## 14 Function spaces

## $14.1 \mathbb{R}^{2}$

The favourite example is $\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}$ with addition and scalar multiplication given by

$$
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \quad \text { and } \quad c\left(x_{1}, x_{2}\right)=\left(c x_{1}, c x_{2}\right), \text { for } c \in \mathbb{R},
$$

with inner product

$$
\begin{aligned}
\mathbb{R}^{2} \times \mathbb{R}^{2} & \longrightarrow \mathbb{R}_{\geq 0} \\
(x, y) & \longmapsto\langle x, y\rangle
\end{aligned} \quad \text { given by } \quad\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2},
$$

with norm

$$
\begin{aligned}
\mathbb{R}^{2} & \longrightarrow \mathbb{R}_{\geq 0} \\
x & \longmapsto\|x\|
\end{aligned} \quad \text { given by } \quad\left\|\left(x_{1}, x_{2}\right)\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

with metric $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left\|\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)\right\|=\left\|\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}},
$$

with uniformity given by

$$
\begin{aligned}
\mathcal{X}= & \left\{\text { subsets of } \mathbb{R}^{2} \times \mathbb{R}^{2} \text { which contain a set } B_{\epsilon}\right\} \quad \text { where } \\
& B_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid d(x, y)<\epsilon\right\} \text { for } \epsilon \in \mathbb{R}_{>0},
\end{aligned}
$$

and with topology given by

$$
\mathcal{T}=\{\text { unions of open balls }\},
$$

where the set of open balls is

$$
\mathcal{B}=\left\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in \mathbb{R}^{2}\right\} \quad \text { and } \quad B_{\epsilon}(x)=\left\{y \in \mathbb{R}^{2} \mid d(y, x)<\epsilon\right\}
$$

is the ball of radius $\epsilon$ centered at $x$ (yes, to stress, strongly, that we normally assume that the set $\mathbb{R}^{2}$ is endowed with lots of extra structures this is, intentionally, a very run-on sentence).

### 14.2 Favourite vector spaces $\mathbb{R}^{n}$ and $\mathbb{R}^{\infty}$, the norms $\left\|\|_{p}\right.$ and the spaces $\ell^{p}$

### 14.2.1 Sequences are functions

Let $n \in \mathbb{Z}_{>0}$. Identify $n$-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of elements of $\mathbb{R}$ with functions $\vec{x}:\{1,2, \ldots, n\} \rightarrow \mathbb{R}$ so that
the $n$-tuple $\left(x_{1}, \ldots, x_{n}\right) \quad$ is identified with the function $\begin{array}{ccc}\vec{x}: \quad\{1, \ldots, n\} & \rightarrow \mathbb{R} \\ i & \mapsto & x_{i}\end{array}$


$$
\begin{aligned}
& 0=(0,0) \\
& x=(1,2) \\
& y=(2,2)
\end{aligned}
$$

Open balls in $\mathbb{R}^{2}$.

### 14.2.2 The vector space $\mathbb{R}^{n}$

Let $n \in \mathbb{Z}_{\geq 0}$. The space of functions from $\{1,2, \ldots, n\}$ to $\mathbb{R}$ is

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}=\{\text { functions } \vec{x}:\{1, \ldots, n\} \rightarrow \mathbb{R}\} .
$$

with addition and scalar multiplication given by

$$
\begin{gathered}
\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \quad \text { and } \\
c\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(c x_{1}, c x_{2}, \ldots, x_{n}\right), \quad \text { for } c \in \mathbb{R},
\end{gathered}
$$

and with inner product $\langle\rangle:, \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
\left\langle\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots x_{n} y_{n}
$$

with norm

$$
\begin{aligned}
\mathbb{R}^{n} & \longrightarrow \mathbb{R}_{\geq 0} \\
x & \longmapsto\|x\|
\end{aligned} \quad \text { given by } \quad\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

with metric $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
\begin{aligned}
& d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\| \\
& \quad=\left\|\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right)\right\|=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}},
\end{aligned}
$$

with uniformity given by

$$
\mathcal{X}=\left\{\text { subsets of } \mathbb{R}^{n} \times \mathbb{R}^{n} \text { which contain a set } B_{\epsilon}\right\} \quad \text { where }
$$

