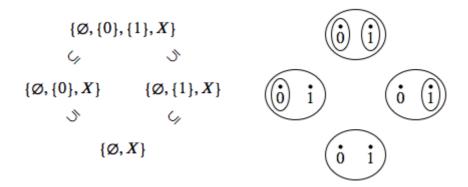
(c) Finite intersections of open sets in X are open in X.

In other words, a *topology* on X is a set \mathcal{T} of subsets of X such that

- (a) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- (b) If $\mathcal{S} \subseteq \mathcal{T}$ then $\left(\bigcup_{U \in \mathcal{S}} U\right) \in \mathcal{T}$,
- (c) If $\ell \in \mathbb{Z}_{>0}$ and $U_1, U_2, \ldots, U_\ell \in \mathcal{T}$ then $U_1 \cap U_2 \cap \cdots \cap U_\ell \in \mathcal{T}$.

A topological space is a set X with a topology \mathcal{T} on X. An open set in X is a set in \mathcal{T} .

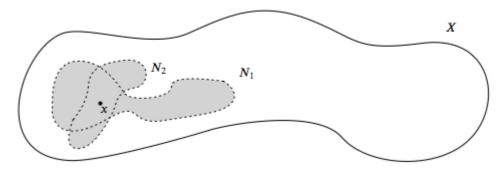


The four possible topologies on $X = \{0, 1\}$.

In a topological space, perhaps even more important than the open sets are the neighborhoods. Let (X, \mathcal{T}) be a topological space. Let $x \in X$. The *neighborhood filter of* x is

 $\mathcal{N}(x) = \{ N \subseteq X \mid \text{there exists } U \in \mathcal{T} \text{ such that } x \in U \text{ and } N \supseteq U \}.$

A neighborhood of x is a set in $\mathcal{N}(x)$.



Neighborhoods of x.

Let (X, \mathcal{T}) be a topological space.

A closed set in X is $K \subseteq X$ such that the complement X - K is open.

Let $A \subseteq X$. A close point to A is an element $x \in X$ such that

if
$$N \in \mathcal{N}(x)$$
 then $N \cap A \neq \emptyset$.

The closure of A is the subset \overline{A} of X such that

- (a) \overline{A} is closed in X and $\overline{A} \supseteq A$,
- (b) If C is closed in X and $C \supseteq A$ then $C \supseteq \overline{A}$.

Proposition 4.6. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. The closure of A is the set of close points of A.

4.3 Filters

Let X be a set. A filter on X is a collection \mathcal{F} of subsets of X such that

- (a) $\emptyset \notin \mathcal{F}$.
- (b) (upper ideal) If $N \in \mathcal{F}$ and E is a subset of X with $N \subseteq E$ then $E \in \mathcal{F}$,
- (c) (closed under finite intersection) If $\ell \in \mathbb{Z}_{>0}$ and

 $N_1, N_2, \ldots, N_\ell \in \mathcal{F}$ then $N_1 \cap N_2 \cap \cdots \cap N_\ell \in \mathcal{F}$,

An ultrafilter on X is a maximal filter on X, i.e. an ultrafilter on X is a filter \mathcal{G} on X such that

if \mathcal{F} is a filter on X and $\mathcal{F} \supseteq \mathcal{G}$ then $\mathcal{F} = \mathcal{G}$.

Let (X, \mathcal{T}) be a topological space and let $z \in Z$. The neighborhood filter of z is

$$\mathcal{N}(z) = \{N \subseteq X \mid \text{there exists } U \in \mathcal{T} \text{ such that } x \in U \text{ and } N \supseteq U\}$$

Let (X, \mathcal{T}) be a topological space and let \mathcal{F} be a filter on X.

A limit point of \mathcal{F} is $z \in X$ such that $\mathcal{F} \supseteq \mathcal{N}(z)$.

A cluster point of \mathcal{F} is $z \in X$ such that there exists a filter \mathcal{G} on X with $\mathcal{G} \supseteq \mathcal{F}$ and z is a limit point of \mathcal{G} .

4.4 Hausdorff topological spaces

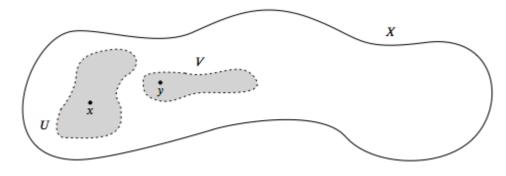
The goal of this section is to explain that if (X, \mathcal{T}) is a topological space then

limit unique \Leftrightarrow Hausdorff \Leftrightarrow separated \Leftrightarrow neighborhood pinpointed (H)

The definitions of these terms are as follows. Let (X, \mathcal{T}) be a topological space.

