5 Completions

The point of this chapter is to introduce Cauchy filters, Cauchy sequences, complete spaces and completions.

Theorem 5.1.

(a) Let (X, \mathcal{X}) be a uniform space. There exists a unique completion $(\widehat{X}, \widehat{\mathcal{X}}, \iota: X \rightarrow \widehat{X})$ of X.
(b) Let (X, d) be a metric space. There exists a unique completion $(\widehat{X}, \hat{d}, \iota: X \rightarrow \widehat{X})$ of X.

5.1 Cauchy sequences and complete metric spaces

Let (X, d) be a metric space. A sequence $\left(x_{1}, x_{2}, \ldots\right)$ in X converges if there exists $z \in X$ such that if $\varepsilon \in \mathbb{R}_{>0}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $d\left(x_{n}, z\right)<\varepsilon$.

A Cauchy sequence in X is a sequence $\left(x_{1}, x_{2}, \ldots\right)$ in X such that
if $\varepsilon \in \mathbb{R}_{>0}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{\geq \ell}$ then $d\left(x_{m}, x_{n}\right)<\varepsilon$.
A metric space (X, d) is complete, or Cauchy compact, if every Cauchy sequence in X converges.

5.1.1 Completion of a metric space

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. An isometry from X to Y is a function $\varphi: X \rightarrow Y$ such that

$$
\text { if } x_{1}, x_{2} \in X \quad \text { then } \quad d_{Y}\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)
$$

Let (X, d) be a metric space. The completion of (X, d) is a metric space (\widehat{X}, \hat{d}) with an isometry

$$
\iota: X \rightarrow \widehat{X} \quad \text { such that } \quad(\widehat{X}, \hat{d}) \text { is complete } \quad \text { and } \quad \overline{\iota(X)}=\widehat{X}
$$

where $\overline{\iota(X)}$ is the closure of the image of ι.

5.1.2 Existence of the completion of a metric space

Let (X, d) be a metric space. The completion of X is the metric space

$$
\widehat{X}=\{\text { Cauchy sequences } \vec{x} \text { in } X\} \quad \text { with the function } \begin{array}{cccc}
\iota: & X & \longrightarrow & \widehat{X} \\
& x & \longmapsto & (x, x, x, \ldots)
\end{array}
$$

where \widehat{X} has the metric

$$
d: \widehat{X} \times \widehat{X} \rightarrow \mathbb{R}_{\geq 0} \quad \text { defined by } \quad d(\vec{x}, \vec{y})=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

and Cauchy sequences $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots\right)$ are equal in \widehat{X},

$$
\vec{x}=\vec{y} \quad \text { if } \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

5.1.3 Cauchy filters and complete uniform spaces

Let (X, \mathcal{X}) be a uniform space.
Let $E \in \mathcal{X}$ and $x \in X$. The E-neighborhood of x is

$$
B_{E}(x)=\{y \in X \mid(x, y) \in E\}
$$

Let $x \in X$. The neighborhood filter of x is
$\mathcal{N}(x)=\left\{N \subseteq X \mid\right.$ there exists $E \in \mathcal{X}$ such that $\left.N \supseteq B_{E}(x).\right\}$
A filter \mathcal{F} on X converges if there exists $z \in X$ such that $\mathcal{F} \supseteq \mathcal{N}(z)$.
A sequence $\left(x_{1}, x_{2}, \ldots\right)$ in X converges if there exists $z \in X$ such that
if $N \in \mathcal{N}(z)$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $x_{n} \in N$.
A Cauchy filter is a filter \mathcal{F} on X such that
if $E \in \mathcal{X}$ then there exists $N \in \mathcal{F}$ such that $N \times N \subseteq E$.
A Cauchy sequence is a sequence $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ in X such that
if $E \in \mathcal{X}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that \quad if $m, n \in \mathbb{Z}_{\geq \ell}$ then $\left(x_{m}, x_{n}\right) \in E$.
A complete space is a uniform space for which every Cauchy filter on X converges.

5.1.4 Completion of a uniform space

Let (X, \mathcal{X}) be a uniform space. A completion of X is a complete Hausdorff uniform space $(\widehat{X}, \widehat{\mathcal{X}})$ with a uniformly continuous function $\iota: X \rightarrow \widehat{X}$ such that
if Y is a complete Hausdorff uniform space and $f: X \rightarrow Y$ is a uniformly continuous map
then there exists a unique uniformly continuous function $g: \widehat{X} \rightarrow Y$ such that $f=g \circ \iota$.

