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5 Completions

The point of this chapter is to introduce Cauchy filters, Cauchy sequences, complete spaces and
completions.

Theorem 5.1.

(a) Let (X,X ) be a uniform space. There exists a unique completion ( bX, bX , ◆ : X ! bX) of X.

(b) Let (X, d) be a metric space. There exists a unique completion ( bX, d̂, ◆ : X ! bX) of X.

5.1 Cauchy sequences and complete metric spaces

Let (X, d) be a metric space. A sequence (x1, x2, . . .) in X converges if there exists z 2 X such that

if " 2 R>0 then there exists ` 2 Z>0 such that if n 2 Z�` then d(xn, z) < ".

A Cauchy sequence in X is a sequence (x1, x2, . . .) in X such that

if " 2 R>0 then there exists ` 2 Z>0 such that if m,n 2 Z�` then d(xm, xn) < ".

A metric space (X, d) is complete, or Cauchy compact, if every Cauchy sequence in X converges.

5.1.1 Completion of a metric space

Let (X, dX) and (Y, dY ) be metric spaces. An isometry from X to Y is a function ' : X ! Y such
that

if x1, x2 2 X then dY ('(x1),'(x2)) = dX(x1, x2).

Let (X, d) be a metric space. The completion of (X, d) is a metric space ( bX, d̂) with an isometry

◆ : X ! bX such that ( bX, d̂) is complete and ◆(X) = bX,

where ◆(X) is the closure of the image of ◆.

5.1.2 Existence of the completion of a metric space

Let (X, d) be a metric space. The completion of X is the metric space

bX = {Cauchy sequences ~x in X} with the function
◆ : X �! bX

x 7�! (x, x, x, . . .)

where bX has the metric

d : bX ⇥ bX ! R�0 defined by d(~x, ~y) = lim
n!1

d(xn, yn),

and Cauchy sequences ~x = (x1, x2, . . .) and ~y = (y1, y2, . . .) are equal in bX,

~x = ~y if lim
n!1

d(xn, yn) = 0.
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5.1.3 Cauchy filters and complete uniform spaces

Let (X,X ) be a uniform space.

Let E 2 X and x 2 X. The E-neighborhood of x is

BE(x) = {y 2 X | (x, y) 2 E}.

Let x 2 X. The neighborhood filter of x is

N (x) = {N ✓ X | there exists E 2 X such that N ◆ BE(x).}

A filter F on X converges if there exists z 2 X such that F ◆ N (z).

A sequence (x1, x2, . . .) in X converges if there exists z 2 X such that

if N 2 N (z) then there exists ` 2 Z>0 such that if n 2 Z�` then xn 2 N .

A Cauchy filter is a filter F on X such that

if E 2 X then there exists N 2 F such that N ⇥N ✓ E.

A Cauchy sequence is a sequence ~x = (x1, x2, . . .) in X such that

if E 2 X then there exists ` 2 Z>0 such that if m,n 2 Z�` then (xm, xn) 2 E.

A complete space is a uniform space for which every Cauchy filter on X converges.

5.1.4 Completion of a uniform space

Let (X,X ) be a uniform space. A completion of X is a complete Hausdor↵ uniform space ( bX, bX ) with
a uniformly continuous function ◆ : X ! bX such that

if Y is a complete Hausdor↵ uniform space and f : X ! Y is a uniformly continuous map

then there exists a unique uniformly continuous function g : bX ! Y such that f = g � ◆.

X

f ��

◆ // bX
g

✏✏
Y

5.1.5 Existence of the completion of a uniform space

Let (X,X ) be a uniform space. A minimal Cauchy filter on X is a Cauchy filter which is minimal
with respect to inclusion of filters. An element

V 2 X is symmetric if V satisfies: if (x, y) 2 V then (y, x) 2 V .

For x 2 X, let N (x) be the neighborhood filter of x.
The completion of X is the uniform space

bX = {minimal Cauchy filters x̂ on X} with the function
◆ : X �! bX

x 7�! N (x)

with the uniformity

bX = {U ✓ bX ⇥ bX | U contains V̂ for a symmetric V 2 X},

where
V̂ = {(x̂, ŷ) 2 bX ⇥ bX | there exists N 2 x̂ \ ŷ such that N ⇥N ✓ V }.
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5.2 Notes and references

The treatment of metric spaces and completion follows [BR] Chapter 2 Exercise 24.

