3 Inner products and orthogonality: Linear algebra review

3.1 Bilinear forms

Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. A bilinear form on V is a function

$$\begin{array}{cccc} \langle,\rangle\colon & V\times V & \to & \mathbb{F} \\ & (v,w) & \longmapsto & \langle v,w\rangle \end{array} \quad \text{ such that } \end{array}$$

(a) If $v_1, v_2, w \in V$ then $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$,

(b) If $v, w_1, w_2 \in V$ then $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$,

(c) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle cv, w \rangle = c \langle v, w \rangle$,

(d) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle v, cw \rangle = c \langle v, w \rangle$.

A bilinear form $\langle , \rangle \colon V \times V \to \mathbb{F}$ is symmetric if it satsfies:

(S) If $v, w \in V$ then $\langle v, w \rangle = \langle w, v \rangle$.

A bilinear form $\langle , \rangle \colon V \times V \to \mathbb{F}$ is *skew-symmetric* if it satsfies:

(A) If $v, w \in V$ then $\langle v, w \rangle = -\langle w, v \rangle$.

3.2 Sesquilinear forms

Let \mathbb{F} be a field and let $\overline{} : \mathbb{F} \to \mathbb{F}$ be a function that satisfies:

if $c, c_1, c_2 \in \mathbb{F}$ then $\overline{c_1 + c_2} = \overline{c_1} + \overline{c_2}$, $\overline{c_1 c_2} = \overline{c_2} \overline{c_1}$ and $\overline{1} = 1$ and $\overline{\overline{c}} = c$.

The favourite example of such a function is complex conjugation. The other favourite example is the identity map $id_{\mathbb{F}}$.

Let V be an \mathbb{F} -vector space. A sesquilinear form on V is a function

 $\begin{array}{ccccc} \langle,\rangle\colon & V\times V & \to & \mathbb{F} \\ & (v,w) & \longmapsto & \langle v,w \rangle \end{array} \quad \text{such that}$

- (a) If $v_1, v_2, w \in V$ then $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$,
- (b) If $v, w_1, w_2 \in V$ then $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$,
- (c) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle cv, w \rangle = c \langle v, w \rangle$,
- (d) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle v, cw \rangle = \overline{c} \langle v, w \rangle$.

A Hermitian form is a sesquilinear form $\langle , \rangle \colon V \times V \to \mathbb{F}$ such that

(H) If $v, w \in V$ then $\langle v, w \rangle = \overline{\langle w, v \rangle}$.

3.3 Gram matrix of \langle , \rangle with respect to a basis B

Assume $n \in \mathbb{Z}_{>0}$ and dim(V) = n. Let $\langle , \rangle \colon V \times V \to \mathbb{F}$ be a bilinear form and let $B = \{b_1, \ldots, b_n\}$ be a basis of V. The Gram matrix of \langle , \rangle with respect to the basis B is

 $G_B \in M_n(\mathbb{F})$ given by $G_B(i,j) = \langle b_i, b_j \rangle.$

Let $C = \{c_1, \ldots, c_n\}$ be another basis of V and let P_{CB} be the change of basis matrix given by

$$c_i = \sum_{i=1}^{n} P_{BC}(j,i)b_j, \quad \text{for } i \in \{1, \dots, n\}$$

Since

$$G_{C}(i,j) = \langle c_{i}, c_{j} \rangle = \sum_{k,l=1}^{n} \langle P_{BC}(k,i)b_{k}, P_{BC}(l,j)b_{l} \rangle = \sum_{k,l=1}^{n} P_{BC}(k,i)G_{B}(k,l)P_{BC}(l,j),$$

then

$$G_C = P_{BC}^t G_B P_{BC},$$

3.4 Quadratic forms

Let \mathbb{F} be a field, V an \mathbb{F} -vector space and $\langle,\rangle: V \times V \to \mathbb{F}$ a bilinear form. The quadratic form associated to \langle,\rangle is the function

$$\| \|^2 \colon V \to \mathbb{F}$$
 given by $\|v\|^2 = \langle v, v \rangle$

Theorem 3.1. Let V be a vector space over a field \mathbb{F} and let $\langle, \rangle \colon V \times V \to \mathbb{F}$ be a bilinear form. Let $\| \|^2 \colon V \to \mathbb{F}$ be the quadratic form associated to \langle, \rangle .

(a) (Parallelogram property) If $x, y \in V$ then

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}.$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y \rangle = 0$ and $\langle y, x \rangle = 0$ then

$$||x||^{2} + ||y||^{2} = ||x+y||^{2}.$$

(c) (Reconstruction) Assume that \langle , \rangle is symmetric and that $2 \neq 0$ in \mathbb{F} . Let $x, y \in V$. Then

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2).$$

Theorem 3.2. Let \mathbb{F} be a field with an involution $\overline{}: \mathbb{F} \to \mathbb{F}$ such that the fixed field

 $\mathbb{K} = \{ a \in \mathbb{F} \mid a = \bar{a} \}$ is an ordered field.

For $a \in \mathbb{K}$ define

$$|a|^2 = a\bar{a}$$

Let V be an K-vector space with a sesquilinear form $\langle,\rangle: V \times V \to \mathbb{F}$ such that

- (a) If $x, y \in V$ then $\langle y, x \rangle = \overline{\langle x, y \rangle}$.
- (b) If $x \in V$ then $\langle x, x \rangle \in \mathbb{K}_{\geq 0}$.

Let $\| \|: V \to \mathbb{F}$ be the corresponding quadratic form and assume that if $a \in \mathbb{K}_{\geq 0}$ then there exists a unique $c \in \mathbb{K}_{\geq 0}$ such that $c^2 = a$. Then

(c) (Cauchy-Schwarz) If $x, y \in V$ then $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.

(d) (Triangle inequality) If $x, y \in V$ then $||x + y|| \le ||x|| + ||y||$.

The proof of Theorem 3.16 uses the following proposition.

Proposition 3.3. Let \mathbb{F} be an ordered field and let $x, y \in \mathbb{F}$ with $x \ge 0$ and $y \ge 0$. Then

$$x \le y$$
 if and only if $x^2 \le y^2$.

