3 Inner products and orthogonality: Linear algebra review

3.1 Bilinear forms

Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. A bilinear form on V is a function

$$
\begin{array}{lllc}
\langle,\rangle: & V \times V & \rightarrow & \mathbb{F} \\
& (v, w) & \longmapsto\langle v, w\rangle & \text { such that }
\end{array}
$$

(a) If $v_{1}, v_{2}, w \in V$ then $\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle$,
(b) If $v, w_{1}, w_{2} \in V$ then $\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$,
(c) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle c v, w\rangle=c\langle v, w\rangle$,
(d) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle v, c w\rangle=c\langle v, w\rangle$.

A bilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ is symmetric if it satsfies:
(S) If $v, w \in V$ then $\langle v, w\rangle=\langle w, v\rangle$.

A bilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ is skew-symmetric if it satsfies:
(A) If $v, w \in V$ then $\langle v, w\rangle=-\langle w, v\rangle$.

3.2 Sesquilinear forms

Let \mathbb{F} be a field and let ${ }^{-}: \mathbb{F} \rightarrow \mathbb{F}$ be a function that satisfies:

$$
\text { if } c, c_{1}, c_{2} \in \mathbb{F} \text { then } \quad \overline{c_{1}+c_{2}}=\overline{c_{1}}+\overline{c_{2}}, \quad \overline{c_{1} c_{2}}=\overline{c_{2}} \overline{c_{1}} \quad \text { and } \quad \overline{1}=1 \quad \text { and } \quad \overline{\bar{c}}=c .
$$

The favourite example of such a function is complex conjugation. The other favourite example is the identity map $\mathrm{id}_{\mathbb{F}}$.
Let V be an \mathbb{F}-vector space. A sesquilinear form on V is a function

$$
\begin{array}{rllc}
\langle,\rangle: & V \times V & \rightarrow & \mathbb{F} \\
& (v, w) & \longmapsto\langle v, w\rangle
\end{array} \quad \text { such that }
$$

(a) If $v_{1}, v_{2}, w \in V$ then $\left\langle v_{1}+v_{2}, w\right\rangle=\left\langle v_{1}, w\right\rangle+\left\langle v_{2}, w\right\rangle$,
(b) If $v, w_{1}, w_{2} \in V$ then $\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$,
(c) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle c v, w\rangle=c\langle v, w\rangle$,
(d) If $c \in \mathbb{F}$ and $v, w \in V$ then $\langle v, c w\rangle=\bar{c}\langle v, w\rangle$.

A Hermitian form is a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ such that
(H) If $v, w \in V$ then $\langle v, w\rangle=\overline{\langle w, v\rangle}$.

3.3 Gram matrix of \langle,$\rangle with respect to a basis B$

Assume $n \in \mathbb{Z}_{>0}$ and $\operatorname{dim}(V)=n$. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a bilinear form and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of V. The Gram matrix of \langle,$\rangle with respect to the basis B$ is

$$
G_{B} \in M_{n}(\mathbb{F}) \quad \text { given by } \quad G_{B}(i, j)=\left\langle b_{i}, b_{j}\right\rangle
$$

Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be another basis of V and let $P_{C B}$ be the change of basis matrix given by

$$
c_{i}=\sum_{i=1}^{n} P_{B C}(j, i) b_{j}, \quad \text { for } i \in\{1, \ldots, n\} .
$$

Since

$$
G_{C}(i, j)=\left\langle c_{i}, c_{j}\right\rangle=\sum_{k, l=1}^{n}\left\langle P_{B C}(k, i) b_{k}, P_{B C}(l, j) b_{l}\right\rangle=\sum_{k, l=1}^{n} P_{B C}(k, i) G_{B}(k, l) P_{B C}(l, j),
$$

then

$$
G_{C}=P_{B C}^{t} G_{B} P_{B C}
$$

3.4 Quadratic forms

Let \mathbb{F} be a field, V an \mathbb{F}-vector space and $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ a bilinear form. The quadratic form associated to \langle,$\rangle is the function$

$$
\left\|\|^{2}: V \rightarrow \mathbb{F} \quad \text { given by } \quad\right\| v \|^{2}=\langle v, v\rangle .
$$

Theorem 3.1. Let V be a vector space over a field \mathbb{F} and let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a bilinear form. Let $\left\|\|^{2}: V \rightarrow \mathbb{F}\right.$ be the quadratic form associated to \langle,$\rangle .$
(a) (Parallelogram property) If $x, y \in V$ then