The basic material on completions given in §1 can be found in many books, in particular, [AMa1969]
Chapt 10. The p-adic integers Zp and the p-adic numbers Qp are treated in [Bou, Top. Ch. III §6 Ex.
23 and 24 and §7 Ex. 1].
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5.3 Some proofs

5.3.1 Construction of the completion of a metric space

Theorem 5.2. Let (X, d) be a metric space. Let ( bX, d̂,') be the metric space

bX = {Cauchy sequences ~x in X} with the function
' : X �! bX

x 7�! (x, x, x, . . .)

where bX has the metric

d̂ : bX ⇥ bX ! R�0 defined by d̂(~x, ~y) = lim
n!1

d(xn, yn),

and Cauchy sequences ~x = (x1, x2, . . .) and ~y = (y1, y2, . . .) are equal in bX,

~x = ~y if lim
n!1

d(xn, yn) = 0.

Then ( bX, d̂) with the isometry ◆ : X ! bX such that

( bX, d̂) is a complete metric space and '(X) = bX,

where '(X) is the closure of the image of '.

Proof.
To show: (a) ( bX, d̂) is a metric space.

(b) ( bX, d̂) is complete.
(c) ' : X ! bX is an isometry.
(d) '(X) = bX.

(c) To show: If x, y 2 X then d̂('(x),'(y)) = d(x, y).

Assume x, y 2 X.

d̂('(x),'(y)) = lim
nto1

d('(x)n,'(y)n) = lim
n!1

d(x, y) = d(x, y).

So ' is an isometry.

(a) To show: ( bX, d̂) is a metric space.

To show: (aa) d̂ : bX ⇥ bX ! R�0 given by d̂(~x, ~y) = limn!1 d(xn, yn) is a function.

(ab) If ~x, ~y 2 bX then d̂(~x, ~y) = d̂(~y, ~x).

(ac) If ~x 2 bX then d̂(~x, ~x) = 0.

(ad) If ~x, ~y 2 bX and d̂(~x, ~y) = 0 then ~x = ~y.

(ab) If ~x, ~y, ~z 2 bX then d̂(~x, ~y)  d̂(~x, ~y) + d̂(~y, ~z).

(aa) To show: If ~x, ~y 2 bX then there exists a unique z 2 R�0 such that z = limn!1 d(xn, yn).
Assume ~x, ~y 2 bX with ~x = (x1, x2, . . .) and ~y = (y1, y2, . . .).
Let d1, d2, . . . be the sequence in R�0 given by

dn = d(xn, yn).

To show: There exists z 2 R�0 such that z = lim
n!1

dn.
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Since R�0 is a metric space, and metric spaces are Hausdor↵, HERE WE USE THAT
METRIC SPACES ARE HAUSDORFFand limits in Hausdor↵ spaces are unique when
they exist, the limit z will be unique if it exists.
To show: d1, d2, . . . is a Cauchy sequence in R�0. This will show that z exists since R�0

is complete HERE WE USE THAT R>0 IS A COMPLETE METRIC SPACE and Cauchy
sequences in complete spaces converge.
To show: If ✏ 2 R>0 then there exists N 2 Z>0 such that if m,n 2 Z�N then |dm� dn| < ✏.
Assume ✏ 2 R>0.
Let N = max(N1, N2), where

N1 is such that if n,m 2 Z�N1 then d(xm, xn) 2
✏

2 , and
N2 is such that if n,m 2 Z�N2 then d(ym, yn) 2

✏

2 .

(N1 and N2 exist since ~x and ~y are Cauchy sequences.)
Assume m,n 2 Z�N .
To show: |dm � dn| < ✏.

|dm � dn| =
��d(xm, ym)� d(xn, yn)

�� 
��d(xn, xm) + d(yn, ym)

��,

since d(xn, yn)  d(xn, xm) + d(xn, yn) + d(yn, ym).
So

|dm � dn| 
��d(xn, xm) + d(yn, ym)

�� 
��d(xn, xm)

��+
��d(yn, ym)

�� < ✏2 + ✏2 = ✏.

So d1, d2, . . . is a Cauchy sequence in R�0.
So z = lim

n!1
dn exists in R�0.