3.5 Nondegeneracy and dual bases

Let V be a \mathbb{F} -vector space with a sesquilinear form $\langle, \rangle \colon V \to \mathbb{F}$. The form \langle, \rangle is nondegenerate if it satisfies

if $v \in V$ and $v \neq 0$ then there exists $w \in V$ such that $\langle v, w \rangle \neq 0$.

An alternative way of stating this condition is to say $V \cap V^{\perp} = 0$. Another alternative is to say that the map

is an *injective* linear transformation.

Let $k \in \mathbb{Z}_{>0}$ and assume that $W \subseteq V$ is a subspace of V with $\dim(W) = k$. Let (w_1, \ldots, w_k) be a basis of W. A dual basis to (w_1, \ldots, w_k) with respect to \langle , \rangle is a basis (w^1, \ldots, w^k) of W such that

if
$$i, j \in \{1, \ldots, k\}$$
 then $\langle w^i, w_j \rangle = \delta_{ij}$.

Proposition 3.4. Let V be a vector space with a sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional, that (w_1, \ldots, w_k) is a basis of W and that G is the Gram matrix of \langle, \rangle with respect to the basis $\{w_1, \ldots, w_k\}$. The following are equivalent:

(a) A dual basis to (w_1, \ldots, w_k) exists.

(b) G is invertible.

(c) $W \cap W^{\perp} = 0$.

(d) The linear transformation

 $\begin{array}{rccccc} \Psi_W \colon & W & \to & W^* \\ & v & \longmapsto & \varphi_v \end{array} \quad given \ by \qquad \varphi_v(w) = \langle v, w \rangle, \end{array}$

is an isomorphism.

3.6 Isotropy and nondegeneracy

Let $W \subseteq V$ be a subspace of V. The orthogonal to W is

 $W^{\perp} = \{ v \in V \mid \text{if } w \in W \text{ then } \langle v, w \rangle = 0 \}.$

The subspace W is *nonisotropic* if $W \cap W^{\perp} = 0$.

Proposition 3.5. A sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$ satisfies

(no isotropic vectors condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0.

if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp} = 0$.

Remark 3.6. Let $V = \mathbb{C}$ -span $\{e_1, e_2\}$ with symmetric bilinear form $\langle , \rangle \colon V \times V \to \mathbb{C}$ with Gram matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 in the basis $\{e_1, e_2\}$.

This form has isotropic vectors since $\langle e_1, e_1 \rangle = 0$. The dual basis to $\{e_1, e_2\}$ is the basis $\{e_2, e_1\}$. Letting

$$b_1 = \frac{1}{\sqrt{2}}(e_1 + e_2),$$

$$b_2 = \frac{i}{\sqrt{2}}(e_1 - e_2),$$
 then the Gram matrix is $\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$

with respect to the basis $\{b_1, b_2\}$ and $b_1 + ib_2$ is an isotropic vector.

3.7 Orthogonal projections

Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Let $\langle , \rangle \colon V \times V \to \mathbb{F}$ be a sesquilinear form.

Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\dim(W) = k$ and $W \cap W^{\perp} = 0$.

Let (w_1, \ldots, w_k) be a basis of W and let (w^1, \ldots, w^k) be the dual basis of W (which exists by Proposition 3.4). The orthogonal projection onto W is the function

$$P_W: V \to V$$
 given by $P_W(v) = \sum_{i=1}^k \langle v, w_i \rangle w^i.$

The following proposition shows that P_W does not depend on which choice of basis of W is used to construct P_W .

Proposition 3.7. (Characterization of orthogonal projection) Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Let $\langle , \rangle \colon V \times V \to \mathbb{F}$ be a sesquilinear form. Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\dim(W) = k$ and $W \cap W^{\perp} = 0$. The orthogonal projection onto W is the unique linear transformation $P \colon V \to V$ such that

- (1) If $v \in V$ then $P(v) \in W$.
- (2) If $v \in V$ and $w \in W$ then $\langle v, w \rangle = \langle P(v), w \rangle$.

3.8 Orthogonal projections produce orthogonal decompositions

Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Let $\langle , \rangle \colon V \times V \to \mathbb{F}$ be a sesquilinear form.

Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\dim(W) = k$ and $W \cap W^{\perp} = 0$.

The following proposition explains how the orthogonal projection onto W produces the decomposition $V = W \oplus W^{\perp}$.

Theorem 3.8. Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\dim(V) = n$. Let W be a subspace of V such that $W \cap W^{\perp} = 0$. Let P_W be the orthogonal projection onto W and let $P_{W^{\perp}} = 1 - P_W$. Then

$$\begin{split} P_W^2 &= P_W, \quad P_{W^{\perp}}^2 = P_{W^{\perp}}, \quad P_W P_{W^{\perp}} = P_{W^{\perp}} P_W = 0, \quad 1 = P_W + P_{W^{\perp}}, \\ &\ker(P_W) = W^{\perp}, \quad \operatorname{im}(P_W) = W \quad and \quad V = W \oplus W^{\perp}. \end{split}$$

3.9 Orthonormal sequences and Gram-Schmidt

A Hermitian form is a sesquilinear form $\langle , \rangle \colon V \times V \to \mathbb{F}$ such that

(H) If $v, w \in V$ then $\langle v, w \rangle = \overline{\langle w, v \rangle}$.

An orthonormal sequence in V is a sequence $(b_1, b_2, ...)$ in V such that

if
$$i, j \in \mathbb{Z}_{>0}$$
 then $\langle b_i, b_j \rangle = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$

Proposition 3.9. Let V be an \mathbb{F} -vector space with a Hermitian form. An orthonormal sequence (a_1, a_2, \ldots) in V is linearly independent.

3.10 Orthonormal bases

Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\dim(V) = n$. An orthonormal basis of V, or self-dual basis of V, is a basis $\{u_1, \ldots, u_n\}$ such that

if
$$i, j \in \{1, \dots, n\}$$
 then $\langle u_i, u_j \rangle = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$

An orthogonal basis in V is a basis $\{b_1, \ldots, b_n\}$ such that

if
$$i, j \in \{1, \ldots, n\}$$
 and $i \neq j$ then $\langle b_i, b_j \rangle = 0$.

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.

Theorem 3.10. (Gram-Schmidt) Let V be an \mathbb{F} -vector space with a sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$. Assume that \langle, \rangle is nonisotropic and that \langle, \rangle is Hermitian i.e.,

- (1) (Nonisotropy condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0, and
- (2) (Hermitian condition) If $v_1, v_2 \in V$ then $\langle v_2, v_1 \rangle = \overline{\langle v_1, v_2 \rangle}$.