$$
B_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \mid d(x, y)<\epsilon\right\} \text { for } \epsilon \in \mathbb{R}_{>0},
$$

and with topology given by

$$
\mathcal{T}=\{\text { unions of open balls }\},
$$

where the set of open balls is

$$
\mathcal{B}=\left\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}_{>0}, x \in \mathbb{R}^{n}\right\} \quad \text { and } \quad B_{\epsilon}(x)=\left\{y \in \mathbb{R}^{n} \mid d(y, x)<\epsilon\right\}
$$

is the ball of radius $\epsilon$ centered at $x$ (yes, to stress, strongly, that we normally assume that the set $\mathbb{R}^{n}$ is endowed with lots of extra structures this is, intentionally, a very run-on sentence).

### 14.2.3 The vector space $\mathbb{R}^{\infty}$

Let

$$
\mathbb{R}^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R}\right\}=\left\{\vec{x}: \mathbb{Z}_{>0} \rightarrow \mathbb{R}\right\}
$$

with addition and scalar multiplication given by

$$
\left(x_{1}, x_{2}, \ldots\right)+\left(y_{1}, y_{2}, \ldots\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right) \quad \text { and } \quad c\left(x_{1}, x_{2}, \ldots\right)=\left(c x_{1}, c x_{2}, \ldots\right),
$$

for $\left(x_{1}, x_{2}, \ldots\right),\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\infty}$ and $c \in \mathbb{R}$.
The vector space of sequences with finite support is

$$
c_{c}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty} \mid \text { all but a finite number of the } x_{i} \text { are } 0\right\},
$$

the space of sequences that are eventually 0 . The vector space

$$
c_{0}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and } \lim _{n \rightarrow \infty} x_{n}=0\right\} \quad \text { has } c_{c} \subsetneq c_{0} \subsetneq \mathbb{R}^{\infty} \text {. }
$$

### 14.2.4 The spaces $\ell^{p}$

Let $p \in \mathbb{R}_{\geq 1}$ and define

$$
\ell^{p}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|\vec{x}\|_{p}<\infty\right\}, \quad \text { where } \quad\|\vec{x}\|_{p}=\left(\sum_{i \in \mathbb{Z}_{>0}}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for a sequence $\vec{x}=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}$.

### 14.2.5 The spaces $\ell^{\infty}, c_{0}$ and $\ell^{1}$

Define

$$
\ell^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|\vec{x}\|_{\infty}<\infty\right\}, \quad \text { where } \quad\|\vec{x}\|_{\infty}=\sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\right\},
$$

for a sequence $\vec{x}=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}$. Define

$$
c_{0}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and } \lim _{n \rightarrow \infty} x_{n}=0\right\}, \quad \text { with norm } \quad\|\vec{x}\|_{\infty}=\sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\right\},
$$

Note that

$$
\ell^{1}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|\vec{x}\|_{1}<\infty\right\}, \quad \text { where } \quad\|\vec{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots,
$$

for a sequence $\vec{x}=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}$.

### 14.2.6 The space $\ell^{2}$

Define

$$
\ell^{2}=\left\{\vec{x}=\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in \mathbb{R} \text { and }\|\vec{x}\|_{2}<\infty\right\}, \quad \text { where } \quad\|\vec{x}\|_{2}=\left(\sum_{i \in \mathbb{Z}_{>0}}\left|x_{i}\right|^{2}\right)^{1 / 2}
$$

and define an inner product on $\ell^{2}$,

$$
\langle,\rangle: \ell^{2} \times \ell^{2} \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad\langle\vec{x}, \vec{y}\rangle=\sum_{i \in \mathbb{Z}_{>0}} x_{i} y_{i}
$$

for $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots\right)$ in $\ell^{2}$.