5.1.5 Existence of the completion of a uniform space

Let (X, \mathcal{X}) be a uniform space. A minimal Cauchy filter on X is a Cauchy filter which is minimal with respect to inclusion of filters. An element

$$
V \in \mathcal{X} \text { is symmetric if } V \text { satisfies: } \quad \text { if }(x, y) \in V \text { then }(y, x) \in V
$$

For $x \in X$, let $\mathcal{N}(x)$ be the neighborhood filter of x.
The completion of X is the uniform space

$$
\widehat{X}=\{\text { minimal Cauchy filters } \hat{x} \text { on } X\} \quad \text { with the function } \quad \begin{array}{lllll}
\iota: & X & \longrightarrow & \widehat{X} \\
& x & \longmapsto & \mathcal{N}(x)
\end{array}
$$

with the uniformity

$$
\widehat{\mathcal{X}}=\{U \subseteq \widehat{X} \times \widehat{X} \mid U \text { contains } \hat{V} \text { for a symmetric } V \in \mathcal{X}\}
$$

where

$$
\hat{V}=\{(\hat{x}, \hat{y}) \in \widehat{X} \times \widehat{X} \mid \text { there exists } N \in \hat{x} \cap \hat{y} \text { such that } N \times N \subseteq V\}
$$

5.2 Notes and references

The treatment of metric spaces and completion follows [BR] Chapter 2 Exercise 24.
The basic material on completions given in $\S 1$ can be found in many books, in particular, [AMa1969] Chapt 10. The p-adic integers \mathbb{Z}_{p} and the p-adic numbers \mathbb{Q}_{p} are treated in [Bou, Top. Ch. III $\S 6$ Ex. 23 and 24 and $\S 7$ Ex. 1].

5.3 Some proofs

5.3.1 Construction of the completion of a metric space

Theorem 5.2. Let (X, d) be a metric space. Let $(\hat{X}, \hat{d}, \varphi)$ be the metric space

$$
\widehat{X}=\{\text { Cauchy sequences } \vec{x} \text { in } X\} \quad \text { with the function } \quad \varphi: \begin{array}{ccc}
X & \longrightarrow & \widehat{X} \\
x & \longmapsto & (x, x, x, \ldots)
\end{array}
$$

where \widehat{X} has the metric

$$
\hat{d}: \hat{X} \times \hat{X} \rightarrow \mathbb{R}_{\geq 0} \quad \text { defined by } \quad \hat{d}(\vec{x}, \vec{y})=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right),
$$

and Cauchy sequences $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots\right)$ are equal in \widehat{X},

$$
\vec{x}=\vec{y} \quad \text { if } \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0 \text {. }
$$

Then (\hat{X}, \hat{d}) with the isometry $\iota: X \rightarrow \widehat{X}$ such that

$$
(\widehat{X}, \hat{d}) \text { is a complete metric space } \quad \text { and } \quad \overline{\varphi(X)}=\widehat{X},
$$

where $\overline{\varphi(X)}$ is the closure of the image of φ.
Proof.
To show: (a) ($\widehat{X}, \hat{d})$ is a metric space.
(b) (\widehat{X}, \hat{d}) is complete.
(c) $\varphi: X \rightarrow \widehat{X}$ is an isometry.
(d) $\frac{\varphi(X)}{\varphi(X}$.
(c) To show: If $x, y \in X$ then $\hat{d}(\varphi(x), \varphi(y))=d(x, y)$.

Assume $x, y \in X$.

$$
\hat{d}(\varphi(x), \varphi(y))=\lim _{n t o \infty} d\left(\varphi(x)_{n}, \varphi(y)_{n}\right)=\lim _{n \rightarrow \infty} d(x, y)=d(x, y) .
$$

So φ is an isometry.
(a) To show: (\hat{X}, \hat{d}) is a metric space.

