Assume z is a limit point of (a₁, a₂,...). Thus, if ε ∈ E then there exists ℓ ∈ Z_{>0} such that if n ∈ Z_{≥ℓ} then d(a_n, z) < ε. To show: There exists a subsequence (a_{n1}, a_{n2},...) of (a₁, a₂,...) such that z = lim_{k→∞} a_{nk}. Let n₁ = 1, n₂ = 2, ..., so that n_k = k. To show: lim_{k→∞} a_{nk} = z. Since lim_{k→∞} a_k = z then lim a_n = lim a_k = z.

$$\lim_{k \to \infty} a_{n_k} = \lim_{k \to \infty} a_k = z.$$

So z is a cluster point of (a_1, a_2, \ldots) .

(c) Let (a_1, a_2, \ldots) be a Cauchy sequence in X and let z be a cluster point of (a_1, a_2, \ldots) . To show: $z = \lim_{n \to \infty} a_n$. To show: If $\epsilon \in \mathbb{E}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $d(a_n, z) < \epsilon$. Assume $\epsilon \in \mathbb{E}$. To show: There exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $d(a_n, z) < \epsilon$.

Since $(a_1, a_2, ...)$ is a Cauchy sequence then there exists $N \in \mathbb{Z}_{>0}$ such that if $m, k \in \mathbb{Z}_{\geq N}$ then $d(a_m, a_k) < \frac{1}{2}\epsilon$.

Since z is a cluster point of a_1, a_2, \ldots then there exists a subsequence $(a_{m_1}, a_{m_2}, \ldots)$ such that $\lim_{p \to \infty} a_{m_p} = z$.

So there exists $m_p \in \mathbb{Z}_{\geq N}$ such that $d(a_{m_p}, z) < \frac{1}{2}\epsilon$. To show: If $n \in \mathbb{Z}_{\geq N}$ then $d(a_n, z) < \epsilon$. Assume $n \in \mathbb{Z}_{\geq N}$. To show: $d(a_n, z) < \epsilon$.

$$d(a_n, z) \le d(a_n, a_{m_p}) + d(a_{m_p}, z) < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon.$$

So $z = \lim_{n \to \infty} a_n$.

(d) Let $(a_1, a_2, ...)$ be a convergent sequence in X. Then there exists $z \in X$ such that $\lim_{k \to \infty} a_k = z$. To show: (a_1, a_2, \ldots) is a Cauchy sequence. To show: If $\epsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{\geq \ell}$ then $d(a_m, a_n) < \epsilon$. Assume $\epsilon \in \mathbb{E}$. Since $\lim_{k \to \infty} a_k = z$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $m \in \mathbb{Z}_{\geq \ell}$ then $d(a_m, z) < \frac{\epsilon}{2}$. To show: If $m, n \in \mathbb{Z}_{\geq \ell}$ then $d(a_m, a_n) < \epsilon$. Assume $m, n \in \mathbb{Z}_{\geq \ell}$. To show: $d(a_m, a_n) < \epsilon$.

$$d(a_m, a_n) \le d(a_m, z) + d(z, a_n) < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon.$$

So $d(a_m, a_n) < \epsilon$. So (a_1, a_2, \ldots) is a Cauchy sequence.

(e) Assume A is ball compact and (a₁, a₂,...) is a sequence in A. To show: There exists a subsequence (a_{n1}, a_{n2},...) of (a₁, a₂,...) which is Cauchy. Since A is ball compact in A then {a₁, a₂,...} is ball compact in A. By Proposition 4.4(a), then {a₁, a₂,...} is ball compact in {a₁, a₂,...}. Since {a₁, a₂,...} is ball compact in {a₁, a₂,...} then if ε ∈ ℝ_{>0} then there exists n ∈ ℤ_{>0} such that B_ε(x_n) contains an infinite number of (a₁, a₂,...).

Using the pigeonhole principle (if you have a finite number of boxes containing an infinite number of pigeons then at least one box will contain an infinite number of pigeons),

Let $n_1 \in \mathbb{Z}_{>0}$ be minimal such that $B_1(a_{n_1})$ contains an infinite number of (a_1, a_2, \ldots) ; Let $n_2 \in \mathbb{Z}_{>n_1}$ be minimal such that $B_{\frac{1}{2}}(a_{n_2})$ contains an infinite number of $(a_1, a_2, \ldots) \cap B_1(a_{n_1})$; Let $n_3 \in \mathbb{Z}_{>n_2}$ be minimal such that $B_{\frac{1}{3}}(a_{n_3})$ contains an infinite number of $(a_1, a_2, \ldots) \cap B_1(a_{n_1}) \cap B_{\frac{1}{2}}(a_{n_2})$; etc.

To show: $(a_{n_1}, a_{n_2}, \ldots)$ is Cauchy.