Let p_1, p_2, \ldots be a sequence of linear independent elements of V. (a) Define $b_1 = p_1$ and

$$b_{n+1} = p_{n+1} - \frac{\langle p_{n+1}, b_1 \rangle}{\langle b_1, b_1 \rangle} b_1 - \dots - \frac{\langle p_{n+1}, b_n \rangle}{\langle b_n, b_n \rangle} b_n, \qquad \text{for } n \in \mathbb{Z}_{>0}$$

Then (b_1, b_2, \ldots) is an orthogonal sequence in V.

(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v \rangle \neq 0$. Define

$$\|v\| = \sqrt{\langle v, v \rangle}, \quad \text{for } v \in V.$$

Let (b_1, \ldots, b_n) be an orthogonal basis of V. Define

$$u_1 = \frac{b_1}{\|b_1\|}, \quad \dots, \quad u_n = \frac{b_n}{\|b_n\|}.$$

Then (u_1, \ldots, u_n) is an orthonormal basis of V.

3.11 Adjoints of linear transformations

Let V be an \mathbb{F} -vector space with a nondegenerate sesquilinear form $\langle,\rangle: V \times V \to \mathbb{F}$. Let $f: V \to V$ be a linear transformation.

• The adjoint of f with respect to \langle , \rangle is the linear transformation $f^* \colon V \to V$ determined by

if
$$x, y \in V$$
 then $\langle f(x), y \rangle = \langle x, f^*(y) \rangle$

• The linear transformation f is *self adjoint* if f satisfies:

if
$$x, y \in V$$
 then $\langle f(x), y \rangle = \langle x, f(y) \rangle$.

• The linear transformation f is an *isometry* if f satisfies:

if $x, y \in V$ then $\langle f(x), f(y) \rangle = \langle x, y \rangle$.

• The linear transformation f is normal if $ff^* = f^*f$.

Let $\{w_1, \ldots, w_k\}$ be a basis of W and assume that the dual basis $\{w^1, \ldots, w^k\}$ of W exists. If $w = c_1 w^1 + \cdots + c_k w^k$ then $c_j = \langle w, w_j \rangle$ and so

$$w = \langle w, w_1 \rangle w^1 + \dots + \langle w, w_k \rangle w^k$$

If $w \in W$ then

$$f^*(w) = \langle f^*(w), w_1 \rangle w^1 + \dots + \langle f^*(w), w_k \rangle w^k = \langle w, f(w_1) \rangle w^1 + \dots + \langle w, f(w_k) \rangle w^k$$

and this specifies $f^* \colon W \to W$ in terms of f. Then

$$f$$
 is self adjoint if $f = f^*$ and f is an isometry if $ff^* = 1$,

HW: Let $V = \mathbb{F}^n$ with basis (e_1, \ldots, e_n) and inner product given by

$$e_{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{with 1 in the ith row and $\langle e_{i}, e_{j} \rangle = \delta_{ij}.$$$

Let $f: V \to V$ be a linear transformation of V and let A be the matrix of f with respect to the basis (e_1, \ldots, e_n) . Show that, with respect to the basis (e_1, \ldots, e_n) ,

the matrix of f^* is $A^* = \overline{A}^t$.

Since

$$\sum_{i=1}^{n} A^{*}(i,j)e_{i} = f^{*}(e_{j}) = \sum_{i=1}^{n} \langle e_{j}, f(e_{i}) \rangle e_{i} = \sum_{i=1}^{n} \sum_{k=1}^{n} \langle e_{j}, A(k,i)e_{k} \rangle e_{i} = \sum_{i=1}^{n} \overline{A(j,i)}e_{i},$$

then $A^*(i,j) = \overline{A(j,i)}$.

3.12 The Spectral theorem

Let $A \in M_n(\mathbb{C})$ and let $V = \mathbb{C}^n$ with inner product given by

$$\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = x_1 \overline{y_1} + \dots + x_n \overline{y_n}.$$
(3.1)

Let $A \in M_n(\mathbb{C})$.

- The adjoint of A is the matrix $A^* \in M_n(\mathbb{C})$ given by $A^*(i,j) = \overline{A(j,i)}$.
- The matrix A is self adjoint if $A = A^*$.
- The matrix A is unitary if $AA^* = 1$.
- The matrix A is normal if $AA^* = A^*A$.

Write $A^* = \overline{A}^t$. The unitary group is

$$U_n(\mathbb{C}) = \{ U \in M_n(\mathbb{C}) \mid UU^* = 1 \}.$$

Theorem 3.11. Let $V = \mathbb{C}^n$ with inner product given by (3.1). The function

$$\begin{cases} \text{ ordered orthonormal bases} \\ (u_1, \dots, u_n) \text{ of } \mathbb{C}^n \end{cases} \qquad \longrightarrow \qquad U_n(\mathbb{C}) \\ (u_1, \dots, u_n) \qquad \longmapsto \qquad U = \begin{pmatrix} | & | \\ u_1 & \cdots & u_n \\ | & | \end{pmatrix} \qquad \text{ is a bijection}$$

The following proposition explains the role of normal matrices.

Proposition 3.12. Let $V = \mathbb{C}^n$ with inner product given by (3.1). Let

 $A \in M_n(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad and \quad V_\lambda = \ker(\lambda - A).$

If $AA^* = A^*A$ then

 V_{λ} is A-invariant, V_{λ}^{\perp} is A-invariant, V_{λ} is A^{*}-invariant and V_{λ}^{\perp} is A^{*}-invariant.

Theorem 3.13. (Spectral theorem)

Let $n \in \mathbb{Z}_{>0}$ and $V = \mathbb{C}^n$ with inner product given by (3.1).

(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_n(\mathbb{C})$ such that $AA^* = A^*A$. Then there exists a unitary $U \in M_n(\mathbb{C})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

(b) Let $f: V \to V$ be a linear transformation such that $ff^* = f^*f$. Then there exists an orthonormal basis (u_1, \ldots, u_n) of V consisting of eigenvectors of f.

HW: Show that if $A \in M_n(\mathbb{C})$ is self adjoint then its eigenvalues are real. **HW**: Show that if $U \in M_n(\mathbb{C})$ is unitary then its eigenvalues have absolute value 1.