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y\rangle=0$ and $\langle y, x\rangle=0$ then

$$
\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2} .
$$

(c) (Reconstruction) Assume that \langle,$\rangle is symmetric and that 2 \neq 0$ in \mathbb{F}. Let $x, y \in V$. Then

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right) .
$$

Theorem 3.2. Let \mathbb{F} be a field with an involution ${ }^{-}: \mathbb{F} \rightarrow \mathbb{F}$ such that the fixed field

$$
\mathbb{K}=\{a \in \mathbb{F} \mid a=\bar{a}\} \quad \text { is an ordered field. }
$$

For $a \in \mathbb{K}$ define

$$
|a|^{2}=a \bar{a} .
$$

Let V be an \mathbb{K}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ such that
(a) If $x, y \in V$ then $\langle y, x\rangle=\overline{\langle x, y\rangle}$.
(b) If $x \in V$ then $\langle x, x\rangle \in \mathbb{K}_{\geq 0}$.

Let $\left\|\|: V \rightarrow \mathbb{F}\right.$ be the corresponding quadratic form and assume that if $a \in \mathbb{K}_{\geq 0}$ then there exists a unique $c \in \mathbb{K}_{\geq 0}$ such that $c^{2}=a$. Then
(c) (Cauchy-Schwarz) If $x, y \in V$ then $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(d) (Triangle inequality) If $x, y \in V$ then $\|x+y\| \leq\|x\|+\|y\|$.

The proof of Theorem 3.16 uses the following proposition.
Proposition 3.3. Let \mathbb{F} be an ordered field and let $x, y \in \mathbb{F}$ with $x \geq 0$ and $y \geq 0$. Then

$$
x \leq y \quad \text { if and only if } \quad x^{2} \leq y^{2} .
$$

3.5 Nondegeneracy and dual bases

Let V be a \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \rightarrow \mathbb{F}$. The form \langle,$\rangle is nondegenerate if it$ satisfies

$$
\text { if } v \in V \text { and } v \neq 0 \text { then there exists } w \in V \text { such that }\langle v, w\rangle \neq 0
$$

An alternative way of stating this condition is to say $V \cap V^{\perp}=0$. Another alternative is to say that the map

$$
\left.\begin{array}{rlllll}
V & \rightarrow V^{*} \\
v & \mapsto & \varphi_{v}
\end{array} \quad \text { given by } \quad \varphi_{v}: \quad V \quad \rightarrow \quad \mathbb{F}, \begin{array}{l}
V \\
w
\end{array}\right) \mapsto\langle v, w\rangle
$$

is an injective linear transformation.
Let $k \in \mathbb{Z}_{>0}$ and assume that $W \subseteq V$ is a subspace of V with $\operatorname{dim}(W)=k$. Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of W. A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ with respect to \langle,$\rangle is a basis \left(w^{1}, \ldots, w^{k}\right)$ of W such that

$$
\text { if } i, j \in\{1, \ldots, k\} \text { then }\left\langle w^{i}, w_{j}\right\rangle=\delta_{i j}
$$

Proposition 3.4. Let V be a vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional, that $\left(w_{1}, \ldots, w_{k}\right)$ is a basis of W and that G is the Gram matrix of \langle,$\rangle with respect to the basis \left\{w_{1}, \ldots, w_{k}\right\}$. The following are equivalent:
(a) A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ exists.
(b) G is invertible.
(c) $W \cap W^{\perp}=0$.
(d) The linear transformation

$$
\begin{aligned}
\Psi_{W}: \quad W & \rightarrow W^{*} \\
v & \longmapsto \varphi_{v}
\end{aligned} \quad \text { given by } \quad \varphi_{v}(w)=\langle v, w\rangle,
$$

is an isomorphism.

3.6 Isotropy and nondegeneracy

Let $W \subseteq V$ be a subspace of V. The orthogonal to W is

$$
W^{\perp}=\{v \in V \mid \text { if } w \in W \text { then }\langle v, w\rangle=0\}
$$

The subspace W is nonisotropic if $W \cap W^{\perp}=0$.
Proposition 3.5. A sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ satisfies
(no isotropic vectors condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
if and only if it satisfies
(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp}=0$.
Remark 3.6. Let $V=\mathbb{C}$-span $\left\{e_{1}, e_{2}\right\}$ with symmetric bilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ with Gram matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { in the basis }\left\{e_{1}, e_{2}\right\}
$$

This form has isotropic vectors since $\left\langle e_{1}, e_{1}\right\rangle=0$. The dual basis to $\left\{e_{1}, e_{2}\right\}$ is the basis $\left\{e_{2}, e_{1}\right\}$. Letting

$$
\begin{aligned}
& b_{1}=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right), \\
& b_{2}=\frac{i}{\sqrt{2}}\left(e_{1}-e_{2}\right),
\end{aligned} \quad \text { then the Gram matrix is } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

with respect to the basis $\left\{b_{1}, b_{2}\right\}$ and $b_{1}+i b_{2}$ is an isotropic vector.