To show: If $\epsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $r, s \in \mathbb{Z}_{\geq \ell}$ then $d(a_{n_r}, a_{n_s}) < \epsilon$. Assume $\epsilon \in \mathbb{E}$. Let $\epsilon = 10^{-k}$. Let $\ell = 10^{k+1}$ so that $\frac{1}{\ell} = 10^{-k+1} < \frac{\epsilon}{2}$. To show: If $r, s \in \mathbb{Z}_{\geq \ell}$ then $d(a_{n_r}, a_{n_s}) < \epsilon$. Assume $r, s \in \mathbb{Z}_{\geq \ell}$. To show: $d(a_{n_r}, a_{n_s}) < \epsilon$. Let $a_p \in (a_1, a_2, \ldots) \cap (B_1(a_{n_1}) \cap \cdots \cap B_{\frac{1}{r}}(a_{n_r})) \cap (B_1(a_{n_1}) \cap \cdots \cap B_{\frac{1}{s}}(a_{n_s}))$. Then $d(a_{n_r}, a_{n_s}) \leq d(a_{n_r}, a_{n_\ell}) + d(a_{n_\ell}, a_{n_s}) < \frac{1}{r} + \frac{1}{s} < \frac{1}{\ell} + \frac{1}{\ell} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. So (a_{n_r}, a_{n_s}) is Couchy

So $(a_{n_1}, a_{n_2}, \ldots)$ is Cauchy.

	-	_	-	
L				
L				
L				

4.7.2 Compactness and subspaces

Proposition 4.12. Let (X, d) be a metric space and let $A \subseteq X$. Let $B \subseteq A$.

(a) If B is ball compact in A then B is ball compact in B.

- (b) If A is bounded then B is bounded.
- (c) If A is cover compact and B is closed in A then B is cover compact.
- (d) If A is sequentially compact and B is closed in A then B is sequentially compact.
- (e) If A is Cauchy compact and B is closed in A then B is Cauchy compact.

Proof.

(a) Assume *B* is ball compact in *A*. To show: *B* is ball compact in *B*. To show: If $\epsilon \in \mathbb{E}$ then there exist $\ell \in \mathbb{Z}_{>0}$ and $b_1, b_2, \ldots, b_\ell \in B$ such that $B_{\epsilon}(b_1) \cup B_{\epsilon}(b_2) \cup \cdots \cup B_{\epsilon}(b_\ell) \supseteq B$. Assume $\epsilon \in \mathbb{E}$. To show: There exist $\ell \in \mathbb{Z}_{>0}$ and $b_1, b_2, \ldots, b_\ell \in B$ such that $B_{\epsilon}(b_1) \cup B_{\epsilon}(b_2) \cup \cdots \cup B_{\epsilon}(b_\ell) \supseteq B$. Using that *B* is ball compact in *A*, let $m \in \mathbb{Z}_{>0}$ and $a_1, a_2, \ldots, a_m \in A$ such that

$$B_{\epsilon/2}(a_1) \cup \cdots \cup B_{\epsilon/2}(a_m) \supseteq B.$$

Let $J = \{j \in \{1, \dots, m\} \mid B_{\epsilon/2}(a_j) \cap B \neq \emptyset\}$ and let $\ell = \operatorname{Card}(J)$. For $j \in J$ let $b_j \in B_{\epsilon/2}(a_j) \cap B \neq \emptyset$. Then, since $B_{\epsilon}(b_j) \supseteq B_{\frac{\epsilon}{2}}(a_j)$,

$$\left(\bigcup_{j\in J} B_{\epsilon}(b_j)\right) \supseteq \left(B_{\frac{\epsilon}{2}}(a_1)\cap B\right) \cup \dots \cup \left(B_{\frac{\epsilon}{2}}(a_m)\cap B\right) \supseteq B\cap B = B.$$

So B is ball compact in B.

- (b) Assume A is bounded. To show: B is bounded.
 Since A is bounded there exists x₁ ∈ X and ε ∈ ℝ_{>0} such that B_ε(x₁) ⊇ A.
 Since A ⊇ B then B_ε(x₁) ⊇ B.
 So B is bounded.
- (c) Assume A is cover compact and B is closed in X. To show: B is cover compact. To show: If $S \subseteq \mathcal{T}_d$ such that $B \subseteq \left(\bigcup_{U \in S} U\right)$ then there exists a finite subset \mathcal{K} of S such that $B \subseteq \left(\bigcup_{U \in \mathcal{K}} U\right)$. Let $S \subseteq \mathcal{T}_d$ such that $B \subseteq \left(\bigcup_{U \in S} U\right)$.

Since *B* is closed, then B^c is open and $S \cup \{B^c\}$ is an open cover of *A*. Since *A* is compact then there exists a finite subset $\mathcal{J} \subseteq S \cup \{B^c\}$ such that $A \subseteq \left(\bigcup_{c \in \mathcal{J}} U\right)$. Let

$$\mathcal{K} = \begin{cases} \mathcal{J}, & \text{if } B^c \notin \mathcal{J}, \\ \mathcal{J} - \{B^c\}, & \text{if } B^c \in \mathcal{J}. \end{cases}$$

Then \mathcal{K} is a finite subset of \mathcal{S} such that $B \subseteq \left(\bigcup_{U \in \mathcal{K}} U\right)$. So B is cover compact.