Theorem 3.14. (Spectral theorem)

Let $n \in \mathbb{Z}_{>0}$ and $V = \mathbb{C}^n$ with inner product given by (3.1).

(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_n(\mathbb{C})$ such that $AA^* = A^*A$. Then there exists a unitary $U \in M_n(\mathbb{C})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

(b) Let $f: V \to V$ be a linear transformation such that $ff^* = f^*f$. Then there exists an orthonormal basis (u_1, \ldots, u_n) of V consisting of eigenvectors of f.

3.13 Some proofs

3.13.1 The Pythagorean theorem and reconstruction

Theorem 3.15. Let V be a vector space over a field \mathbb{F} and let $\langle, \rangle \colon V \times V \to \mathbb{F}$ be a bilinear form. Let $\| \|^2 \colon V \to \mathbb{F}$ be the quadratic form associated to \langle, \rangle .

(a) (Parallelogram property) If $x, y \in V$ then

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}.$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y \rangle = 0$ and $\langle y, x \rangle = 0$ then

$$||x||^{2} + ||y||^{2} = ||x+y||^{2}.$$

(c) (Reconstruction) Assume that \langle , \rangle is symmetric and that $2 \neq 0$ in \mathbb{F} . Let $x, y \in V$. Then

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2).$$

Proof.

(a) Assume $x, y \in V$. Then

$$\begin{aligned} \|x+y\|^2 + \|x-y\|^2 &= \langle x+y, x+y \rangle + \langle x-y, x-y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle + \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle \\ &= 2\|x\|^2 + 2\|y\|^2. \end{aligned}$$

(b) Assume $x, y \in V$ and $\langle x, y \rangle = 0$ and $\langle y, x \rangle = 0$. Then

$$||x + y||^{2} = \langle x + y, +x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

= $||x||^{2} + 0 + 0 + ||y||^{2} = ||x||^{2} + 0 + 0 + ||y||^{2}.$

(c) Assume $x, y \in V$. Then

$$\begin{aligned} \|x+y\|^2 - \|x\|^2 - \|y\|^2 &= \langle x+y, x+y \rangle - \langle x, x \rangle - \langle y, y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle - \langle x, x \rangle - \langle y, y \rangle \\ &= 2 \langle x, y \rangle. \end{aligned}$$

3.13.2 Cauchy-Schwarz

Theorem 3.16. Let \mathbb{F} be a field with an involution $\overline{} : \mathbb{F} \to \mathbb{F}$ such that the fixed field

 $\mathbb{K} = \{ a \in \mathbb{F} \mid a = \bar{a} \}$ is an ordered field.

For $a \in \mathbb{K}$ define

$$|a|^2 = a\bar{a}$$

Let V be an K-vector space with a sesquilinear form $\langle,\rangle: V \times V \to \mathbb{F}$ such that

(a) If $x, y \in V$ then $\langle y, x \rangle = \overline{\langle x, y \rangle}$. (b) If $x \in V$ then $\langle x, x \rangle \in \mathbb{K}_{>0}$. Let $\| \|: V \to \mathbb{F}$ be the corresponding quadratic form and assume that if $a \in \mathbb{K}_{\geq 0}$ then there exists a unique $c \in \mathbb{K}_{\geq 0}$ such that $c^2 = a$. Then

- (c) (Cauchy-Schwarz) If $x, y \in V$ then $|\langle x, y \rangle| \le ||x|| \cdot ||y||$.
- (d) (Triangle inequality) If $x, y \in V$ then $||x + y|| \le ||x|| + ||y||$.

Proof. (c) Let $x, y \in V$. If x = 0 then both sides of the Cauchy-Schwarz inequality are 0. Assume $x \neq 0$. The Gram-Schmidt process on the vectors (x, y) suggests the consideration of

$$u_1 = \frac{x}{\|x\|}$$
 and $u_2 = y - \frac{\langle y, x \rangle}{\langle x, x \rangle} x$

To avoid denominators, let $u = \langle x, x \rangle y - \langle y, x \rangle x$. Then

$$\begin{split} 0 &\leq \langle u, u \rangle = \left\langle \langle x, x \rangle y - \langle y, x \rangle x, \langle x, x \rangle y - \langle y, x \rangle x \right\rangle \\ &= \overline{\langle x, x \rangle} \langle x, x \rangle |\langle y, y \rangle - \langle x, x \rangle \overline{\langle y, x \rangle} \langle y, x \rangle - \langle y, x \rangle \overline{\langle x, x \rangle} \langle x, y \rangle + |\langle y, x \rangle|^2 \langle x, x \rangle \\ &= \overline{\langle x, x \rangle} (\langle x, x \rangle \langle y, y \rangle - |\langle y, x \rangle|^2) \end{split}$$

Since $x \neq 0$ then $\langle x, x \rangle \in \mathbb{K}_{>0}$ and so $\overline{\langle x, x \rangle} = \langle x, x \rangle \in \mathbb{K}_{>0}$. Thus,

$$0 \le \langle x, x \rangle \langle y, y \rangle - |\langle y, x \rangle|^2$$
 and so $|\langle y, x \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$

Since the function $f: \mathbb{K}_{\geq 0} \to \mathbb{K}_{\geq 0}$ given by $f(z) = z^2$ is injective and monotone (Proposition 3.3) then $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.

(d) Let $a \in \mathbb{F}$. Using that if $z \in \mathbb{F}$ then $|z|^2 = z\overline{z} \in \mathbb{K}_{\geq 0}$, then

$$a + \bar{a}|^2 \le |a + \bar{a}|^2 + |a - \bar{a}|^2 = (a + \bar{a})^2 - (a - \bar{a})^2 = 4a\bar{a} = 4|a|^2.$$

So $|a + \bar{a}| \leq 2|a|$. Also

if $a + \bar{a} \in \mathbb{K}_{\leq 0}$ then $a + \bar{a} \leq 0 \leq |a + \bar{a}|$ and if $a + \bar{a} \in \mathbb{K}_{\geq 0}$ then $a + \bar{a} = |a + \bar{a}|$.