3.7 Orthogonal projections

Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form.
Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$.
Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of W and let $\left(w^{1}, \ldots, w^{k}\right)$ be the dual basis of W (which exists by Proposition (3.4). The orthogonal projection onto W is the function

$$
P_{W}: V \rightarrow V \quad \text { given by } \quad P_{W}(v)=\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}
$$

The following proposition shows that P_{W} does not depend on which choice of basis of W is used to construct P_{W}.

Proposition 3.7. (Characterization of orthogonal projection) Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form. Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$. The orthogonal projection onto W is the unique linear transformation $P: V \rightarrow V$ such that
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$.

3.8 Orthogonal projections produce orthogonal decompositions

Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form.
Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$.
The following proposition explains how the orthogonal projection onto W produces the decomposition $V=W \oplus W^{\perp}$.

Theorem 3.8. Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\operatorname{dim}(V)=n$. Let W be a subspace of V such that $W \cap W^{\perp}=0$. Let P_{W} be the orthogonal projection onto W and let $P_{W^{\perp}}=1-P_{W}$. Then

$$
\begin{gathered}
P_{W}^{2}=P_{W}, \quad P_{W^{\perp}}^{2}=P_{W^{\perp}}, \quad P_{W} P_{W^{\perp}}=P_{W^{\perp}} P_{W}=0, \quad 1=P_{W}+P_{W^{\perp}} \\
\operatorname{ker}\left(P_{W}\right)=W^{\perp}, \quad \operatorname{im}\left(P_{W}\right)=W \quad \text { and } \quad V=W \oplus W^{\perp}
\end{gathered}
$$

3.9 Orthonormal sequences and Gram-Schmidt

A Hermitian form is a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ such that
(H) If $v, w \in V$ then $\langle v, w\rangle=\overline{\langle w, v\rangle}$.

An orthonormal sequence in V is a sequence $\left(b_{1}, b_{2}, \ldots\right)$ in V such that

$$
\text { if } i, j \in \mathbb{Z}_{>0} \quad \text { then } \quad\left\langle b_{i}, b_{j}\right\rangle= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Proposition 3.9. Let V be an \mathbb{F}-vector space with a Hermitian form. An orthonormal sequence $\left(a_{1}, a_{2}, \ldots\right)$ in V is linearly independent.

3.10 Orthonormal bases

Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\operatorname{dim}(V)=n$. An orthonormal basis of V, or self-dual basis of V, is a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ such that

$$
\text { if } i, j \in\{1, \ldots, n\} \text { then }\left\langle u_{i}, u_{j}\right\rangle= \begin{cases}0, & \text { if } i \neq j \\ 1, & \text { if } i=j\end{cases}
$$

An orthogonal basis in V is a basis $\left\{b_{1}, \ldots, b_{n}\right\}$ such that

$$
\text { if } i, j \in\{1, \ldots, n\} \quad \text { and } i \neq j \quad \text { then } \quad\left\langle b_{i}, b_{j}\right\rangle=0 .
$$

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.
Theorem 3.10. (Gram-Schmidt) Let V be an \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Assume that \langle,$\rangle is nonisotropic and that \langle$,$\rangle is Hermitian i.e.,$
(1) (Nonisotropy condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$, and
(2) (Hermitian condition) If $v_{1}, v_{2} \in V$ then $\left\langle v_{2}, v_{1}\right\rangle=\overline{\left\langle v_{1}, v_{2}\right\rangle}$.

Let p_{1}, p_{2}, \ldots be a sequence of linear independent elements of V.
(a) Define $b_{1}=p_{1}$ and

$$
b_{n+1}=p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, \quad \text { for } n \in \mathbb{Z}_{>0}
$$

Then $\left(b_{1}, b_{2}, \ldots\right)$ is an orthogonal sequence in V.
(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Let $\left(b_{1}, \ldots, b_{n}\right)$ be an orthogonal basis of V. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|}
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of V.