(d) Assume that A is sequentially compact and B is closed in X. To show: B is sequentially compact. To show: If (b₁, b₂,...) is a sequence in B then there exists z ∈ B such that z is a cluster point of (b₁, b₂,...). Assume (b₁, b₂,...) is a sequence in B. Since B ⊆ A then (b₁, b₂,...) is a sequence in A. Since A is sequentially compact there exists z ∈ A such that such that z is a cluster point of (b₁, b₂,...). Thus there is a subsequence (b_{n1}, b_{n2},...) such that z = lim_{k→∞} b_{nk}. Since B is closed in X and (b_{n1}, b_{n2},...) is a sequence in B then z ∈ B. So B is sequentially compact.

(e) Assume A is Cauchy compact and B is closed in X. To show: B is Cauchy compact. To show: If (b₁, b₂,...) is a Cauchy sequence in B then there exists z ∈ B such that z = lim_{n→∞} b_n. Assume (b₁, b₂,...) is a Cauchy sequence in B. Since B ⊆ A then (b₁, b₂,...) is a Cauchy sequence in A. Since A is Cauchy compact there exists z ∈ A such that z = lim_{n→∞} b_n. Since B is closed in X and (b₁, b₂,...) is a sequence in B then z ∈ B. So B is Cauchy compact.

4.7.3 Cover compactness and subspaces

Proposition 4.13. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$.

(a) If X is Hausdorff and A is cover compact then A is closed in X.

(b) Let $B \subseteq A$. If A is cover compact and B is closed in X then B is cover compact.

Proof.

(a) Assume X is Hausdorff and A is compact. To show: A is closed in X. To show: A^c is open in X. To show: If $x \in A^c$ then x is an interior point of A. To show: There exists $U \in \mathcal{T}$ such that $x \in U$ and $U \subseteq A^c$. Assume $x \in A^c$. Using that X is Hausdorff, for $y \in A$ let $U_{xy}, V_{xy} \in \mathcal{T}$ be such that $x \in U_{xy}$ and $y \in V_{xy}$ and $U_{xy} \cap V_{xy} = \emptyset$. Then

 $S = \{V_{xy} \mid y \in A\}$ is an open cover of A.

Since A is compact there exists $\ell \in \mathbb{Z}_{>0}$ and $y_1, \ldots, y_\ell \in A$ such that $K \subseteq V_{xy_1} \cup \cdots V_{xy_\ell}$. Let $U = U_{xy_1} \cap \cdots \cap U_{xy_\ell}$. Then $x \in U$ and

$$U \cap A \subseteq (U_{xy_1} \cap \cdots \cup U_{xy_\ell}) \cap (V_{xy_1} \cup \cdots \cup V_{xy_\ell}) = \emptyset.$$

So $U \in \mathcal{T}$ and $x \in U$ and $U \subseteq A^c$. So x is an interior point of A^c . So A^c is open. So A is closed.

(c) Assume A is cover compact and $B \subseteq A$ and B is closed in X. To show: B is cover compact. To show: If $S \subseteq T$ such that $B \subseteq \left(\bigcup_{U \in S} U\right)$ then

there exists a finite subset \mathcal{K} of \mathcal{S} such that $B \subseteq \left(\bigcup_{U \in \mathcal{K}} U\right)$.

Let $\mathcal{S} \subseteq \mathcal{T}$ such that $B \subseteq \left(\bigcup_{U \in \mathcal{S}} U\right)$.

Since B is closed, then B^c is open and $S \cup \{B^c\}$ is an open cover of A. Since A is compact then there exists a finite subset $\mathcal{J} \subseteq S \cup \{B^c\}$ such that $A \subseteq \left(\bigcup_{U \in \mathcal{J}} U\right)$.

Let

$$\mathcal{K} = \begin{cases} \mathcal{J}, & \text{if } B^c \notin \mathcal{J}, \\ \mathcal{J} - \{B^c\}, & \text{if } B^c \in \mathcal{J}. \end{cases}$$

Then \mathcal{K} is a finite subset of \mathcal{S} such that $B \subseteq \left(\bigcup_{U \in \mathcal{K}} U\right)$. So B is cover compact.

So *B* is cover compact.

4.8 Proofs of the implications in (MC)

4.8.1 cover compact \Rightarrow ball compact

Proposition 4.14. Let (X,d) be a strict metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq X$.

If A is cover compact then A is ball compact.

Proof. To show: If A is cover compact then A is ball compact.

Assume A is cover compact.

To show: A is ball compact.