Combining these with $|a + \bar{a}| \leq 2|a|$ gives

$$a + \bar{a} \le 2|a|.$$

Assume $x, y \in V$. Then

$$||x + y||^{2} = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} + |y||^{2} + \langle x, y \rangle + \overline{\langle x, y \rangle}$$

$$\leq ||x||^{2} + |y||^{2} + 2|\langle x, y \rangle|$$

$$\leq ||x||^{2} + |y||^{2} + 2||x| \cdot ||y||$$

$$= (||x|| + ||y||)^{2}.$$

Thus $||x + y|| \le ||x|| + ||y||$.

3.13.3 Nondegeneracy and dual bases

Proposition 3.17. Let V be a vector space with a sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional, that (w_1, \ldots, w_k) is a basis of W and that G is the Gram matrix of \langle, \rangle with respect to the basis $\{w_1, \ldots, w_k\}$. The following are equivalent:

(a) A dual basis to (w_1, \ldots, w_k) exists.

- (b) G is invertible.
- (c) $W \cap W^{\perp} = 0$.
- (d) The linear transformation

$$\begin{array}{rcccc} \Psi_W \colon & W & \to & W^* \\ & v & \longmapsto & \varphi_v \end{array} \quad given \ by \qquad \varphi_v(w) = \langle v, w \rangle, \end{array}$$

is an isomorphism.

(a) \Rightarrow (b): Assume that $\{w^1, \dots, w^k\}$ exists. To show: G is invertible.

Define $H(\ell, i) \in \mathbb{F}$ by

$$w^i = \sum_{\ell=1}^k H(i,\ell) w_\ell.$$

Then

$$\delta_{ij} = \langle w^i, w_j \rangle = \sum_{\ell=1}^k H(i,\ell) \langle w_\ell, w_j \rangle = \sum_{\ell=1}^k H(i,\ell) G(\ell,j) = (HG)(i,j).$$

So HG = 1, H is the inverse of G, and G is invertible. (b) \Rightarrow (a): Assume that G is invertible. For $i \in \{1, ..., k\}$ define

$$w^{i} = \sum_{\ell=1}^{k} G^{-1}(i,\ell)w_{\ell}, \quad \text{for } i \in \{1, \dots, k\}.$$

Then

$$\langle w^{i}, w_{j} \rangle = \sum_{\ell=1}^{k} G^{-1}(i,\ell) \langle w_{\ell}, w_{j} \rangle = \sum_{\ell=1}^{k} G^{-1}(i,\ell) G(\ell,j) = (G^{-1}G)(i,j) = \delta_{ij}.$$

So $\{w^1, \ldots, w^k\}$ is a dual basis to $\{w_1, \ldots, w_k\}$. (b) \Rightarrow (c): Assume that G is invertible. To show: $W \cap W^{\perp} = 0$. Let $w \in W \cap W^{\perp}$. To show: w = 0. Write $w = c_1 w_1 + \cdots + c_k w_k$. To show: If $j \in \{1, \ldots, k\}$ then $c_j = 0$. Since $w \in W^{\perp}$ then $\langle w, w_r \rangle = 0$ for $r \in \{1, \ldots, k\}$ and

$$c_{j} = \sum_{\ell=1}^{k} c_{\ell} \delta_{\ell j} = \sum_{\ell=1}^{k} c_{\ell} G(\ell, r) G^{-1}(r, j)$$
$$= \sum_{\ell=1}^{k} c_{\ell} \langle w_{\ell}, w_{r} \rangle G^{-1}(r, j) = \sum_{r=1}^{k} \langle w, w_{r} \rangle G^{-1}(r, j) = 0. = \sum_{r=1}^{k} 0 \cdot G^{-1}(r, j) = 0$$

So w = 0. (c) \Rightarrow (b): Assume that $W \cap W^{\perp} = 0$. To show: G is invertible. To show: The rows of G are linearly independent. To show: If $c_1, \ldots, c_k \in \mathbb{F}$ and $(c_1, \ldots, c_k)G = 0$ then $c_1 = 0, c_2 = 0, \ldots, c_k = 0$. Assume $c_1, \ldots, c_k \in \mathbb{F}$ and $(c_1, \ldots, c_k)G = 0$. To show: $c_1 = 0, c_2 = 0, \ldots, c_k = 0.$ Let $w = c_1 w_1 + \cdots + c_k w_k$. If $i \in \{1, ..., k\}$ then, since $(c_1, ..., c_k)G = 0$, $0 = \sum_{k=1}^{k} c_{\ell} G(\ell, i) = \sum_{k=1}^{k} c_{k} \langle w_{\ell}, w_{i} \rangle = \langle c_{1} w_{1} + \cdots + c_{k} w_{k}, w_{i} \rangle = \langle w, w_{i} \rangle.$ So $w \in W^{\perp}$. So $w \in W \cap W^{\perp}$. So w = 0. So $c_1 = 0$, $c_2 = 0$, ..., $c_k = 0$. Thus the rows of G are linearly independent and G is invertible. (c) \Rightarrow (d): Assume that $W \cap W^{\perp} = 0$

To show: $\Psi_W \colon W \to W^*$ is an isomorphism.

To show: (ca) Ψ_W is injective.

(cb) Ψ_W is surjective.

- (ca) Since $\ker(\Psi_W) = W \cap W^{\perp}$ then $\ker(\Psi_W) = 0$. So Ψ_W is injective.
- (cb) If $\{w_1, \ldots, w_k\}$ is a basis of W then defining $\varphi^i \colon W \to \mathbb{F}$ by

if $c_1, \ldots, c_k \in \mathbb{F}$ then $\varphi^i(c_1w_1 + \cdots + c_kw_k) = c_i$,

produces a basis $\{\varphi^1, \ldots, \varphi^k\}$ of the dual space W^* . So dim $(W) = \dim(W^*)$.

Since Ψ_W is injective W is finite dimensional then $\dim(\operatorname{im}(\Psi_W)) = \dim(W) = \dim(W^*)$. So $\operatorname{im}(\Psi_W) = W^*$ and ψ_W is surjective.

So Ψ_W is an isomorphism.

(d) \Rightarrow (c): Assume that Ψ_W is an isomorphism. So Ψ_W is injective. So ker $(\Psi_W) = 0$. Since ker $(\Psi_W) = W \cap W^{\perp}$ then $W \cap W^{\perp} = 0$.