To show: (aa) $\hat{d}: \widehat{X} \times \hat{X} \rightarrow \mathbb{R}_{\geq 0}$ given by $\hat{d}(\vec{x}, \vec{y})=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$ is a function.
(ab) If $\vec{x}, \vec{y} \in \hat{X}$ then $\hat{d}(\vec{x}, \vec{y})=\hat{d}(\vec{y}, \vec{x})$.
(ac) If $\vec{x} \in \hat{X}$ then $\hat{d}(\vec{x}, \vec{x})=0$.
(ad) If $\vec{x}, \vec{y} \in \hat{X}$ and $\hat{d}(\vec{x}, \vec{y})=0$ then $\vec{x}=\vec{y}$.
(ab) If $\vec{x}, \vec{y}, \vec{z} \in \hat{X}$ then $\hat{d}(\vec{x}, \vec{y}) \leq \hat{d}(\vec{x}, \vec{y})+\hat{d}(\vec{y}, \vec{z})$.
(aa) To show: If $\vec{x}, \vec{y} \in \widehat{X}$ then there exists a unique $z \in \mathbb{R}_{\geq 0}$ such that $z=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$.
Assume $\vec{x}, \vec{y} \in \widehat{X}$ with $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots\right)$.
Let d_{1}, d_{2}, \ldots be the sequence in $\mathbb{R} \geq 0$ given by

$$
d_{n}=d\left(x_{n}, y_{n}\right) .
$$

To show: There exists $z \in \mathbb{R}_{\geq 0}$ such that $z=\lim _{n \rightarrow \infty} d_{n}$.

Since $\mathbb{R}_{\geq 0}$ is a metric space, and metric spaces are Hausdorff, HERE WE USE THAT METRIC SPACES ARE HAUSDORFFand limits in Hausdorff spaces are unique when they exist, the limit z will be unique if it exists.
To show: d_{1}, d_{2}, \ldots is a Cauchy sequence in $\mathbb{R}_{\geq 0}$. This will show that z exists since $\mathbb{R}_{\geq 0}$ is complete HERE WE USE THAT $\mathbb{R}_{>0}$ IS A COMPLETE METRIC SPACE and Cauchy sequences in complete spaces converge.
To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $m, n \in \mathbb{Z}_{\geq N}$ then $\left|d_{m}-d_{n}\right|<\epsilon$. Assume $\epsilon \in \mathbb{R}_{>0}$.
Let $N=\max \left(N_{1}, N_{2}\right)$, where
N_{1} is such that if $n, m \in \mathbb{Z}_{\geq N_{1}}$ then $d\left(x_{m}, x_{n}\right) \in \frac{\epsilon}{2}$, and
N_{2} is such that if $n, m \in \mathbb{Z}_{\geq N_{2}}$ then $d\left(y_{m}, y_{n}\right) \in \frac{\epsilon}{2}$.
(N_{1} and N_{2} exist since \vec{x} and \vec{y} are Cauchy sequences.)
Assume $m, n \in \mathbb{Z}_{\geq N}$.
To show: $\left|d_{m}-d_{n}\right|<\epsilon$.

$$
\left|d_{m}-d_{n}\right|=\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right| \leq\left|d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)\right|
$$

since $d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right)$.
So

$$
\left|d_{m}-d_{n}\right| \leq\left|d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)\right| \leq\left|d\left(x_{n}, x_{m}\right)\right|+\left|d\left(y_{n}, y_{m}\right)\right|<\epsilon_{2}+\epsilon_{2}=\epsilon .
$$

So d_{1}, d_{2}, \ldots is a Cauchy sequence in $\mathbb{R}_{\geq 0}$.
So $z=\lim _{n \rightarrow \infty} d_{n}$ exists in $\mathbb{R}_{\geq 0}$.
(ab) To show: If $\vec{x}, \vec{y} \in \widehat{X}$ then $\hat{d}(\vec{x}, \vec{y})=\hat{d}(\vec{y}, \vec{x})$.
Assume $\vec{x}, \vec{y} \in \widehat{X}$ with $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots\right)$.
Since $d\left(x_{n}, y_{n}\right)=d\left(y_{n}, x_{n}\right)$,

$$
\hat{d}(\vec{x}, \vec{y})=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} d\left(y_{n}, x_{n}\right)=\hat{d}(\vec{y}, \vec{x})
$$