To show: If $k \in \mathbb{Z}_{>0}$ and $\epsilon = 10^{-k}$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $a_1, a_2, \ldots, a_\ell \in A$ such that $A \subseteq B_{\epsilon}(a_1) \cup \cdots \cup B_{\epsilon}(a_\ell)$. Assume $\epsilon \in \mathbb{E}$.

To show: There exists $\ell \in \mathbb{Z}_{>0}$ and $a_1, a_2, \ldots, a_\ell \in A$ such that $A \subseteq B_{\epsilon}(a_1) \cup \cdots \cup B_{\epsilon}(a_\ell)$.

Since A is cover compact and $S = \{B_{\epsilon}(a) \mid a \in A\}$ is an open cover of A, there exists $\ell \in \mathbb{Z}_{>0}$ and $a_1, a_2, \ldots, a_\ell \in A$ such that $A \subseteq B_{\epsilon}(a_1) \cup \cdots \cup B_{\epsilon}(a_\ell)$. So A is ball compact.

4.8.2 Ball compact \Rightarrow bounded

Proposition 4.15. Let (X, d) be a strict metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq X$.

If A is ball compact then A is bounded.

Proof. To show: If A is ball compact then A is bounded. Assume A is ball compact. To show: A is bounded. To show: There exists $a \in A$ and $M \in \mathbb{R}_{>0}$ such that $A \subseteq B_M(a)$. Since A is ball compact there exists $\ell \in \mathbb{Z}_{>0}$ and $x_1, x_2, \ldots, x_\ell \in A$ such that $A \subseteq B_1(x_1) \cup \cdots \cup B_1(x_\ell)$. Let $a = x_1$ and let $M = 2 + \max\{d(x_1, x_1), d(x_1, x_2), d(x_1, x_3), \dots, d(x_1, x_\ell)\}$. To show: $A \subseteq B_M(a)$. To show: If $x \in A$ then d(x, a) < M. Assume $x \in A$. To show: d(x, a) < M. Let $j \in \{1, \ldots, \ell\}$ such that $x \in B_1(x_j)$. Then $d(x,a) = d(x,x_1) \le d(x,x_j) + d(x_j,x_1) \le 1 + (M-2) = M - 1 < M.$ So $x \in B_M(a)$. So $A \subseteq B_M(a)$. So A is bounded.

4.8.3 cover compact \Rightarrow sequentially compact

Proposition 4.16. Let (X, d) be a strict metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq X$.

If A is cover compact then A is sequentially compact.

Proof.

To show: If A is cover compact then A is sequentially compact.

To show: If A is not sequentially compact then A is not cover compact.

Assume A is not sequentially compact.

Then there exists a sequence a_1, a_2, \ldots in A with no cluster point in A.

Thus, if $z \in A$ then there exists $N \in \mathcal{N}(z)$ such that $\operatorname{Card}\{j \mid a_j \in N\}$ is finite. To show: A is not cover compact.

To show: There exists an open cover S of A which does not have a finite subcover. For $x \in A$ let V_x be an open set of A such that

 $x \in V_x$ and $\operatorname{Card}\{j \in \mathbb{Z}_{>0} \mid a_j \in V_x\}$ is finite.

The set V_x exists since x is not a cluster point of (a_1, a_2, a_3, \ldots) . Then $S = \{V_x \mid x \in A\}$ is an open cover of A. To show: S does not contain a finite subcover of A. Assume $\ell \in \mathbb{Z}_{>0}$ and $V_{x_1}, V_{x_2}, \dots, V_{x_{\ell}} \in \mathcal{S}$. Let $k_j \in \mathbb{Z}_{>0}$ be such that if $n \in \mathbb{Z}_{\geq k_j}$ then $a_n \notin V_{x_j}$. Let $k = \max\{k_1, k_2, \dots, k_\ell\}$. Then, if $n \in \mathbb{Z}_{>k}$ then $a_n \notin V_{x_1} \cup \dots \cup V_{x_\ell}$. So $A \nsubseteq V_{x_1} \cup \dots \cup V_{x_\ell} \supseteq A$. So \mathcal{S} has no finite subcover.

So A is not cover compact.

4.8.4 sequentially compact \Rightarrow Cauchy compact

Proposition 4.17. Let (X,d) be a strict metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq X$.

If A is sequentially compact then A is Cauchy compact.

Proof. To show: If A is sequentially compact then A is Cauchy compact.

Assume A is sequentially compact.

To show: A is Cauchy compact.

To show: If (a_1, a_2, \ldots) is a Cauchy sequence in A then (a_1, a_2, \ldots) has a limit point in A. Assume (a_1, a_2, \ldots) is a Cauchy sequence in A.

To show: There exists $a \in A$ such that $\lim_{n \to \infty} a_n = a$.