3.13.4 Isotropy and nondegeneracy

Proposition 3.18. A sesquilinear form $\langle,\rangle: V \times V \to \mathbb{F}$ satisfies

(no isotropic vectors condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0.

if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp} = 0$.

Proof. ⇒: Assume that if $v \in V$ and $\langle v, v \rangle = 0$ then v = 0. To show: If W is a subspace of V then $W \cap W^{\perp} = 0$. Assume W is a subspace of V. To show: If $w \in W \cap W^{\perp}$ then w = 0. Assume $w \in W \cap W^{\perp}$. Then $\langle w, w \rangle = 0$. So w = 0. $\Leftarrow:$ Assume that if W is a subspace of V then $W \cap W^{\perp} = 0$. To show: If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0. Assume $v \in V$. To show: If $v \neq 0$ then $\langle v, v \rangle \neq 0$. Assume $v \notin V$. To show: If $v \neq 0$ then $\langle v, v \rangle \neq 0$. Assume $v \neq 0$. Let $W = \mathbb{F}v$, a one-dimensional subspace of V. Since $\mathbb{F}v \cap (\mathbb{F}v)^{\perp} = 0$ then $v \notin (\mathbb{F}v)^{\perp}$. So $\langle v, v \rangle \neq 0$.

3.13.5 Characterizing orthogonal projections

Proposition 3.19. (Characterization of orthogonal projection) Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Let $\langle , \rangle \colon V \times V \to \mathbb{F}$ be a sesquilinear form. Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\dim(W) = k$ and $W \cap W^{\perp} = 0$. The orthogonal projection onto W is the unique linear transformation $P \colon V \to V$ such that

- (1) If $v \in V$ then $P(v) \in W$.
- (2) If $v \in V$ and $w \in W$ then $\langle v, w \rangle = \langle P(v), w \rangle$.

Proof. Let (w_1, \ldots, w_k) be a basis of W and let (w^1, \ldots, w^k) be the dual basis of W. The orthogonal projection onto W is the function

$$P_W \colon V \to V$$
 given by $P_W(v) = \sum_{i=1}^k \langle v, w_i \rangle w^i.$

To show: (a) P_W is a linear transformation that satisfies conditions (1) and (2).

(b) If Q is a linear transformation that satisfies (1) and (2) then $Q = P_W$.

(a) To show: (0) P_W is a linear transformation.

(1) If $v \in V$ then $P(v) \in W$. (2) If $v \in V$ and $w \in W$ then $\langle v, w \rangle = \langle P(v), w \rangle$.

(0) To show: If $c \in \mathbb{F}$ and $v, v_1, v_2 \in V$ then $P_W(cv) = cP_W(v)$ and $P_W(v_1 + v_2) = P_W(v_1) + P_W(v_2)$.

Assume $c \in \mathbb{F}$ and $v, v_1, v_2 \in V$. To show: $P_W(cv) = cP_W(v)$ and $P_W(v_1 + v_2) = P_W(v_1) + P_W(v_2)$. Since \langle , \rangle is linear in the first coordinate then

$$P_W(cv) = \sum_{i=1}^k \langle cv, w_i \rangle w^i = \sum_{i=1}^k c \langle v, w_i \rangle w^i = c \Big(\sum_{i=1}^k \langle v, w_i \rangle w^i \Big) = c P_W(v), \text{ and}$$
$$P_W(cv) = \sum_{i=1}^k \langle v_1 + v_2, w_i \rangle w^i = \sum_{i=1}^k c \langle v_1, w_i \rangle w^i + \sum_{i=1}^k c \langle v_1, w_i \rangle w^i = PW(v_1) + P_W(v_2)$$

So P_W is a linear transformation. (1) Assume $v \in V$.

Since
$$w^1, \ldots, w^k \in W$$
 and $P_W(v) = \sum_{i=1}^k \langle v, w_i \rangle w^i$ then $P_W(v) \in W$.

(2) Assume $v \in V$ and $w \in W$. Since $\{w_1, \ldots, w_k\}$ is a basis of W then there exist $c_1, \ldots, c_k \in \mathbb{F}$ such that $w = c_1 w_1 + \cdots + c_k w_k$. Then

 $\langle P_W(v), w \rangle = \left\langle \sum_{i=1}^k \langle v, w_i \rangle w^i, \sum_{j=1}^k c_j w_j \right\rangle = \sum_{i=1}^k \overline{c_i} \langle v, w_i \rangle = \langle v, w \rangle.$

Thus $P_W(v)$ is a linear transformation that satisfies (1) and (2).

(b) Assume $Q: V \to V$ is a linear transformation that satisfies (1) and (2). To show: $Q = P_W$.

To show: If $v \in V$ then $Q(v) = P_W(v)$. Assume $v \in V$. Since Q satisfies property (2), if $w \in W$ then $\langle Q(v), w \rangle = \langle v, w \rangle$. So $\langle Q(v), w \rangle = \langle v, w \rangle = \langle P_W(v), w \rangle$. So, if $w \in W$ then $\langle P_W(v) - Q(v), w \rangle = 0$. So $P_W(v) - Q(v) \in W^{\perp}$. By Property (1), $P_W(v) - Q(v) \in W$. So $P_W(v) - Q(v) \in W \cap W^{\perp}$. Since $W \cap W^{\perp} = 0$ then $P_W(v) - Q(v) = 0$. So $P_W = Q$.

r	-	-	-
L			
L			
L			

3.13.6 Orthogonal decomposition

Theorem 3.20. Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with dim(V) = n. Let W be a subspace of V such that $W \cap W^{\perp} = 0$. Let P_W be the orthogonal projection onto W and let $P_{W^{\perp}} = 1 - P_W$. Then

$$P_W^2 = P_W, \quad P_{W^{\perp}}^2 = P_{W^{\perp}}, \quad P_W P_{W^{\perp}} = P_{W^{\perp}} P_W = 0, \quad 1 = P_W + P_{W^{\perp}},$$
$$\ker(P_W) = W^{\perp}, \qquad \operatorname{im}(P_W) = W \quad and \qquad V = W \oplus W^{\perp}.$$

Proof. (a) Assume $v \in V$. Then, by properties (1) and (2) of Proposition 3.7

$$P_W^2(v) = \sum_{i=1}^k \langle P_W(v), w^i \rangle w_i = \sum_{i=1}^k \langle v, w^i \rangle w_i = P_W(v).$$
 So $P_W^2 = P_W.$