### 14.3 Some proofs

### 14.3.1 The Hölder and Minkowski inequalities

Theorem 14.1. Let $q \in \mathbb{R}_{\geq 1}$ and let $p \in \mathbb{R}_{>1} \cup\{\infty\}$ be given by $\frac{1}{p}+\frac{1}{q}=1$. Let

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad \text { for } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

and define

$$
\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}, \quad \text { for } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \text { and } y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n} .
$$

(a) Let $a, b \in \mathbb{R}_{>0}$. Then

$$
a^{\frac{1}{p}} b^{\frac{1}{q}} \leq \frac{1}{p} a+\frac{1}{q} b .
$$

(b) Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Then

$$
|\langle x, y\rangle| \leq\|x\|_{p}\|y\|_{q} \quad \text { and } \quad\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}
$$

(b') Let $x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{p}, y=\left(y_{1}, y_{2}, \ldots\right) \in \ell^{q}$ and $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots$. Then

$$
|\langle x, y\rangle| \leq\|x\|_{p}\|y\|_{q} \quad \text { and } \quad\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p} .
$$

Proof. (a) The functions $h: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} \geq 0$ given by

are increasing with $h(1)=1$.

The functions $h: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
h(x)=x^{\frac{1}{q}}
$$


are increasing with $h(1)=1$.
The functions $h: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
h(x)=x^{-\frac{1}{q}}
$$


are decreasing with $h(1)=1$.
Thus the functions $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ given by $g(x)=x^{-1 / q}-1$ are decreasing with $g(1)=0$. So

$$
x^{-\frac{1}{q}}-1 \leq 0, \quad \text { for } x \in \mathbb{R}_{\geq 1}
$$

If $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ is given by

$$
f(x)=x^{1 / p}-\frac{1}{p} x, \quad \text { then } \quad \frac{d f}{d x}=\frac{1}{p} x^{\frac{1}{p}-1}-\frac{1}{p}=\frac{1}{p}\left(x^{-\frac{1}{q}}-1\right)
$$

and so $f$ is decreasing for $x \in \mathbb{R}_{>1}$ and $f(1)=1-\frac{1}{p}=\frac{1}{q}$.
So

$$
x^{1 / p}-\frac{1}{p} x \leq \frac{1}{q}, \quad \text { for } x \in \mathbb{R}_{\geq 1}
$$

Let $a, b \in \mathbb{R}_{>0}$ with $a \geq b$ and let $x=\frac{a}{b}$. Then

$$
\frac{1}{q} \geq\left(\frac{a}{b}\right)^{\frac{1}{p}}-\frac{1}{p}\left(\frac{a}{b}\right)=\frac{1}{b}\left(a^{\frac{1}{p}} b^{-\frac{1}{p}+1}-\frac{1}{p} a\right)=\frac{1}{b}\left(a^{\frac{1}{p}} b^{\frac{1}{q}}-\frac{1}{p} a\right) .
$$

So

$$
\frac{1}{p} a+\frac{1}{q} b \geq a^{\frac{1}{p}} b^{\frac{1}{q}}, \quad \text { for } a, b \in \mathbb{R}_{>0}
$$

(b) Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. By part (a),

$$
\frac{\left|x_{i} y_{i}\right|}{\|x\|_{p}\|y\|_{q}} \leq \frac{1}{p}\left(\frac{\left|x_{i}\right|}{\|x\|_{p}}\right)^{p}+\frac{1}{q}\left(\frac{\left|y_{i}\right|}{\|y\|_{q}}\right)^{q} .
$$

So

$$
\sum_{i=1}^{n} \frac{\left|x_{i} y_{i}\right|}{\|x\|_{p}\|y\|_{q}} \leq \sum_{i=1}^{n} \frac{1}{p}\left(\frac{\left|x_{i}\right|}{\|x\|_{p}}\right)^{p}+\frac{1}{q}\left(\frac{\left|y_{i}\right|}{\|y\|_{q}}\right)^{q}=\frac{1}{p}+\frac{1}{q}=1 .
$$