- The space (X, \mathcal{T}) is *limit unique* if every filter on X has at most one limit point.
- The space (X, \mathcal{T}) is *Hausdorff* if (X, \mathcal{T}) satisfies

if $x, y \in X$ and $x \neq y$ then there exists $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$,



The Hausdorff property

• The space (X, \mathcal{T}) is separated if

 $\Delta(X) = \{(x, x) \mid x \in X\} \text{ is a closed subset of } X \times X$

(with the product topology on $X \times X$).

• The space (X, \mathcal{T}) is neighborhood pinpointed if (X, \mathcal{T}) satisfies

if
$$x \in X$$
 then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}$

4.4.1 Sketch of the proof of the equivalences in (H)

Theorem 4.7. The following conditions on a topological space (X, \mathcal{T}) are equivalent.

(limit unique) If \mathcal{G} is a filter on X then \mathcal{G} has at most one limit point.

(cluster unique) If \mathcal{F} is a filter on X and x is a limit point of \mathcal{F} then x is the only cluster piont of \mathcal{F} . (neighborhood pinpointed) If $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}$.

(Hausdorff) If $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

(separated) $\Delta(X) = \{(x, x) \mid x \in X\}$ is a closed subset of $X \times X$ (with the product topology on $X \times X$).

Sketch of proof.

Hausdorff \Leftrightarrow separated: The point here is that if $x, y \in X$ with $x \neq y$ then $(x, y) \in X \times X$ is not a close point to $\Delta(X)$ if and only if there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $(U \times V) \cap \Delta(X) = \emptyset$ and this happens if and only if there exists $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

Hausdorff \Leftrightarrow neighborhood pinpointed \Leftrightarrow (H6) \Leftrightarrow limit unique: The point here is that if (X, \mathcal{T}) is Hausdroff holds and $x, y \in X$ with $y \neq x$ then $y \notin \bigcap_{U \in \mathcal{N}(x)} \overline{U}$ which is equivalent to $\{x\} = \bigcap_{U \in \mathcal{N}(x)} \overline{U}$ so that x is the only cluster point of $\mathcal{N}(x)$. If \mathcal{F} is a filter with x as a limit point then x is also a cluster point of \mathcal{F} and

$$x \in \bigcap_{M \in \mathcal{F}} \overline{M} \subseteq \bigcap_{U \in \mathcal{N}(x)} \overline{U} = \{x\}.$$

4.5 Compact topological spaces

The goal of this section is to explain that if (X, \mathcal{T}) is a topological space then

filter compact \Leftrightarrow ultrafilter compact \Leftrightarrow exclusion compact \Leftrightarrow ever compact (C)

The definitions of these terms are as follows. Let (X, \mathcal{T}) be a topological space.

- The space (X, \mathcal{T}) is *filter compact* if every filter has a cluster point.
- The space (X, \mathcal{T}) is ultrafilter compact if every ultrafilter has a limit point.
- The space (X, \mathcal{T}) is exclusion compact if every closed exclusion contains a finite exclusion, i.e.

If \mathcal{C} is a collection of closed sets of X such that $\mathcal{K} = \emptyset$

then there exists $\ell \in \mathbb{Z}_{>0}$ and $K_1, K_2, \ldots, K_\ell \in \mathcal{C}$ such that $K_1 \cap K_2 \cap \cdots \cap K_\ell = \emptyset$.

4.6.1 Spaces

Although it is traditional to define topological spaces via axioms for **open sets**, there are equivalent (and useful!) definitions of topological spaces by axioms for the **closed sets**, and via axioms for **neighborhoods**. Another important and useful point of view is to view the topological spaces as a category with morphisms the **continuous functions**. From this point of view the notion of *topological space* and the notion of *continuous function* are "equivalent data".

4.6.2 Filters, Hausdorff and Compact spaces

The treatment of filters here is a distillation of material found in Bourbaki: the definition of filter, is in <u>Bou</u>, Top. Ch. I §6 no. 1], the definition of limit point and cluster point of a filter are <u>Bou</u>, Top. Ch. I, §7 Def. 1 and 2] and the definition of limit point and cluster point of a function are <u>Bou</u>, Top. Ch. I §7 Def. 3]. Theorem **??** is <u>Bou</u>, Top. Ch. I §7 Prop. 9] and Proposition **??** is Example 1 in <u>Bou</u>, Top. Ch. I §7 no. 3].