(ac) To show: If $\vec{x} \in \widehat{X}$ then $\hat{d}(\vec{x}, \vec{x})=0$.
Assume $\vec{x} \in \widehat{X}$.
To show $\hat{d}(\vec{x}, \vec{x})=0$.
Since $d\left(x_{n}, x_{n}\right)=0$,

$$
\hat{d}(\vec{x}, \vec{x})=\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} 0=0
$$

(ad) If $\vec{x}, \vec{y}, \vec{z} \in \hat{X}$ then $\hat{d}(\vec{x}, \vec{y}) \leq \hat{d}(\vec{x}, \vec{z})+\hat{d}(\vec{z}, \vec{y})$.
Assume $\vec{x}, \vec{y}, \vec{z} \in \widehat{X}$.
To show: $\hat{d}(\vec{x}, \vec{y}) \leq \hat{d}(\vec{x}, \vec{z})+\hat{d}(\vec{z}, \vec{y})$.

$$
\begin{aligned}
\hat{d}(\vec{x}, \vec{y}) & =\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \lim _{n \rightarrow \infty}\left(d\left(x_{n}, z_{n}\right)+d\left(z_{n}, y_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} d\left(x_{n}, z_{n}\right)+\lim _{n \rightarrow \infty} d\left(z_{n}, y_{n}\right)=\hat{d}(\vec{x}, \vec{z})+\hat{d}(\vec{z}, \vec{y})
\end{aligned}
$$

where the next to last equality follows from the continuity of addition in $\mathbb{R}_{\geq 0}$.
(d) To show: $\overline{\varphi(X)}=\widehat{X}$.

To show: If $\vec{z} \in \widehat{X}$ then there exists a sequence $\vec{x}_{1}, \vec{x}_{2}, \ldots$ in $\varphi(X)$ such that $\lim _{n \rightarrow \infty} \vec{x}_{n}=\vec{z}$. Assume $\vec{z}=\left(z_{1}, z_{2}, \ldots\right) \in \widehat{X}$.

To show: There exists $\vec{x}_{1}, \vec{x}_{2}, \ldots$ in $\varphi(X)$ with $\lim _{n \rightarrow \infty} \vec{x}_{n}=\vec{z}$.
Let

$$
\begin{aligned}
& \vec{x}_{1}=\left(z_{1}, z_{1}, z_{1}, z_{1}, \ldots\right)=\varphi\left(z_{1}\right), \\
& \vec{x}_{2}=\left(z_{1}, z_{1}, z_{1}, z_{1}, \ldots\right)=\varphi\left(z_{1}\right), \\
& \vec{x}_{3}=\left(z_{1}, z_{1}, z_{1}, z_{1}, \ldots\right)=\varphi\left(z_{1}\right),
\end{aligned}
$$

so that $\vec{x}_{1}, \vec{x}_{2}, \ldots$ is the sequence $\varphi\left(z_{1}\right), \varphi\left(z_{2}\right), \ldots$ in $\varphi(X)$.
To show: $\lim _{n \rightarrow \infty} \vec{x}_{n}=\vec{z}$.
To show: $\lim _{n \rightarrow \infty} \hat{d}\left(\vec{x}_{n}, \vec{z}\right)=0$.
To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $n \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $\hat{d}\left(\vec{x}_{n}, \vec{z}\right)<\epsilon$.
Assume $\epsilon \in \mathbb{R}_{>0}$.
Let $N \in \mathbb{Z}_{>0}$ be such that if $r, s \in \mathbb{Z}_{\geq N}$ then $d\left(z_{r}, z_{s}\right)<\epsilon / 2$.
The value N exists since $\vec{z}=\left(z_{1}, z_{2}, \ldots\right)$ is a Cauchy sequence in X.
To show: If $n \in \mathbb{Z}_{\geq N}$ then $\hat{d}\left(\vec{x}_{n}, \vec{z}\right)<\epsilon$.
Assume $n \in \mathbb{Z}_{\geq N}$.
To show: $\hat{d}\left(\vec{x}_{n}, \vec{z}\right)<\epsilon$.
To show: $\lim _{k \rightarrow \infty} d\left(\left(\vec{x}_{n}\right)_{k}, z_{k}\right)<\epsilon$.

$$
\lim _{k \rightarrow \infty} d\left(\left(\vec{x}_{n}\right)_{k}, z_{k}\right)=\lim _{k \rightarrow \infty} d\left(z_{n}, z_{k}\right) \leq \frac{\epsilon}{2}<\epsilon, \quad \text { since } d\left(z_{n}, z_{k}\right)<\frac{\epsilon}{2} \text { for } k>N
$$

So $\lim _{n \rightarrow \infty} \vec{x}_{n}=\vec{z}$.
So $\frac{{ }^{n \rightarrow \infty}}{\varphi(X)}=\widehat{X}$.
(b) To show: (\hat{X}, \hat{d}) is complete.