(b) Since $P_W^2 = P_W$ then

$$P_{W^{\perp}}^{2} = (1 - P_{W})^{2} = 1 - 2P_{W} + P_{W}^{2} = 1 - 2P_{W} + P_{W} = 1 - P_{W} = P_{W^{\perp}}.$$

(c) Since $P_W^2 = P_W$ and $P_{W^{\perp}} = 1 - P_W$ then $P_W P_{W^{\perp}} = P_W (1 - P_W) = P_W - P_W^2 = P_W - P_W = 0$ and $P_{W^{\perp}}P_W = (1 - P_W)P_W = P_W - P_W^2 = P_W - P_W = 0.$ (d) Since $P_{W^{\perp}} = 1 - P_W$ then $P_W + P_{W^{\perp}} = P_W + (1 - P_W) = 1$. (e) To show ker $(P_W) = W^{\perp}$. To show: (ea) $\ker(P_W) \subseteq W^{\perp}$. (eb) $W^{\perp} \subseteq \ker(P_W)$. (ea) Assume $v \in \ker(P_W)$. By property (2) in Proposition 3.7, $\langle v, w \rangle = \langle P_W(v), w \rangle = \langle 0, w \rangle = 0.$ So $v \in W^{\perp}$. So ker $(P_W) \subseteq W^{\perp}$. (eb) Assume $v \in W^{\perp}$. If $w \in W$ then $\langle P_W(v), w \rangle = \langle v, w \rangle = 0$ and so $P_W(v) \in W^{\perp}$. By property (1), $P_W(v) \in W$ and so $P_W(v) \in W \cap W^{\perp} = 0$. So $v \in \ker(P_W)$. So $W^{\perp} \subseteq \ker(P_W)$.

So ker $(P_W) = W^{\perp}$.

- (f) To show: $\operatorname{im}(P_W) = W$. To show: (fa) $\operatorname{im}(P_W) \subseteq W$. (fb) $W \subseteq \operatorname{im}(P_W)$.
 - (fa) By property (1) of Proposition 3.7 $\operatorname{im}(P_W) \subseteq W$.
 - (fb) Assume $w \in W$. Let $c_1, \ldots, c_k \in \mathbb{F}$ such that $w = c_1 w^1 + \cdots + c_k w^k$. Since $\langle w^i, w_j \rangle = \delta_{ij}$ then

$$P_W(w) = \sum_{i=1}^k \langle w, w_i \rangle w^i = \sum_{i=1}^k \sum_{j=1}^k \langle c_j w^j, w_i \rangle w^i = \sum_{j=1}^k c_j w^i = w.$$

So $W \subseteq \operatorname{im}(P_W)$.

So $\operatorname{im}(P_W) = W$.

(g) If $v \in V$ then $v = P_W(v) + (1 - P_W)(v) \in W + W^{\perp}$. So $V = W + W^{\perp}$. By assumption $W \cap W^{\perp} = 0$, and so $V = W \oplus W^{\perp}$.

3.13.7 Orthonormal sequences are linearly independent

Proposition 3.21. Let V be an \mathbb{F} -vector space with a Hermitian form. An orthonormal sequence (a_1, a_2, \ldots) in V is linearly independent.

Proof. Let $(a_1, a_2, ...)$ be an orthonormal sequence in V. To show: $\{a_1, a_2, ...\}$ is linearly independent. To show: If $\ell \in \mathbb{Z}_{>0}$ and $\mu_1 a_1 + \mu_2 a_2 + \cdots + \mu_\ell a_\ell = 0$ then $\mu_j = 0$ for $j \in \{1, 2, ..., \ell\}$. Assume $\ell \in \mathbb{Z}_{>0}$ and $\mu_1 a_1 + \mu_2 a_2 + \cdots + \mu_\ell a_\ell = 0$. To show: If $j \in \{1, ..., \ell\}$ then $\mu_j = 0$. Assume $j \in \{1, ..., \ell\}$. Then $0 = \langle \mu_1 a_1 + \mu_2 a_2 + \cdots + \mu_\ell a_\ell, a_j \rangle = \mu_j \langle a_j, a_j \rangle = \mu_j$. So $\{a_1, a_2, \ldots\}$ is linearly independent.

3.13.8 Gram-Schmidt

Theorem 3.22. (Gram-Schmidt) Let V be an \mathbb{F} -vector space with a sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$. Assume that \langle, \rangle is nonisotropic and that \langle, \rangle is Hermitian i.e.,

- (1) (Nonisotropy condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0, and
- (2) (Hermitian condition) If $v_1, v_2 \in V$ then $\langle v_2, v_1 \rangle = \overline{\langle v_1, v_2 \rangle}$.

Let p_1, p_2, \ldots be a sequence of linear independent elements of V.

(a) Define $b_1 = p_1$ and

$$b_{n+1} = p_{n+1} - \frac{\langle p_{n+1}, b_1 \rangle}{\langle b_1, b_1 \rangle} b_1 - \dots - \frac{\langle p_{n+1}, b_n \rangle}{\langle b_n, b_n \rangle} b_n, \qquad \text{for } n \in \mathbb{Z}_{>0}$$

Then (b_1, b_2, \ldots) is an orthogonal sequence in V.

(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v \rangle \neq 0$. Define

$$\|v\| = \sqrt{\langle v, v \rangle}, \qquad for \ v \in V$$

Let (b_1, \ldots, b_n) be an orthogonal basis of V. Define

$$u_1 = \frac{b_1}{\|b_1\|}, \quad \dots, \quad u_n = \frac{b_n}{\|b_n\|}$$

Then (u_1, \ldots, u_n) is an orthonormal basis of V.