The presentation of the equivalent conditions for **Hausdorff spaces**, Theorem 4.7, follows Bourbaki Bou, Top. Ch. I §8 no. 1].

- (H3) The condition that $\Delta(X)$ is closed in $X \times X$ is the condition used in algebraic geometry for a separated scheme (see Ha, Ch. II §4] and Macdonald (1.11) in CSM).
- (H5) Hausdorff spaces are the spaces such that limits are unique, when they exist.
- (H1) The condition (H1) is the separation axiom that is used often as the definition of a Hausdorff topological space.

The presentation of the equivalent conditions for **compact spaces**, Theorem 4.8 follows Bou Top. Ch. I §9 no. 1]. The second and third conditions in the definition of a filter say that finite intersections of elements of a filter cannot be empty. This is the rigidity condition that plays an important role in arguments relating limit points and compactness.

4.7 Some proofs

4.7.1 Cluster and limit points; Cauchy and convergent sequences

The proof of part (e) of Proposition 4.11 uses Proposition 4.12(a).

Proposition 4.11. Let (X, d) be a metric space. Let $A \subseteq X$ and let (a_1, a_2, \ldots) be a sequence in A.

- (a) (Limit points are unique) If $z_1, z_2 \in X$ are limit points of (a_1, a_2, \ldots) then $z_1 = z_2$.
- (b) (Limit points are cluster points) If $z \in X$ is a limit point of $(a_1, a_2, ...)$ then z is a cluster point of $(a_1, a_2, ...)$.
- (c) (Cluster points of Cauchy sequences are limit points) If $(a_1, a_2, ...)$ is a Cauchy sequence and z is a cluster point of $(a_1, a_2, ...)$ then z is a limit point of $(a_1, a_2, ...)$.
- (d) (Convergent sequences are Cauchy) If there exists $z \in X$ such that z is a limit point of $(a_1, a_2, ...)$ then $(a_1, a_2, ...)$ is Cauchy sequence.
- (e) If A is ball compact in X then $(a_1, a_2, ...)$ has a Cauchy subsequence.

Proof.

 $\begin{array}{l} d(a_{j_m}^{(n)}, a_{j_n}^{(n)}) \leq d(a_{j_m}^{(m)}, a_{j_{k+1}}^{(k+1)}) + d(a_{j_{k+1}}^{(k+1)}, a_{j_n}^{(n)}) \leq 10^{-(k+1)} + 10^{-(k+1)} \leq 10^k).\\ \text{Let } z \in A.\\ \text{To show: } z \text{ is not a limit point of } (a_{j_1}^{(1)}, a_{j_2}^{(2)}, \ldots).\\ \text{To show: There exists } \epsilon \in \mathbb{E} \text{ and } \ell \in \mathbb{Z}_{>0} \text{ such that if } n \in \mathbb{Z}_{\geq \ell} \text{ then } d(a_{j_n}^{(n)}, z) > \epsilon.\\ \text{Let } U \in \mathcal{S} \text{ such that } z \in U.\\ \text{Since } U \text{ is open in } X \text{ then there exists } k \in \mathbb{Z}_{>0} \text{ such that } B_{10-k}(z) \subseteq U.\\ \text{Let } \epsilon = 10^{-k} \text{ and let } \ell = k.\\ \text{To show: If } n \in \mathbb{Z}_{\geq \ell} \text{ then } d(a_{j_n}^{(n)}, z) > \epsilon.\\ \text{Assume } n \in \mathbb{Z}_{\geq \ell}.\\ \text{Since } B_{10^{-n}}(a_{j_n}^{(n)}) \not\subseteq B_{10^{-k}}(z) \text{ there exists } y \in B_{10^{-n}}(a_{j_n}^{(n)}) \text{ such that } d(y, z) > 10^{-k}\\ \text{Thus } d(a_{j_n}^{(n)}, z) \geq d(y, z) - d(a_{j_n}^{(n)}, y) > 10^{-k} - 10^{-n} > 10^{-k} = \epsilon.\\ \text{So } z \text{ is not a limit point of } (a_{j_1}^{(1)}, a_{j_2}^{(2)}, \ldots).\\ \text{So } A \text{ is not Cauchy compact.} \\ \end{array}$

- (a) (Bounded subsets of \mathbb{R}^n are ball compact) If A is bounded then A is ball compact.
- (b) (Closed subsets of \mathbb{R}^n are Cauchy compact) If A is closed in \mathbb{R}^n then A is Cauchy compact.