To show: If $\vec{x}_{1}, \vec{x}_{2}, \ldots$ is a Cauchy sequence in \widehat{X} then $\vec{x}_{1}, \vec{x}_{2}, \ldots$ converges.
Assume

$$
\begin{aligned}
& \vec{x}_{1}=\left(x_{11}, x_{12}, x_{13}, \ldots\right), \\
& \vec{x}_{2}=\left(x_{21}, x_{22}, x_{23}, \ldots\right), \\
& \vec{x}_{3}=\left(x_{31}, x_{32}, x_{33}, \ldots\right),
\end{aligned}
$$

is a Cauchy sequence in \widehat{X}.
To show: There exists $\vec{z}=\left(z_{1}, z_{2}, \ldots\right)$ in \widehat{X} such that $\lim _{n \rightarrow \infty} \vec{x}_{n}=\vec{z}$.
Using that $\overline{\varphi(X)}=\widehat{X}$, for $k \in \mathbb{Z}_{>0}$ let $z_{k} \in X$ be such that $\hat{d}\left(\varphi\left(z_{k}\right), \vec{x}_{k}\right)<\frac{1}{k}$.

$$
\begin{array}{lll}
\vec{x}_{1}=\left(x_{11}, x_{12}, x_{13}, \ldots\right), & \varphi\left(z_{1}\right)=\left(z_{1}, z_{1}, z_{1}, z_{1}, \ldots\right), & \hat{d}\left(\varphi\left(z_{1}\right), \vec{x}_{1}\right)<1, \\
\vec{x}_{2}=\left(x_{21}, x_{22}, x_{23}, \ldots\right), & \varphi\left(z_{2}\right)=\left(z_{2}, z_{2}, z_{2}, z_{2}, \ldots\right), & \hat{d}\left(\varphi\left(z_{2}\right), \vec{x}_{2}\right)<\frac{1}{2}, \\
\vec{x}_{3}=\left(x_{31}, x_{32}, x_{33}, \ldots\right), & \varphi\left(z_{3}\right)=\left(z_{3}, z_{3}, z_{3}, z_{3}, \ldots\right), & \hat{d}\left(\varphi\left(z_{3}\right), \vec{x}_{3}\right)<\frac{1}{3},
\end{array}
$$

To show: (ba) $\vec{z}=\left(z_{1}, z_{2}, z_{3}, \ldots\right)$ is a Cauchy sequence.
(bb) $\lim _{n \rightarrow \infty} \vec{x}_{n}=\vec{z}$.
(ba) To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $r, s \in \mathbb{Z}_{\geq \ell}$ then $d\left(z_{r}, z_{s}\right)<\epsilon$. Assume $\epsilon \in \mathbb{R}_{>0}$.
To show: There exists $\ell \in \mathbb{Z}_{>0}$ such that if $r, s \in \mathbb{Z}_{\geq \ell}$ then $d\left(z_{r}, z_{s}\right)<\epsilon$.
Let $\ell_{1}=\left\lceil\frac{3}{\epsilon}\right\rceil+1$, so that $\frac{1}{\ell_{1}}<\frac{\epsilon}{3}$.
Let $\ell_{2} \in \mathbb{Z}_{>0}$ be such that if $r, s \in \mathbb{Z}_{\geq \ell_{2}}$ then $\hat{d}\left(\vec{x}_{r}, \vec{x}_{s}\right)<\frac{\epsilon}{3}$.
Let $\ell=\max \left\{\ell_{1}, \ell_{2}\right\}$.
To show: If $r, s \in \mathbb{Z}_{\geq \ell}$ then $d\left(z_{r}, z_{s}\right)<\epsilon$.
Assume $r, s \in \mathbb{Z}_{\geq \ell}$.
To show: $d\left(z_{r}, z_{s}\right)<\epsilon$.