Let a be a cluster point of (a_1, a_2, \ldots) in A, which exists since A is sequentially compact. By Proposition 4.3(b),

since (a_1, a_2, \ldots) is Cauchy then the cluster point *a* is a limit point of (a_1, a_2, \ldots) . So $a = \lim_{n \to \infty} a_n$.

So A is Cauchy compact.

4.8.5Cauchy compact \Rightarrow closed

Proposition 4.18. Let (X, d) be a strict metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq X$.

If A is Cauchy compact then A is closed.

Proof. To show: If A is Cauchy compact then A is closed in X.

Assume $A \subseteq X$ and A is Cauchy compact.

To show: A is closed in X.

To show: If $(a_1, a_2, \ldots,)$ is a sequence in A and (a_1, a_2, \ldots) converges in X then $\lim_{k \to \infty} a_k \in A$.

Assume (a_1, a_2, \ldots) is a sequence in A and (a_1, a_2, \ldots) converges in X.

Since convergent sequences are Cauchy then (a_1, a_2, \ldots) is a Cauchy sequence.

Since A is Cauchy compact and (a_1, a_2, \ldots) is a Cauchy sequence in A then (a_1, a_2, \ldots) converges in Α.

Since limits in metric spaces are unique, $z = \lim_{k \to \infty} a_k \in A$.

So A is closed in X.

4.8.6 sequentially compact \Rightarrow ball compact

Proposition 4.19. Let (X,d) be a strict metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq X$.

If A is sequentially compact then A is ball compact.

Proof.

To show: If A is sequentially compact then X is ball compact.

To show: Assume A is not ball compact.

To show: A is not sequentially compact.

To show: There exists a sequence $(a_1, a_2, ...)$ in A with no cluster point in A.

Using that A is not ball compact, let $\epsilon \in \mathbb{R}_{>0}$ such that A is not covered by finitely many $B_{\epsilon}(x)$. Let

 $x_1 \in A, \quad x_2 \in B_{\frac{\epsilon}{2}}(a_1)^c \cap A, \quad x_3 \in (B_{\frac{\epsilon}{2}}(a_1) \cup B_{\frac{\epsilon}{2}}(a_2))^c \cap A, \quad \dots$

Then (a_1, a_2, \ldots) has no cluster point, since every $B_{\frac{\epsilon}{2}}(x)$ contains at most one point of (a_1, a_2, \ldots) . So A is not sequentially compact.

4.8.7 Ball compact + Cauchy compact \Rightarrow sequentially compact

Proposition 4.20. Let (X, d) be a complete metric space and let \mathcal{T}_d be the metric space topology on X. Let $A \subseteq A$.

if A is ball compact and Cauchy compact then A is sequentially compact.

Proof. Assume A is ball compact and Cauchy compact.

To show: A is sequentially compact.

To show: If (a_1, a_2, \ldots) is a sequence in A then (a_1, a_2, \ldots) has a cluster point in A.

Assume (a_1, a_2, \ldots) is a sequence in A.

By Proposition 4.3 (d), since A is ball compact then

there exists a subsequence $(a_{n_1}, a_{n_2}, \ldots)$ of (a_1, a_2, \ldots) such that $(a_{n_1}, a_{n_2}, \ldots)$ is Cauchy.

Since A is Cauchy compact $(a_{n_1}, a_{n_2}, \ldots)$ has a limit point in A.

Thus (a_1, a_2, \ldots) has a cluster point A.

So A is sequentially compact.

4.8.8 Ball compact + Cauchy compact \Rightarrow cover compact

Proposition 4.21. Let (X, d) be a metric space and let $A \subseteq X$.

If A is ball compact and Cauchy compact then A is cover compact.