(ab) To show: If ~x, ~y 2 bX then d̂(~x, ~y) = d̂(~y, ~x).
Assume ~x, ~y 2 bX with ~x = (x1, x2, . . .) and ~y = (y1, y2, . . .).
Since d(xn, yn) = d(yn, xn),

d̂(~x, ~y) = lim
n!1

d(xn, yn) = lim
n!1

d(yn, xn) = d̂(~y, ~x).

(ac) To show: If ~x 2 bX then d̂(~x, ~x) = 0.
Assume ~x 2 bX.
To show d̂(~x, ~x) = 0.
Since d(xn, xn) = 0,

d̂(~x, ~x) = lim
n!1

d(xn, xn) = lim
n!1

0 = 0.

(ad) If ~x, ~y, ~z 2 bX then d̂(~x, ~y)  d̂(~x, ~z) + d̂(~z, ~y).
Assume ~x, ~y, ~z 2 bX.
To show: d̂(~x, ~y)  d̂(~x, ~z) + d̂(~z, ~y).

d̂(~x, ~y) = lim
n!1

d(xn, yn)  lim
n!1

�
d(xn, zn) + d(zn, yn)

�

= lim
n!1

d(xn, zn) + lim
n!1

d(zn, yn) = d̂(~x, ~z) + d̂(~z, ~y),

where the next to last equality follows from the continuity of addition in R�0.

(d) To show: '(X) = bX.

To show: If ~z 2 bX then there exists a sequence ~x1, ~x2, . . . in '(X) such that limn!1 ~xn = ~z.

Assume ~z = (z1, z2, . . .) 2 bX.
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To show: There exists ~x1, ~x2, . . . in '(X) with limn!1 ~xn = ~z.

Let

~x1 = (z1, z1, z1, z1, . . .) = '(z1),

~x2 = (z1, z1, z1, z1, . . .) = '(z1),

~x3 = (z1, z1, z1, z1, . . .) = '(z1), . . .

so that ~x1, ~x2, . . . is the sequence '(z1),'(z2), . . . in '(X).

To show: limn!1 ~xn = ~z.

To show: limn!1 d̂(~xn, ~z) = 0.

To show: If ✏ 2 R>0 then there exists n 2 Z>0 such that if n 2 Z�N then d̂(~xn, ~z) < ✏.

Assume ✏ 2 R>0.

Let N 2 Z>0 be such that if r, s 2 Z�N then d(zr, zs) < ✏/2.
The value N exists since ~z = (z1, z2, . . .) is a Cauchy sequence in X.

To show: If n 2 Z�N then d̂(~xn, ~z) < ✏.

Assume n 2 Z�N .

To show: d̂(~xn, ~z) < ✏.

To show: lim
k!1

d((~xn)k, zk) < ✏.

lim
k!1

d((~xn)k, zk) = lim
k!1

d(zn, zk) 
✏

2
< ✏, since d(zn, zk) <

✏

2 for k > N .

So lim
n!1

~xn = ~z.

So '(X) = bX.

(b) To show: ( bX, d̂) is complete.

To show: If ~x1, ~x2, . . . is a Cauchy sequence in bX then ~x1, ~x2, . . . converges.

Assume

~x1 = (x11, x12, x13, . . .),

~x2 = (x21, x22, x23, . . .),

~x3 = (x31, x32, x33, . . .),

.

.

.

is a Cauchy sequence in bX.

To show: There exists ~z = (z1, z2, . . .) in bX such that lim
n!1

~xn = ~z.

Using that '(X) = bX, for k 2 Z>0 let zk 2 X be such that d̂('(zk), ~xk) <
1
k
.

~x1 = (x11, x12, x13, . . .), '(z1) = (z1, z1, z1, z1, . . .), d̂('(z1), ~x1) < 1,

~x2 = (x21, x22, x23, . . .), '(z2) = (z2, z2, z2, z2, . . .), d̂('(z2), ~x2) <
1
2 ,

~x3 = (x31, x32, x33, . . .), '(z3) = (z3, z3, z3, z3, . . .), d̂('(z3), ~x3) <
1
3 ,

.

.

.
.
.
.

.

.

.

To show: (ba) ~z = (z1, z2, z3, . . .) is a Cauchy sequence.
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(bb) lim
n!1

~xn = ~z.

(ba) To show: If ✏ 2 R>0 then there exists ` 2 Z>0 such that if r, s 2 Z�` then d(zr, zs) < ✏.
Assume ✏ 2 R>0.
To show: There exists ` 2 Z>0 such that if r, s 2 Z�` then d(zr, zs) < ✏.