Proof.

(a) Assume $A \subseteq \mathbb{R}^n$ is bounded.

To show: A is ball compact. To show: If $\epsilon \in \mathbb{E}$ then there exist $x_1, \ldots, x_\ell \in \mathbb{R}^n$ such that $A \subseteq B_\epsilon(x_1) \cup \cdots \cup B_\epsilon(x_\ell)$. Since A is bounded then there exists $x \in \mathbb{R}_n$ and $M \in \mathbb{R}_{>0}$ such that $A \subseteq B_M(x)$. Let $J = \{x + (c_1, \ldots, c_n) \in \mathbb{R}^n \mid c_i \in \{k10^{-\ell} \mid k \in \{-M, \ldots, M\}\}$. Then

$$\left(\bigcup_{y\in J} B_{\epsilon}(y)\right) \supseteq B_M(x) \supseteq A$$
 and $\operatorname{Card}(J) = (2M)^n$.

So A is ball compact in \mathbb{R}^n . (EXACTLY WHAT PROPERTY OF \mathbb{R}^n DID WE USE?? I THINK THIS IS THE ARCHIMEDEAN PROPERTY)

(b) Assume that A is closed in \mathbb{R}^n .

To show: A is Cauchy compact.

Since \mathbb{R}^n is Cauchy compact and A is closed then, by Proposition 4.4(e), A is Cauchy compact.

4.8.10 Equivalent characterizations of Hausdorff spaces

Theorem 4.23. Let (X, \mathcal{T}) be a topological space. The following are equivalent.

(H) If $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

(H1) If $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}.$

(H2) If $\Delta: X \to X \times X$ is the diagonal map then $\Delta(X)$ is closed in $X \times X$.

(H3) If I is a set and $\Delta: X \to \prod_{k \in I} X_k$, where $X_k = X$ for $k \in I$, is the diagonal map then $\Delta(X)$ is closed in $\prod_{k \in I} X_k$.

(H4) If \mathcal{G} is a filter on X then \mathcal{G} has at most one limit point.

(H5) If \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} then x is the only cluster point of \mathcal{J} .

Proof.

 $(H3) \Rightarrow (H2)$: (H2) is a special case of (H3).

(H2) \Rightarrow (H): Assume $x, y \in X$ and $x \neq y$.

Then $(x, y) \in X \times X$ and $(x, y) \notin \Delta(X)$. Thus, by (H2), $(x, y) \notin \overline{\Delta(X)}$. So (x, y) is not a close point of $\Delta(X)$. So there exists a neighborhood $Z \in \mathcal{N}((x, y))$ such that $Z \cap \Delta(X) = \emptyset$. By the definition of the product topology, there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $(U \times V) \cap \Delta(X) = \emptyset$. So $U \cap V = \emptyset$.

 $(H) \Rightarrow (H3):$

Assume that if $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$. To show: $\Delta(X)$ is closed in $\prod_{k \in I} X_k$, where $X_k = X$.

To show: If $x \in \prod_{k \in I} X_k$ and $x \notin \Delta(X)$ then x is not a close point of $\Delta(X)$. Assume $x = (x_k) \in \prod_{k \in I} X_k$ and $x \notin \Delta(X)$. To show: There exists $W \in \mathcal{N}(x)$ such that $W \cap \Delta(X) = \emptyset$. Let $i, j \in I$ such that $x_i \neq x_j$. Let $V_i \in \mathcal{N}(x_i)$ and $V_j \in \mathcal{N}(x_j)$ such that $V_i \cap V_j = \emptyset$. Then $W = V_i \times V_j \times \prod_{k \neq i, j} X_k \in \mathcal{N}(x)$ and $W \cap \Delta(X) = \emptyset$. So x is not a close point on $\Delta(X)$. So $\Delta(X)$ is closed in $\prod_{k \in I} X_k$.

(H) \Rightarrow (H1): Assume (H). Assume that if $x, y \in X$ and $x \neq y$ then there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$.