$$
\begin{aligned}
d\left(z_{r}, z_{s}\right) & =\hat{d}\left(\varphi\left(z_{r}\right), \varphi\left(z_{s}\right)\right) \leq \hat{d}\left(\varphi\left(z_{r}\right), \vec{x}_{r}\right)+\hat{d}\left(\vec{x}_{r}, \vec{x}_{s}\right)+\hat{d}\left(\vec{x}_{s}, \varphi\left(z_{s}\right)\right) \\
& \leq \frac{1}{r}+\frac{\epsilon}{3}+\frac{1}{s}<\frac{1}{\ell_{1}}+\frac{\epsilon}{3}+\frac{1}{\ell_{1}}=\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

So \vec{z} is a Cauchy sequence.
(bb) To show $\lim _{n \rightarrow \infty} \hat{d}\left(\vec{x}_{n}, \vec{z}\right)=0$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \hat{d}\left(\vec{x}_{n}, \vec{z}\right) & \leq \lim _{n \rightarrow \infty}\left(\hat{d}\left(\vec{x}_{n}, \varphi\left(z_{n}\right)\right)+\hat{d}\left(\varphi\left(z_{n}\right), \vec{z}\right)\right) \leq \lim _{n \rightarrow \infty}\left(\frac{1}{n}+\hat{d}\left(\varphi\left(z_{n}\right), \vec{z}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} \hat{d}\left(\varphi\left(z_{n}\right), \vec{z}\right)=0+0=0
\end{aligned}
$$

So (\widehat{X}, \hat{d}) is complete.
So (\hat{X}, \hat{d}) with $\varphi: X \rightarrow \widehat{X}$ is a completion of X.

5.3.2 Construction of the completion of a uniform space

A minimal Cauchy filter is a Cauchy filter \mathcal{F} such that if \mathcal{G} is a Cauchy filter and $\mathcal{G} \subseteq \mathcal{F}$ then $\mathcal{G}=\mathcal{F}$.
If \mathcal{F} is a Cauchy filter on X then

$$
\mathcal{G}=\left\{N \subseteq X \mid \text { there exists } E \in \mathcal{E} \text { and } L \in \mathcal{F} \text { such that } \sigma(E)=E \text { and } N \supseteq B_{E}(L)\right\}
$$

is a minimal Cauchy filter such that $\mathcal{G} \subseteq \mathcal{F}$.
Theorem 5.3. Let (X, \mathcal{X}) be a uniform space. Let $(\widehat{X}, \widehat{\mathcal{X}}, \iota)$ be the uniform space given by the set

$$
\hat{X}=\{\hat{x} \mid \hat{x} \text { is a minimal Cauchy filter on } X\}
$$

with uniformity

$$
\hat{\mathcal{X}}=\{\hat{E} \subseteq \hat{X} \times \hat{X} \mid \text { there exists } V \in \mathcal{X} \text { with } V=\sigma(V) \text { such that } \hat{E} \supseteq \hat{V}\}
$$

where

$$
\hat{V}=\{(\hat{x}, \hat{y}) \in \hat{X} \times \hat{X} \mid \text { there exists } M \in \hat{x} \cap \hat{y} \text { with } M \times M \subseteq V\}
$$

and

$$
\iota: X \rightarrow \hat{X} \quad \text { is given by } \quad \iota(x)=\mathcal{N}(x)
$$

the neighborhood filter of x in X.