So

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\|x\|_{p}\|y\|_{q} .
$$

So

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\|x\|_{p}\|y\|_{q}
$$

(c) Using $\left|x_{i}+y_{i}\right| \leq\left|x_{i}\right|+\left|y_{i}\right|$ and $p-1=p\left(1-\frac{1}{p}\right)=p \frac{1}{q}=\frac{p}{q}$, and

$$
\begin{aligned}
\left\|\left(\left|x_{1}+y_{1}\right|^{\frac{1}{q}}, \ldots,\left|x_{n}+y_{n}\right|^{\frac{p}{q}}\right)\right\|_{q} & =\left(\sum_{i=1}^{n}\left(\left|x_{i}+y_{i}\right|^{\frac{p}{q}}\right)^{q}\right)^{\frac{1}{q}} \\
& =\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{\frac{1}{p} \cdot \frac{p}{q}}=\left(\|x+y\|_{p}\right)^{\frac{p}{q}}
\end{aligned}
$$

and the identity from part (b), gives

$$
\begin{aligned}
\|x+y\|_{p}^{p} & =\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|x_{i}+y_{i}\right|^{p-1} \leq \sum_{i=1}^{n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right)\left|x_{i}+y_{i}\right|^{\frac{p}{q}} \\
& =\sum_{i=1}^{n}\left|x_{i}\right|\left|x_{i}+y_{i}\right|^{\frac{p}{q}}+\sum_{i=1}^{n}\left|y_{i}\right|\left|x_{i}+y_{i}\right|^{\frac{p}{q}} \\
& \leq\|x\|_{p}\left\|\left(\left|x_{1}+y_{1}\right|^{\frac{p}{q}}, \ldots,\left|x_{n}+y_{n}\right|^{\frac{p}{q}}\right)\right\|_{q}+\|y\|_{p}\left\|\left(\left|x_{1}+y_{1}\right|^{\frac{p}{q}}, \ldots,\left|x_{n}+y_{n}\right|^{\frac{p}{q}}\right)\right\|_{q} \\
& =\|x\|_{p}\left(\|x+y\|_{p}\right)^{\frac{p}{q}}+\|y\|_{p}\left(\|x+y\|_{p}\right)^{\frac{p}{q}}=\left(\|x\|_{p}+\|y\|_{q}\right)\|x+y\|_{p}^{p-1} .
\end{aligned}
$$

Dividing both sides by $|x+y|_{p}^{p-1}$, then

$$
\|x+y\|_{p} \leq\|x\|_{p}+\|q\|_{p}
$$

PUT IN THE PROOFS OF ( $b^{\prime}$ ) AND ( $c^{\prime}$ ).

### 14.3.2 The dual of $\ell^{p}$

Theorem 14.2. Let $p \in \mathbb{R}_{>1}$ and let $q \in \mathbb{R}_{>1}$ be defined by

$$
\frac{1}{p}+\frac{1}{q}=1 . \quad \text { Then } \quad\left(\ell^{p}\right)^{*}=\ell^{q} .
$$

Proof.
To show: $\ell^{q}$ is the dual of $\ell^{p}$.
To show: $\ell^{q}=B\left(\ell^{p}, \mathbb{R}\right)$.
Define

$$
\begin{aligned}
\varphi: \quad \ell^{q} & \longrightarrow B\left(\ell^{p}, \mathbb{R}\right) \\
y & \longmapsto \varphi_{y}: \ell^{p} \\
& \rightarrow \mathbb{R} \\
x & \mapsto\langle y, x\rangle
\end{aligned}
$$

where

$$
\langle y, x\rangle=\sum_{i \in \mathbb{Z}_{>0}} y_{i} x_{i}, \quad \text { if } y=\left(y_{1}, y_{2}, \ldots\right) \text { and } x=\left(x_{1}, x_{2}, \ldots\right) .
$$

To show: (a) $\varphi$ is a linear transformation.
(b) $\varphi$ is invertible.
(c) If $y \in \ell^{q}$ then $\left\|\varphi_{y}\right\|=\|y\|$.
(a) To show: (aa) If $y_{1}, y_{2} \in \ell^{q}$ then $\varphi\left(y_{1}+y_{2}\right)=\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$.
(ab) If $y \in \ell^{q}$ and $c \in \mathbb{R}$ then $\varphi(c y)=c \varphi(y)$.
(aa) Assume $y_{1}, y_{2}, \in \ell^{q}$.
To show: $\varphi\left(y_{1}+y_{2}\right)=\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$.
To show: If $x \in \ell^{p}$ then $\varphi\left(y_{1}+y_{2}\right)=\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$.
Assume $x \in \ell^{p}$.
To show: $\varphi_{y_{1}+y_{2}}(x)=\left(\varphi_{y_{1}}+\varphi_{y_{2}}\right)(x)$.