Let `1 =

⇠
3

✏

⇡
+ 1, so that

1

`1
<

✏

3
.

Let `2 2 Z>0 be such that if r, s 2 Z�`2 then d̂(~xr, ~xs) <
✏

3
.

Let ` = max{`1, `2}.
To show: If r, s 2 Z�` then d(zr, zs) < ✏.
Assume r, s 2 Z�`.
To show: d(zr, zs) < ✏.

d(zr, zs) = d̂('(zr),'(zs))  d̂('(zr), ~xr) + d̂(~xr, ~xs) + d̂(~xs,'(zs))


1

r
+

✏

3
+

1

s
<

1

`1
+

✏

3
+

1

`1
=

✏

3
+

✏

3
+

✏

3
= ✏.

So ~z is a Cauchy sequence.
(bb) To show lim

n!1
d̂(~xn, ~z) = 0.

lim
n!1

d̂(~xn, ~z)  lim
n!1

�
d̂(~xn,'(zn)) + d̂('(zn), ~z)

�
 lim

n!1

�
1
n
+ d̂('(zn), ~z)

�

= lim
n!1

1
n
+ lim

n!1
d̂('(zn), ~z) = 0 + 0 = 0.

So ( bX, d̂) is complete.

So ( bX, d̂) with ' : X ! bX is a completion of X.

5.3.2 Construction of the completion of a uniform space

A minimal Cauchy filter is a Cauchy filter F such that if G is a Cauchy filter and G ✓ F then G = F .
If F is a Cauchy filter on X then

G = {N ✓ X | there exists E 2 E and L 2 F such that �(E) = E and N ◆ BE(L)}

is a minimal Cauchy filter such that G ✓ F .

Theorem 5.3. Let (X,X ) be a uniform space. Let ( bX, bX , ◆) be the uniform space given by the set

X̂ = {x̂ | x̂ is a minimal Cauchy filter on X}

with uniformity

X̂ = {Ê ✓ X̂ ⇥ X̂ | there exists V 2 X with V = �(V ) such that Ê ◆ V̂ },

where
V̂ = {(x̂, ŷ) 2 X̂ ⇥ X̂ | there exists M 2 x̂ \ ŷ with M ⇥M ✓ V },

and
◆ : X ! X̂ is given by ◆(x) = N (x),

the neighborhood filter of x in X.
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Proof.
To show: (a) X̂ is a uniformity.

(b) bX is Hausdor↵.
(c) ◆ is uniformly continuous.
(d) ◆(X) = bX.
(e) bX is complete.
(f) ( bX, bX , ◆) satisfies the universal property.

(a) To show: (aa) If V 2 X then �(X̂) ✓ V̂ .
(ab) If V1, V2 2 X then there exists W 2 X such that Ŵ ✓ V̂1 \ V̂2.
(ac) If V 2 X then there exists D 2 X such that D̂ ✓ �(V̂ ).
(ad) If V 2 X then there exists W 2 X such that Ŵ ⇥

X̂
Ŵ ✓ V̂ .

(aa) Let V 2 X such that �(V ) = V .

Since x̂ 2 X̂ is a Cauchy filter then (x̂, x̂) 2 V̂ .

(ab) Let V1, V2 2 X such that �(V1) = V1 and �(V2) = V2. Then W = V1 \ V2 2 X and �(W ) = W .

If N ⇢ X and N ⇥N ✓ W then N ⇥N ✓ V1 and N ⇥N ✓ V2.

Then Ŵ ✓ V̂1 \ V̂2.

(ac) By definition of V̂ , �(V̂ ) = V̂ .

(ad) Let V 2 X with �(V ) = V and let W 2 X such that �(W ) = W and V � V ✓ W .??or V ??

Let x̂, ŷ, ẑ 2 X̂ with (x̂, ŷ) 2 Ŵ and (ŷ, ẑ) 2 Ŵ .

Then there exists M ✓ X and N ✓ X sucht ath M ⇥M ✓ W and N ⇥N ✓ W and M 2 x̂ \ ŷ

and N 2 ŷ \ ẑ.

Since M 2 ŷ and N 2 ŷ then M \N 6= ;.

So (M [N)⇥ (M [N) ✓ W �W

So (M [N)⇥ (M [N) ✓ V .