Proof.
To show: (a) $\hat{\mathcal{X}}$ is a uniformity.
(b) \widehat{X} is Hausdorff.
(c) ι is uniformly continuous.
(d) $\overline{\iota(X)}=\widehat{X}$.
(e) \widehat{X} is complete.
(f) $(\widehat{X}, \widehat{\mathcal{X}}, \iota)$ satisfies the universal property.
(a) To show: (aa) If $V \in \mathcal{X}$ then $\Delta(\hat{X}) \subseteq \hat{V}$.
(ab) If $V_{1}, V_{2} \in \mathcal{X}$ then there exists $W \in \mathcal{X}$ such that $\hat{W} \subseteq \hat{V}_{1} \cap \hat{V}_{2}$.
(ac) If $V \in \mathcal{X}$ then there exists $D \in \mathcal{X}$ such that $\hat{D} \subseteq \sigma(\overline{\hat{V}})$.
(ad) If $V \in \mathcal{X}$ then there exists $W \in \mathcal{X}$ such that $\hat{W} \times_{\hat{X}} \hat{W} \subseteq \hat{V}$.
(aa) Let $V \in \mathcal{X}$ such that $\sigma(V)=V$.
Since $\hat{x} \in \hat{X}$ is a Cauchy filter then $(\hat{x}, \hat{x}) \in \hat{V}$.
(ab) Let $V_{1}, V_{2} \in \mathcal{X}$ such that $\sigma\left(V_{1}\right)=V_{1}$ and $\sigma\left(V_{2}\right)=V_{2}$. Then $W=V_{1} \cap V_{2} \in \mathcal{X}$ and $\sigma(W)=W$.
If $N \subset X$ and $N \times N \subseteq W$ then $N \times N \subseteq V_{1}$ and $N \times N \subseteq V_{2}$.
Then $\hat{W} \subseteq \hat{V}_{1} \cap \hat{V}_{2}$.
(ac) By definition of $\hat{V}, \sigma(\hat{V})=\hat{V}$.
(ad) Let $V \in \mathcal{X}$ with $\sigma(V)=V$ and let $W \in \mathcal{X}$ such that $\sigma(W)=W$ and $V \circ V \subseteq W$.??or V ??
Let $\hat{x}, \hat{y}, \hat{z} \in \hat{X}$ with $(\hat{x}, \hat{y}) \in \hat{W}$ and $(\hat{y}, \hat{z}) \in \hat{W}$.
Then there exists $M \subseteq X$ and $N \subseteq X$ sucht ath $M \times M \subseteq W$ and $N \times N \subseteq W$ and $M \in \hat{x} \cap \hat{y}$ and $N \in \hat{y} \cap \hat{z}$.
Since $M \in \hat{y}$ and $N \in \hat{y}$ then $M \cap N \neq \emptyset$.
So $(M \cup N) \times(M \cup N) \subseteq W \circ W$
So $(M \cup N) \times(M \cup N) \subseteq V$.
Since $M \cup N \in \hat{x}$ and $M \cup N \in \hat{z}$ then $\hat{W} \circ \hat{W} \subseteq \hat{V}$.
(b) To show: \widehat{X} is Hausdorff.

Let $\hat{x}, \hat{y} \in \hat{X}$ such that there does not exist open sets separating them.
Then \hat{x} and \hat{y} are minimal Cauchy filters in X such that $(\hat{x}, \hat{y}) \in \hat{V}$ for all symmetric $V \in \mathcal{X}$.
Let

$$
\hat{z}=\{M \cup N \mid M \in \hat{x} \text { and } N \in \hat{y}\}_{\subseteq}
$$

Then $\hat{z} \subseteq \hat{x}$ and $\hat{z} \subseteq \hat{y}$.
Also \hat{z} is a Cauchy filter (since if $V \in \mathcal{X}$ is symmetric then there exists $P \in \mathcal{X}$ such that $P \times P \in V, P \in \hat{x}$ and $P \in \hat{y}$ so that $P \in \hat{z}$).
Since \hat{x} and \hat{y} are minimal Cauchy filters then $\hat{x}=\hat{y}=\hat{z}$.
So \hat{X} is Hausdorff.
(c) To show: ι is uniformly continuous.

Assume $V \in \mathcal{X}$ is symmetric.
Recall that $\hat{V}=\{(\hat{x}, \hat{y}) \in \hat{X} \times \hat{X} \mid$ there exists $M \in \hat{x} \cap \hat{y}$ with $M \times M \subseteq V\}$.
To show: $(i \times i)^{-1}(\hat{V}) \subseteq V \cap(i \times i)^{-1}(V \widehat{\circ V \circ})$.
If $x, y \in X$ and $(i(x), i(y))=(i \times i)(x, y) \in \hat{V}\}$ then there exists M such that $M \times M \subseteq V$ and $M \in \mathcal{N}(x)$ and $M \in \mathcal{N}(y)$.