$$
\varphi_{y_{1}+y_{2}}(x)=\left\langle y_{1}+y_{2}, x\right\rangle=\left\langle y_{1}, x\right\rangle+\left\langle y_{2}, x\right\rangle=\varphi_{y_{1}}(x)+\varphi_{y_{2}}(x)=\left(\varphi_{y_{1}}+\varphi_{y_{2}}\right)(x) .
$$

(ab) Assume $y \in \ell^{q}$ and $c \in \mathbb{R}$.
To show: $\varphi(c y)=c \varphi(y)$.
To show: If $x \in \ell^{p}$ then $\varphi_{c y}(x)=\left(c \varphi_{y}\right)(x)$.
Assume $x \in \ell^{p}$.
To show $\varphi_{c y}(x)=\left(c \varphi_{y}\right)(x)$.

$$
\varphi_{c y}(x)=\langle c y, x\rangle=c\langle y, x\rangle=c\left(\varphi_{y}(x)\right)=\left(c \varphi_{y}\right)(x) .
$$

So $\varphi$ is a linear transformation.
(b) To show: $\varphi: \ell^{q} \rightarrow B\left(\ell^{p}, \mathbb{R}\right)$ is invertible.

To show: There exists $\psi: B\left(\ell^{p}, \mathbb{R}\right) \rightarrow \ell^{q}$ such that $\varphi \circ \psi=\mathrm{id}$ and $\psi \circ \varphi=\mathrm{id}$.
Let $\psi: B\left(\ell^{p}, \mathbb{R}\right) \rightarrow \ell^{q}$ be given by

$$
\psi(\gamma)=\left(\gamma\left(e_{1}\right), \gamma\left(e_{2}\right), \ldots\right), \quad \text { where } e_{i}=(0,0, \ldots, 0,1,0,0, \ldots)
$$

with 1 in the $i$ th spot.

To show: (ba) $\varphi \circ \psi=\mathrm{id}$.
(bb) $\psi \circ \varphi=\mathrm{id}$.
(ba) To show: If $\gamma \in B\left(\ell^{p}, \mathbb{R}\right)$ then $\varphi(\psi(\gamma))=\gamma$.
Assume $\gamma \in B\left(\ell^{p}, \mathbb{R}\right)$.
To show: $\varphi(\psi(\gamma))=\gamma$.
To show: If $x \in \ell^{p}$ then $\varphi(\psi(\gamma))(x)=\gamma(x)$.
Assume $x \in \ell^{p}$. Let $x=\left(x_{1}, x_{2}, \ldots\right)$.
To show: $\varphi(\psi(\gamma))(x)=\gamma(x)$.

$$
\begin{aligned}
\varphi(\psi(\gamma))(x) & =\varphi\left(\gamma\left(e_{1}\right), \gamma\left(e_{2}\right), \ldots\right)(x)=\left\langle\left(\gamma\left(e_{1}\right), \gamma\left(e_{2}\right), \ldots\right),\left(x_{1}, x_{2}, \ldots\right)\right\rangle \\
& =\sum_{i \in \mathbb{Z}_{>0}} \gamma\left(e_{i}\right) x_{i}=\gamma\left(\sum_{i \in Z Z_{>0}} x_{i} e_{i}\right)=\gamma(x)
\end{aligned}
$$

(bb) To show: $\psi \circ \varphi=\mathrm{id}$.
To show: If $y \in \ell^{q}$ then $\psi(\varphi(y))=y$.
Assume $y \in \ell^{q}$. Let $y=\left(y_{1}, y_{2}, \ldots\right)$.
To show: $\psi(\varphi(y))=y$.

$$
\psi(\varphi(y))=\psi\left(\varphi_{y}\right)=\left(\varphi_{y}\left(e_{1}\right), \varphi_{y}\left(e_{2}\right), \ldots\right)=\left(y_{1}, y_{2}, \ldots\right)=y
$$

since $\varphi_{y}\left(e_{i}\right)=\left\langle y, e_{i}\right\rangle=\left\langle\left(y_{1}, y_{2}, \ldots\right),(0, \ldots, 0,1,0, \ldots)\right\rangle=y_{i}$.
So $\psi(\varphi(y))=y$.
(c) To show: If $y \in \ell^{q}$ then $\left\|\varphi_{y}\right\|=\|y\|_{q}$.