Proof. To show: If A is Cauchy compact then A is cover compact. To show: If A is not cover compact then A is not Cauchy compact. Assume A is not cover compact. Let \mathcal{S} be an open cover with no finite subcover. Let $a_1^{(1)}, \ldots, a_{\ell_1}^{(1)}$ be such that $B_{10^{-1}}(a_1^{(1)}) \cup \cdots \cup B_{10^{-1}}(a_{\ell_1}^{(1)}) \supseteq A$. Let $a_{j_1}^{(1)}$ be such that $A \cap B_{10^{-1}}(a_{j_1}^{(1)})$ is not finitely covered by \mathcal{S} . Let $a_1^{(2)}, \ldots, a_{\ell_2}^{(2)}$ be such that $B_{10^{-2}}(a_1^{(2)}) \cup \cdots \cup B_{10^{-2}}(a_{\ell_2}^{(2)}) \supseteq A \cap B_{10^{-1}}(a_{j_1}^{(1)})$. Let $a_{j_2}^{(2)}$ be such that $A \cap B_{10^{-1}}(a_{j_1}^{(1)}) \cap B_{10^{-2}}(a_{j_2}^{(2)})$ is not finitely covered by \mathcal{S} . Let $a_1^{(3)}, \ldots, a_{\ell_3}^{(3)}$ be such that $B_{10^{-3}}(a_1^{(3)}) \cup \cdots \cup B_{10^{-3}}(a_{\ell_3}^{(3)}) \supseteq A \cap B_{10^{-1}}(a_{j_1}^{(1)}) \cap B_{10^{-2}}(a_{j_2}^{(2)})$. Let $a_{j_3}^{(3)}$ be such that $A \cap B_{10^{-1}}(a_{j_1}^{(1)}) \cap B_{10^{-2}}(a_{j_2}^{(2)}) \cap B_{10^{-3}}(a_{j_3}^{(3)})$ is not finitely covered by \mathcal{S} . Continuing this process produces a sequence $(a_{j_1}^{(1)}, a_{j_2}^{(2)}, \ldots)$ which is Cauchy (If $m, n \ge k + 1$ then
$$\begin{split} & d(a_{j_m}^{(m)}, a_{j_n}^{(n)}) \leq d(a_{j_m}^{(m)}, a_{j_{k+1}}^{(k+1)}) + d(a_{j_{k+1}}^{(k+1)}, a_{j_n}^{(n)}) \leq 10^{-(k+1)} + 10^{-(k+1)} \leq 10^k). \\ & \text{Let } z \in A. \\ & \text{To show: } z \text{ is not a limit point of } (a_{j_1}^{(1)}, a_{j_2}^{(2)}, \ldots). \\ & \text{To show: There exists } \epsilon \in \mathbb{E} \text{ and } \ell \in \mathbb{Z}_{>0} \text{ such that if } n \in \mathbb{Z}_{\geq \ell} \text{ then } d(a_{j_n}^{(n)}, z) > \epsilon. \\ & \text{Let } U \in \mathcal{S} \text{ such that } z \in U. \\ & \text{Since } U \text{ is open in } X \text{ then there exists } k \in \mathbb{Z}_{>0} \text{ such that } B_{10^{-k}}(z) \subseteq U. \\ & \text{Let } \epsilon = 10^{-k} \text{ and let } \ell = k. \\ & \text{To show: If } n \in \mathbb{Z}_{\geq \ell} \text{ then } d(a_{j_n}^{(n)}, z) > \epsilon. \\ & \text{Assume } n \in \mathbb{Z}_{\geq \ell}. \\ & \text{Since } B_{10^{-n}}(a_{j_n}^{(n)}) \not\subseteq B_{10^{-k}}(z) \text{ there exists } y \in B_{10^{-n}}(a_{j_n}^{(n)}) \text{ such that } d(y, z) > 10^{-k}. \\ & \text{Thus } d(a_{j_n}^{(n)}, z) \geq d(y, z) - d(a_{j_n}^{(n)}, y) > 10^{-k} - 10^{-n} > 10^{-k} = \epsilon. \\ & \text{So } z \text{ is not a limit point of } (a_{j_1}^{(1)}, a_{j_2}^{(2)}, \ldots). \\ & \text{So } A \text{ is not Cauchy compact.} \end{split}$$

4.8.9 Subsets of \mathbb{R}^n

Proposition 4.22. Let \mathbb{R}^n have the standard metric and let $A \subseteq \mathbb{R}^n$.

- (a) (Bounded subsets of \mathbb{R}^n are ball compact) If A is bounded then A is ball compact.
- (b) (Closed subsets of \mathbb{R}^n are Cauchy compact) If A is closed in \mathbb{R}^n then A is Cauchy compact.

Proof.

- (a) Assume $A \subseteq \mathbb{R}^n$ is bounded.
 - To show: A is ball compact.

To show: If $\epsilon \in \mathbb{E}$ then there exist $x_1, \ldots, x_\ell \in \mathbb{R}^n$ such that $A \subseteq B_\epsilon(x_1) \cup \cdots \cup B_\epsilon(x_\ell)$. Since A is bounded then there exists $x \in \mathbb{R}_n$ and $M \in \mathbb{R}_{>0}$ such that $A \subseteq B_M(x)$. Let $J = \{x + (c_1, \ldots, c_n) \in \mathbb{R}^n \mid c_i \in \{k10^{-\ell} \mid k \in \{-M, \ldots, M\}\}$. Then

$$\left(\bigcup_{y\in J} B_{\epsilon}(y)\right) \supseteq B_M(x) \supseteq A$$
 and $\operatorname{Card}(J) = (2M)^n$.

So A is ball compact in \mathbb{R}^n . (EXACTLY WHAT PROPERTY OF \mathbb{R}^n DID WE USE?? I THINK THIS IS THE ARCHIMEDEAN PROPERTY)

(b) Assume that A is closed in \mathbb{R}^n .

To show: A is Cauchy compact.

Since \mathbb{R}^n is Cauchy compact and A is closed then, by Proposition 4.4(e), A is Cauchy compact.

4.8.10 Equivalent characterizations of Hausdorff spaces

Theorem 4.23. Let (X, \mathcal{T}) be a topological space. The following are equivalent.