To show: If $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}.$

Assume $x \in X$. To show: If $y \in X$ and $y \notin \{x\}$ then $y \notin \bigcap_{N \in \mathcal{N}(x)} \overline{N}$. Assume $y \in X$ and $y \notin \{x\}$. To show: There exists $U \in \mathcal{N}(x)$ such that $y \notin \overline{U}$. By (H), since $y \neq x$, there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ such that $U \cap V = \emptyset$. So there exists $V \in \mathcal{N}(y)$ such that $V \cap U \neq \emptyset$. So y is not a close point to U. So $y \notin \overline{U}$. So $y \notin \bigcap_{N \in \mathcal{N}(x)} \overline{N}$.

(H1) \Rightarrow (H5): Assume that if $x \in X$ then $\bigcap_{N \in \mathcal{N}(x)} \overline{N} = \{x\}$. To show: If \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} then x is the only cluster point \mathcal{J} .

Assume \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} . To show: If $y \in X$ is a cluster point of \mathcal{J} then y = x. Assume $y \in X$ is a cluster point of \mathcal{J} . Since y is a cluster point of \mathcal{J} then $y \in \bigcap_{M \in \mathcal{J}} \overline{M}$. Since x is a limit point of \mathcal{J} then $\mathcal{J} \supseteq \mathcal{N}(x)$. So

$$y \in \left(\bigcap_{M \in \mathcal{J}} \overline{M}\right) \subseteq \left(\bigcap_{N \in \mathcal{N}(x)} \overline{N}\right) = \{x\}$$

So y = x.

(H5) \Rightarrow (H4): Assume that if \mathcal{J} is a filter on X and x is a limit point of \mathcal{J} then x is the only cluster point \mathcal{J} .

To show: If \mathcal{G} is a filter on X then \mathcal{G} has at most one limit point.

Assume \mathcal{G} is a filter on X and x is a limit point of \mathcal{G} . To show: If $y \in X$ is a limit point of \mathcal{G} then y = x. Assume $y \in X$ is a limit point of \mathcal{G} . Since x is a limit point of \mathcal{G} then $\mathcal{G} \supseteq \mathcal{N}(x)$. So $x \in \left(\bigcap_{N \in \mathcal{N}(x)} \overline{N}\right) \supseteq \left(\bigcap_{M \in \mathcal{G}} \overline{M}\right).$

So x is a cluster point of \mathcal{G} .

By (H5), y is the only cluster point of \mathcal{G} and so y = x.

So \mathcal{G} has at most one limit point.

 $(H4) \Rightarrow (H)$: Assume not (H).

Let $x, y \in X$ with $x \neq y$ such that there do not exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ with $U \cap V = \emptyset$. Let \mathcal{J} be the filter generated by

$$\mathcal{B} = \{ U \cap V \mid U \in \mathcal{N}(x), V \in \mathcal{N}(y) \}.$$

Since $X \in \mathcal{N}(y)$ then $\mathcal{N}(x) = \{U \cap X \mid U \in cN(x)\} \subseteq \mathcal{B} \subseteq \mathcal{J}$. Since $X \in \mathcal{N}(x)$ then $\mathcal{N}(y) = \{X \cap V \mid V \in cN(y)\} \subseteq \mathcal{B} \subseteq \mathcal{J}$. So x and y are both limit points of \mathcal{J} . Since $x \neq y$ then (H4) does not hold.

4.8.11 Equivalent characterizations of compact spaces

Theorem 4.24. Let (X, \mathcal{T}) be a topological space. The following are equivalent.

(C1) If \mathcal{J} is an filter on X then there exists $x \in X$ such that x is a cluster point of \mathcal{J} .

(C2) If \mathcal{G} is an ultrafilter on X then there exists $x \in X$ such that x is a limit point of \mathcal{G} .

(C3) If \mathcal{C} is a collection of closed sets such that $K = \emptyset$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $K_1, K_2, \ldots, K_\ell \in \mathbb{Z}_{>0}$

 \mathcal{C} such that $K_1 \cap K_2 \cap \cdots \cap K_{\ell} = \emptyset$.

(C4) If S is a collection of open sets such that $\bigcap_{U \in S} U = X$ then there exists $\ell \in \mathbb{Z}_{>0}$ and $U_1, U_2, \ldots, U_\ell \in S$

S such that $U_1 \cup U_2 \cup \cdots \cup U_\ell = X$.

Proof. (Sketch)

 $(C3) \Leftrightarrow (C4)$ by taking complements.

 $(C1) \Rightarrow (C2)$: Assume (C1).