Assume $y \in \ell^{q}$. Let $y=\left(y_{1}, y_{2}, \ldots\right)$.
To show: (ca) $\left\|\varphi_{y}\right\| \leq\|y\|_{q}$.
(cb) $\left\|\varphi_{y}\right\| \geq\|y\|_{q}$.
(ca) To show: If $x \in \ell^{p}$ then $\left|\varphi_{y}(x)\right| \leq\|x\|_{p}\|y\|_{q}$.
Assume $x \in \ell^{p}$. Let $x=\left(x_{1}, x_{2}, \ldots\right)$.
Then, by Hölder's inequality,

$$
\left|\varphi_{y}(x)\right|=\left|\sum_{n \in \mathbb{Z}_{>0}} x_{n} y_{n}\right| \leq\|x\|_{p}\|y\|_{q},
$$

So $\left\|\varphi_{y}\right\| \leq\|y\|_{q}$.
(cb) To show: $\left\|\varphi_{y}\right\| \geq\|y\|_{q}$.
To show: There exists $x \in \ell^{p}$ with $\left|\varphi_{y}(x)\right| \geq\|x\|_{p}\|y\|_{q}$.
Let

$$
x=\left(\operatorname{sgn}\left(y_{1}\right)\left|y_{1}\right|^{q-1}, \operatorname{sgn}\left(y_{2}\right)\left|y_{2}\right|^{q-1}, \ldots\right) .
$$

Then

$$
\begin{aligned}
\|x\|_{p} & =\left(\sum_{n \in \mathbb{Z}_{>0}}\left|x_{n}\right|^{p}\right)^{1 / p}=\left(\left.\left.\sum_{n \in \mathbb{Z}_{>0}}\left|\operatorname{sgn}\left(y_{n}\right)\right| y_{n}\right|^{q-1}\right|^{p}\right)^{1 / p} \\
& =\left(\sum_{n \in \mathbb{Z}_{>0}}\left|y_{n}\right|^{p q-p}\right)^{1 / p}=\left(\sum_{n \in \mathbb{Z}_{>0}}\left|y_{n}\right|^{p q\left(1-\frac{1}{q}\right)}\right)^{1 / p} \\
& =\left(\sum_{n \in \mathbb{Z}_{>0}}\left|y_{n}\right|^{p q \frac{1}{p}}\right)^{1 / p}=\left(\left(\sum_{n \in \mathbb{Z}_{>0}}\left|y_{n}\right|^{q}\right)^{1 / q}\right)^{q \frac{1}{p}} \\
& =\|y\|_{q}^{q \frac{1}{p}}=\|y\|_{q}^{q\left(1-\frac{1}{q}\right)}=\|y\|_{q}^{q-1}
\end{aligned}
$$

So

$$
\begin{aligned}
\left|\varphi_{y}(x)\right| & =\left|\sum_{n \in \mathbb{Z}_{>0}} x_{n} y_{n}\right|=\left|\sum_{n \in \mathbb{Z}_{>0}}\left(\operatorname{sgn}\left(y_{n}\right)\left|y_{n}\right|\right)\left(\operatorname{sgn}\left(y_{n}\right)\left|y_{n}\right|^{q-1}\right)\right| \\
& =\sum_{n \in \mathbb{Z}_{>0}}\left|y_{n}\right|^{q}=\|y\|_{q}^{q}=\|y\|_{q}\|y\|_{q}^{q-1}=\|y\|_{q}\|x\|_{p}
\end{aligned}
$$

So $\left\|\varphi_{y}\right\| \geq\|y\|_{q}$.