Proof. (Sketch) The proof is by induction on n. For the base case, there is only one vector b_1 and so there is nothing to show. Induction step: Assume (b_1, \ldots, b_n) are orthogonal. Let $j \in \{1, \ldots, n\}$. Then

$$\begin{split} \langle b_{n+1}, b_j \rangle &= \left\langle p_{n+1} - \frac{\langle p_{n+1}, b_1 \rangle}{\langle b_1, b_1 \rangle} b_1 - \dots - \frac{\langle p_{n+1}, b_n \rangle}{\langle b_n, b_n \rangle} b_n, b_j \right\rangle \\ &= \left\langle p_{n+1}, b_j \right\rangle - \frac{\langle p_{n+1}, b_1 \rangle}{\langle b_1, b_1 \rangle} \langle b_1, b_j \rangle - \dots - \frac{\langle p_{n+1}, b_n \rangle}{\langle b_n, b_n \rangle} \langle b_n, b_j \rangle \\ &= \left\langle p_{n+1}, b_j \right\rangle - \frac{\langle p_{n+1}, b_j \rangle}{\langle b_j, b_j \rangle} \langle b_j, b_j \rangle = \left\langle p_{n+1}, b_j \right\rangle - \langle p_{n+1}, b_j \rangle = 0 \quad \text{and} \\ \langle b_j, b_{n+1} \rangle &= \left\langle b_j, p_{n+1} - \frac{\langle p_{n+1}, b_1 \rangle}{\langle b_1, b_1 \rangle} b_1 - \dots - \frac{\langle p_{n+1}, b_n \rangle}{\langle b_n, b_n \rangle} b_n \right\rangle \\ &= \left\langle b_j, p_{n+1} \right\rangle - \frac{\overline{\langle p_{n+1}, b_1 \rangle}}{\langle b_1, b_1 \rangle} \langle b_j, b_1 \rangle - \dots - \frac{\overline{\langle p_{n+1}, b_n \rangle}}{\langle b_n, b_n \rangle} \langle b_j, b_n \rangle \\ &= \left\langle b_j, p_{n+1} \right\rangle - \frac{\overline{\langle p_{n+1}, b_1 \rangle}}{\langle b_j, b_j \rangle} \langle b_j, b_j \rangle = \left\langle b_j, p_{n+1} \right\rangle - \overline{\langle p_{n+1}, b_j \rangle} = 0, \end{split}$$

where the identity $\overline{\langle b_k, b_k \rangle} = \langle b_k, b_k \rangle$ and the last equality follow from the assumption that \langle , \rangle is Hermitian. So (b_1, \ldots, b_{n+1}) are orthogonal.

3.13.9 The role of normal matrices

Proposition 3.23. Let $V = \mathbb{C}^n$ with inner product given by (3.1). Let

 $A \in M_n(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad and \quad V_\lambda = \ker(\lambda - A).$

If $AA^* = A^*A$ then

 V_{λ} is A-invariant, V_{λ}^{\perp} is A-invariant, V_{λ} is A^* -invariant and V_{λ}^{\perp} is A^* -invariant.

Proof.

- (a) Let $p \in V_{\lambda}$. Then $Ap = \lambda p \in V_{\lambda}$. So V_{λ} is A invariant.
- (b) Let $p \in V_{\lambda}$. Since $A(A^*p) = A^*Ap = \lambda A^*p$ then $A^*p \in V_{\lambda}$. So V_{λ} is A^* invariant.
- (c) Let $z \in V_{\lambda}^{\perp}$.

To show $Az_{\lambda} \in V_{\lambda}^{\perp}$. To show: If $u \in V_{\lambda}$ then $\langle Az, u \rangle = 0$. Assume $u \in V_{\lambda}$. To show: $\langle Az, u \rangle = 0$. By (b), $A^*u \in V_{\lambda}$, and so $\langle Az, u \rangle = \langle z, A^*u \rangle = 0$. So $Az \in V_{\lambda}^{\perp}$. So V_{λ}^{\perp} is A-invariant.

(d) Let
$$z \in V_{\lambda}^{\perp}$$
.
To show: If $u \in V_{\lambda}$ then $\langle A^*z, u \rangle = 0$.

$$\langle A^*z, u \rangle = \langle z, Au \rangle = 0, \quad \text{since } Au \in V_{\lambda}.$$

So $A^*z \in V_{\lambda}^{\perp}$. So V_{λ}^{\perp} is A^* -invariant.

3.13.10 The Spectral theorem

Theorem 3.24. (Spectral theorem)

Let $n \in \mathbb{Z}_{>0}$ and $V = \mathbb{C}^n$ with inner product given by (3.1).

(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_n(\mathbb{C})$ such that $AA^* = A^*A$. Then there exists a unitary $U \in M_n(\mathbb{C})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

(b) Let $f: V \to V$ be a linear transformation such that $ff^* = f^*f$. Then there exists an orthonormal basis (u_1, \ldots, u_n) of V consisting of eigenvectors of f.

Proof. The two statements are equivalent via the relation between A and f given by

$$\begin{array}{ccccc} f \colon & V & \longrightarrow & V \\ & v & \longmapsto & Av. \end{array}$$

The proof is by induction on n.

The base case is when $\dim(V) = 1$. In this case $A \in M_1(\mathbb{C})$ is diagonal.

The induction step:

For $\mu \in \mathbb{C}$ let $V_{\mu} = \ker(\mu - f)$, the μ -eigenspace of f.

Since \mathbb{C} is algebraically closed, there exists $\lambda \in \mathbb{C}$ which is a root of the characteristic polynomial det(x - A).

So there exists $\lambda \in \mathbb{C}$ such that $\det(\lambda - A) = 0$.

So there exists $\lambda \in \mathbb{C}$ such that $V_{\lambda} = \ker(\lambda - A) \neq 0$.

Let $k = \dim(V_{\lambda})$ and let (p_1, \ldots, p_k) be a basis of V_{λ} .

Use Gram-Schmidt to convert (p_1, \ldots, p_k) to an orthogonal basis (u_1, \ldots, u_k) of V_{λ} .

By definition of V_{λ} , the basis vectors (u_1, \ldots, u_k) are all eigenvectors of f (of eigenvalue λ .

By Theorem 3.20 (orthogonal decomposition) and Proposition 3.12

 $V = V_{\lambda} \oplus (V_{\lambda})^{\perp}$ and V_{λ}^{\perp} is A-invariant and A*-invariant.

Let

Then $g_1 = f_1^*$ and $f_1 f_1^* = f_1^* f_1$.

Thus, by induction, there exists an orthonormal basis (u_{k+1}, \ldots, u_n) of V_{λ}^{\perp} consisting of eigenvectors of f_1 .

By definition of f_1 , eigenvectors of f_1 are eigenvectors of f.

So $(u_1, \ldots, u_k, u_{k+1}, \ldots, u_n)$ is an orthonormal basis of eigenvectors of f.