(H) If $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

(H1) If $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}.$

(H2) If $\Delta: X \to X \times X$ is the diagonal map then $\Delta(X)$ is closed in $X \times X$.

(H3) If I is a set and $\Delta: X \to \prod_{k \in I} X_k$, where $X_k = X$ for $k \in I$, is the diagonal map then $\Delta(X)$ is closed in $\prod_{k \in I} X_k$.

(H4) If \mathcal{G} is a filter on X then \mathcal{G} has at most one limit point.

(H5) If \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} then x is the only cluster point of \mathcal{J} .

Proof.

 $(H3) \Rightarrow (H2)$: (H2) is a special case of (H3).

(H2) \Rightarrow (H): Assume $x, y \in X$ and $x \neq y$.

Then $(x, y) \in X \times X$ and $(x, y) \notin \Delta(X)$. Thus, by (H2), $(x, y) \notin \overline{\Delta(X)}$. So (x, y) is not a close point of $\Delta(X)$. So there exists a neighborhood $Z \in \mathcal{N}((x, y))$ such that $Z \cap \Delta(X) = \emptyset$. By the definition of the product topology, there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $(U \times V) \cap \Delta(X) = \emptyset$. So $U \cap V = \emptyset$.

 $(H) \Rightarrow (H3):$

Assume that if $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$. To show: $\Delta(X)$ is closed in $\prod_{k \in I} X_k$, where $X_k = X$.

To show: If $x \in \prod_{k \in I} X_k$ and $x \notin \Delta(X)$ then x is not a close point of $\Delta(X)$. Assume $x = (x_k) \in \prod_{k \in I} X_k$ and $x \notin \Delta(X)$. To show: There exists $W \in \mathcal{N}(x)$ such that $W \cap \Delta(X) = \emptyset$. Let $i, j \in I$ such that $x_i \neq x_j$. Let $V_i \in \mathcal{N}(x_i)$ and $V_j \in \mathcal{N}(x_j)$ such that $V_i \cap V_j = \emptyset$. Then $W = V_i \times V_j \times \prod_{k \neq i, j} X_k \in \mathcal{N}(x)$ and $W \cap \Delta(X) = \emptyset$. So x is not a close point on $\Delta(X)$. So $\Delta(X)$ is closed in $\prod_{k \in I} X_k$.

(H) \Rightarrow (H1): Assume (H). Assume that if $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

To show: If $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}.$

Assume $x \in X$. To show: If $y \in X$ and $y \notin \{x\}$ then $y \notin \bigcap_{N \in \mathcal{N}(x)} \overline{N}$. Assume $y \in X$ and $y \notin \{x\}$. To show: There exists $U \in \mathcal{N}(x)$ such that $y \notin \overline{U}$. By (H), since $y \neq x$, there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$. So there exists $V \in \mathcal{N}(y)$ such that $V \cap U \neq \emptyset$. So y is not a close point to U. So $y \notin \overline{U}$. So $y \notin \bigcap_{N \in \mathcal{N}(x)} \overline{N}$.

(H1) \Rightarrow (H5): Assume that if $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}$. To show: If \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} then x is the only cluster point \mathcal{J} .

Assume \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} . To show: If $y \in X$ is a cluster point of \mathcal{J} then y = x. Assume $y \in X$ is a cluster point of \mathcal{J} . Since y is a cluster point of \mathcal{J} then $y \in \bigcap_{M \in \mathcal{J}} \overline{M}$. Since x is a limit point of \mathcal{J} then $\mathcal{J} \supseteq \mathcal{N}(x)$. So

$$y \in \left(\bigcap_{M \in \mathcal{J}} \overline{M}\right) \subseteq \left(\bigcap_{N \in \mathcal{N}(x)} \overline{N}\right) = \{x\}.$$

So y = x.

(H5) \Rightarrow (H4): Assume that if \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} then x is the only cluster point \mathcal{J} .

To show: If \mathcal{G} is a filter on X then \mathcal{G} has at most one limit point.

Assume \mathcal{G} is a filter on X and x is a limit point of \mathcal{G} . To show: If $y \in X$ is a limit point of \mathcal{G} then y = x. Assume $y \in X$ is a limit point of \mathcal{G} . Since x is a limit point of \mathcal{G} then $\mathcal{G} \supseteq \mathcal{N}(x)$. So $x \in \left(\bigcap_{N \in \mathcal{N}(x)} \overline{N}\right) \supseteq \left(\bigcap_{M \in \mathcal{G}} \overline{M}\right).$

So x is a cluster point of \mathcal{G} .

By (H5), y is the only cluster point of \mathcal{G} and so y = x.

So \mathcal{G} has at most one limit point.

 $(H4) \Rightarrow (H)$: Assume not (H).