Since M [N 2 x̂ and M [N 2 ẑ then Ŵ � Ŵ ✓ V̂ .

(b) To show: bX is Hausdor↵.

Let x̂, ŷ 2 X̂ such that there does not exist open sets separating them.

Then x̂ and ŷ are minimal Cauchy filters in X such that (x̂, ŷ) 2 V̂ for all symmetric V 2 X .

Let
ẑ = {M [N | M 2 x̂ and N 2 ŷ}✓

Then ẑ ✓ x̂ and ẑ ✓ ŷ.

Also ẑ is a Cauchy filter (since if V 2 X is symmetric then there exists P 2 X such that
P ⇥ P 2 V , P 2 x̂ and P 2 ŷ so that P 2 ẑ).

Since x̂ and ŷ are minimal Cauchy filters then x̂ = ŷ = ẑ.

So X̂ is Hausdor↵.

(c) To show: ◆ is uniformly continuous.

Assume V 2 X is symmetric.

Recall that V̂ = {(x̂, ŷ) 2 X̂ ⇥ X̂ | there exists M 2 x̂ \ ŷ with M ⇥M ✓ V }.

To show: (i⇥ i)�1(V̂ ) ✓ V \ (i⇥ i)�1( \V � V � V ).

If x, y 2 X and (i(x), i(y)) = (i⇥ i)(x, y) 2 V̂ } then there exists M such that M ⇥M ✓ V and
M 2 N (x) and M 2 N (y).
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So (x, y) 2 V .

So (i⇥ i)�1(V̂ ) ✓ V .

If (x, y) 2 V then (BV (x)\BV (y))⇥ (BV (x)\BV (y))) ✓ V �V �V and BV (x)\BV (y) 2 N (x)
and BV (x) \BV (y) 2 N (y).

(d) To show: ◆(X) = bX.

Let x̂ 2 bX and let V 2 X be symmetric so that V̂ 2 X̂ .

Let M =
[

E2x̂

E⇥E✓V

E
�.

By (no. 2 Prop. 5 Cor. 4), M 2 x̂.

Since
B

V̂
(x̂) \ ◆(X) = {◆(x) | x 2 X and (x̂, ◆(x)) 2 V̂ }

then there exists x 2 X and N 2 N (x) such that N ⇥N ✓ V with N 2 x̂.

So there exists E ✓ X̂ with x 2 E and E ✓ B
V̂
(x̂).

So x 2 E
�.

So B
V̂
(x̂) \ ◆(X) = ◆(M).

So B
V̂
(x̂) \ ◆(X) 6= ;.

So ◆(X) is dense in bX.

(e) To show bX is complete.

Let F be a Cauchy filter on ◆(X).

Since ◆ : X ! X̂ is uniformly continuous then (◆�1(F))✓ is a Cauchy filter on X.

(◆�1(F))✓ = {U ✓ X | U contains a set in ◆
�1(F)}

Let x̂ be a minimal Cauchy filter on X with x̂ ✓ (◆�1(F))✓.

Then ◆(x̂)✓ is a Cauchy filter on ◆(X).

Also F = ◆(◆�1(F)) ◆ ◆(x̂)✓.

Since ◆(X) = X̂ and ◆(x̂)✓ converges in x̂ then F converges in bX.

So bX is complete.

(f) To show: ( bX, bX , ◆) satisfies the universal property.

Let Y be a complete Hausdor↵ uniform space and let f : X ! Y be a uniformly continuous
function.

Define g0 : ◆(X) ! Y by
g0(◆(x)) = lim f(N (x)).

Since f is continuous then f(x) = lim f(N (x)) = g(◆(x).

So f = g0 � ◆.

To show: g0 is uniformly continuous.

Let U 2 XY and V 2 XX with �(V ) = V and such that

if (x1, x2) 2 V then (f(x1), f(x2)) 2 U .
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Since (by the way that we proved that ◆ is uniformly continuous??) ◆ : X ! X̂ is uniformly
continuous then (◆(x1), ◆(x2)) 2 V̂ implies (x1, x2) 2 V .

Then (g0(◆(x1)), g0(◆(x2))) = (f(x1), f(x2)) 2 U .

So g0 is uniformly continuous.

Now, using that ◆(X) = X̂, let g : X̂ ! Y be the continuous extension of g0 : ◆(X) ! Y .

Then g : X̂ ! Y is the universal property map that we need.
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