So $(x, y) \in V$.
So $(i \times i)^{-1}(\hat{V}) \subseteq V$.
If $(x, y) \in V$ then $\left.\left(B_{V}(x) \cap B_{V}(y)\right) \times\left(B_{V}(x) \cap B_{V}(y)\right)\right) \subseteq V \circ V \circ V$ and $B_{V}(x) \cap B_{V}(y) \in \mathcal{N}(x)$ and $B_{V}(x) \cap B_{V}(y) \in \mathcal{N}(y)$.
(d) To show: $\overline{\iota(X)}=\widehat{X}$.

Let $\hat{x} \in \widehat{X}$ and let $V \in \mathcal{X}$ be symmetric so that $\hat{V} \in \hat{\mathcal{X}}$.
Let $M=\bigcup_{\substack{E \in \hat{x} \\ E \times E \subseteq V}} E^{\circ}$.
By (no. 2 Prop. 5 Cor. 4), $M \in \hat{x}$.
Since

$$
B_{\hat{V}}(\hat{x}) \cap \iota(X)=\{\iota(x) \mid x \in X \text { and }(\hat{x}, \iota(x)) \in \hat{V}\}
$$

then there exists $x \in X$ and $N \in \mathcal{N}(x)$ such that $N \times N \subseteq V$ with $N \in \hat{x}$.
So there exists $E \subseteq \hat{X}$ with $x \in E$ and $E \subseteq B_{\hat{V}}(\hat{x})$.
So $x \in E^{\circ}$.
So $B_{\hat{V}}(\hat{x}) \cap \iota(X)=\iota(M)$.
So $B_{\hat{V}}(\hat{x}) \cap \iota(X) \neq \emptyset$.
So $\iota(X)$ is dense in \widehat{X}.
(e) To show \widehat{X} is complete.

Let \mathcal{F} be a Cauchy filter on $\iota(X)$.
Since $\iota: X \rightarrow \hat{X}$ is uniformly continuous then $\left(\iota^{-1}(\mathcal{F})\right) \subseteq$ is a Cauchy filter on X.

$$
\left(\iota^{-1}(\mathcal{F})\right)_{\subseteq}=\left\{U \subseteq X \mid U \text { contains a set in } \iota^{-1}(\mathcal{F})\right\}
$$

Let \hat{x} be a minimal Cauchy filter on X with $\hat{x} \subseteq\left(\iota^{-1}(\mathcal{F})\right) \subseteq$.
Then $\iota(\hat{x})_{\subseteq}$ is a Cauchy filter on $\iota(X)$.
Also $\mathcal{F}=\iota\left(\iota^{-1}(\mathcal{F})\right) \supseteq \iota(\hat{x}) \subseteq$.
Since $\overline{\iota(X)}=\hat{X}$ and $\iota(\hat{x})_{\subseteq}$ converges in \hat{x} then \mathcal{F} converges in \widehat{X}.
So \widehat{X} is complete.
(f) To show: $(\widehat{X}, \widehat{\mathcal{X}}, \iota)$ satisfies the universal property.

Let Y be a complete Hausdorff uniform space and let $f: X \rightarrow Y$ be a uniformly continuous function.
Define $g_{0}: \iota(X) \rightarrow Y$ by

$$
g_{0}(\iota(x))=\lim f(\mathcal{N}(x))
$$

Since f is continuous then $f(x)=\lim f(\mathcal{N}(x))=g(\iota(x)$.
So $f=g_{0} \circ \iota$.
To show: g_{0} is uniformly continuous.
Let $U \in \mathcal{X}_{Y}$ and $V \in \mathcal{X}_{X}$ with $\sigma(V)=V$ and such that

$$
\text { if }\left(x_{1}, x_{2}\right) \in V \text { then }\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in U
$$

Since (by the way that we proved that ι is uniformly continuous??) $\iota: X \rightarrow \hat{X}$ is uniformly continuous then $\left(\iota\left(x_{1}\right), \iota\left(x_{2}\right)\right) \in \hat{V}$ implies $\left(x_{1}, x_{2}\right) \in V$.
Then $\left(g_{0}\left(\iota\left(x_{1}\right)\right), g_{0}\left(\iota\left(x_{2}\right)\right)\right)=\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in U$.
So g_{0} is uniformly continuous.
Now, using that $\overline{\iota(X)}=\hat{X}$, let $g: \hat{X} \rightarrow Y$ be the continuous extension of $g_{0}: \iota(X) \rightarrow Y$.
Then $g: \hat{X} \rightarrow Y$ is the universal property map that we need.