Let $x, y \in X$ with $x \neq y$ such that there do not exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ with $U \cap V = \emptyset$. Let \mathcal{J} be the filter generated by

$$\mathcal{B} = \{ U \cap V \mid U \in \mathcal{N}(x), V \in \mathcal{N}(y) \}.$$

Since $X \in \mathcal{N}(y)$ then $\mathcal{N}(x) = \{U \cap X \mid U \in cN(x)\} \subseteq \mathcal{B} \subseteq \mathcal{J}$. Since $X \in \mathcal{N}(x)$ then $\mathcal{N}(y) = \{X \cap V \mid V \in cN(y)\} \subseteq \mathcal{B} \subseteq \mathcal{J}$. So x and y are both limit points of \mathcal{J} . Since $x \neq y$ then (H4) does not hold.

4.8.11 Equivalent characterizations of compact spaces

Theorem 4.24. Let (X, \mathcal{T}) be a topological space. The following are equivalent.

(C1) If \mathcal{J} is an filter on X then there exists $x \in X$ such that x is a cluster point of \mathcal{J} .

- (C2) If \mathcal{G} is an ultrafilter on X then there exists $x \in X$ such that x is a limit point of \mathcal{G} .
- (C3) If \mathcal{C} is a collection of closed sets such that $\bigcap_{K \in \mathcal{C}} K = \emptyset$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $K_1, K_2, \ldots, K_\ell \in \mathbb{Z}_{>0}$

 \mathcal{C} such that $K_1 \cap K_2 \cap \cdots \cap K_{\ell} = \emptyset$.

(C4) If S is a collection of open sets such that $\bigcap_{U \in S} U = X$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $U_1, U_2, \ldots, U_\ell \in S$ such that $U_1 \cup U_2 \cup \cdots \cup U_\ell = X$.

Proof. (Sketch)

 $(C3) \Leftrightarrow (C4)$ by taking complements.

 $(C1) \Rightarrow (C2)$: Assume (C1).

To show: If \mathcal{G} is an ultrafilter on X then there exists $x \in X$ such that x is a limit point of \mathcal{G} . Assume \mathcal{G} is an ultrafilter on X. By (C1), there exists $x \in X$ such that x is a cluster point of \mathcal{G} .

Since \mathcal{G} is an ultrafilter x is a limit point of \mathcal{G} .

 $(C2) \Rightarrow (C1)$: Assume (C2).

To show: If \mathcal{J} is an filter on X then there exists $x \in X$ such that x is a cluster point of \mathcal{J} . Assume \mathcal{J} is a filter on X. Since the collection of filters on X satisfies the hypotheses of Zorn's lemma, there exists an ultrafilter \mathcal{G} such that $\mathcal{G} \supseteq \mathcal{J}$. By (C2), there exists $x \in X$ such that x is a limit point of \mathcal{G} . So x is a cluster point of \mathcal{G} . Since $\mathcal{G} \supseteq \mathcal{J}$ and x is a cluster point of \mathcal{G} then x is cluster point of \mathcal{J} .

(not C3) \Rightarrow (not C1): Assume that there is a collection \mathcal{C} of closed sets such that $\bigcap_{K \in \mathcal{C}} K = \emptyset$ but there does not exist $\ell \in \mathbb{Z}_{>0}$ and $K_1, K_2, \ldots, K_\ell \in \mathcal{C}$ such that $K_1 \cap K_2 \cap \cdots \cap K_\ell = \emptyset$.

Let \mathcal{J} be the set of subsets of X which contain a set in \mathcal{C} . Since there does not exist $\ell \in \mathbb{Z}_{>0}$ and $K_1, K_2, \ldots, K_\ell \in \mathcal{C}$ such that $K_1 \cap K_2 \cap \cdots \cap K_\ell = \emptyset$ the collection \mathcal{J} is a filter. Since $\bigcap_{N \in \mathcal{J}} \overline{N} \subseteq \bigcap_{K \in \mathcal{C}} \overline{K} = \bigcap_{K \in \mathcal{C}} K = \emptyset$, \mathcal{J} does not have a cluster point.

(not C1) \Rightarrow (not C3): Assume that there exists a filter \mathcal{J} on X with no cluster point.

Then $\bigcap_{N \in \mathcal{J}} \overline{N} = \emptyset$. Since \mathcal{J} is a filter, if $\ell \in \mathbb{Z}_{>0}$ and $N_1, \ldots, N_\ell \in \mathcal{J}$ then $N_1 \cap \cdots \cap N_\ell \neq \emptyset$ and therefore $\overline{N_1} \cap \cdots \cap \overline{N_\ell} \neq \emptyset$. Let $\mathcal{C} = \{\overline{N} \mid N \in \mathcal{J}\}$. Then \mathcal{C} is a collection of closed sets such that $\bigcap K = \emptyset$ but there does not exist $K_1, \ldots, K_\ell \in \mathcal{C}$

such that $K_1 \cap \cdots \cap K_\ell = \emptyset$.