3.11 Adjoints of linear transformations

Let V be an \mathbb{F}-vector space with a nondegenerate sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Let $f: V \rightarrow V$ be a linear transformation.

- The adjoint of f with respect to \langle,$\rangle is the linear transformation f^{*}: V \rightarrow V$ determined by

$$
\text { if } x, y \in V \text { then } \quad\langle f(x), y\rangle=\left\langle x, f^{*}(y)\right\rangle .
$$

- The linear transformation f is self adjoint if f satisfies:

$$
\text { if } x, y \in V \quad \text { then } \quad\langle f(x), y\rangle=\langle x, f(y)\rangle \text {. }
$$

- The linear transformation f is an isometry if f satisfies:

$$
\text { if } x, y \in V \quad \text { then } \quad\langle f(x), f(y)\rangle=\langle x, y\rangle \text {. }
$$

- The linear transformation f is normal if $f f^{*}=f^{*} f$.

Let $\left\{w_{1}, \ldots, w_{k}\right\}$ be a basis of W and assume that the dual basis $\left\{w^{1}, \ldots, w^{k}\right\}$ of W exists. If $w=c_{1} w^{1}+\cdots c_{k} w^{k}$ then $c_{j}=\left\langle w, w_{j}\right\rangle$ and so

$$
w=\left\langle w, w_{1}\right\rangle w^{1}+\cdots+\left\langle w, w_{k}\right\rangle w^{k} .
$$

If $w \in W$ then

$$
f^{*}(w)=\left\langle f^{*}(w), w_{1}\right\rangle w^{1}+\cdots+\left\langle f^{*}(w), w_{k}\right\rangle w^{k}=\left\langle w, f\left(w_{1}\right)\right\rangle w^{1}+\cdots+\left\langle w, f\left(w_{k}\right)\right\rangle w^{k},
$$

and this specifies $f^{*}: W \rightarrow W$ in terms of f. Then

$$
f \text { is self adjoint if } f=f^{*} \quad \text { and } \quad f \text { is an isometry if } f f^{*}=1,
$$

HW: Let $V=\mathbb{F}^{n}$ with basis $\left(e_{1}, \ldots, e_{n}\right)$ and inner product given by

$$
e_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad \text { with } 1 \text { in the } i \text { th row and }\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j} .
$$

Let $f: V \rightarrow V$ be a linear transformation of V and let A be the matrix of f with respect to the basis $\left(e_{1}, \ldots, e_{n}\right)$. Show that, with respect to the basis $\left(e_{1}, \ldots, e_{n}\right)$,

$$
\text { the matrix of } f^{*} \text { is } \quad A^{*}=\bar{A}^{t} .
$$

Since

$$
\sum_{i=1}^{n} A^{*}(i, j) e_{i}=f^{*}\left(e_{j}\right)=\sum_{i=1}^{n}\left\langle e_{j}, f\left(e_{i}\right)\right\rangle e_{i}=\sum_{i=1}^{n} \sum_{k=1}^{n}\left\langle e_{j}, A(k, i) e_{k}\right\rangle e_{i}=\sum_{i=1}^{n} \overline{A(j, i)} e_{i},
$$

then $A^{*}(i, j)=\overline{A(j, i)}$.

3.12 The Spectral theorem

Let $A \in M_{n}(\mathbb{C})$ and let $V=\mathbb{C}^{n}$ with inner product given by

$$
\left\langle\left(\begin{array}{c}
x_{1} \tag{3.1}\\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)\right\rangle=x_{1} \overline{y_{1}}+\cdots x_{n} \overline{y_{n}} .
$$

Let $A \in M_{n}(\mathbb{C})$.

- The adjoint of A is the matrix $A^{*} \in M_{n}(\mathbb{C})$ given by $A^{*}(i, j)=\overline{A(j, i)}$.
- The matrix A is self adjoint if $A=A^{*}$.
- The matrix A is unitary if $A A^{*}=1$.
- The matrix A is normal if $A A^{*}=A^{*} A$.

Write $A^{*}=\bar{A}^{t}$. The unitary group is

$$
U_{n}(\mathbb{C})=\left\{U \in M_{n}(\mathbb{C}) \mid U U^{*}=1\right\}
$$

Theorem 3.11. Let $V=\mathbb{C}^{n}$ with inner product given by (3.1). The function

$$
\begin{aligned}
&\left\{\begin{array}{l}
\left.\begin{array}{l}
\text { ordered orthonormal bases } \\
\left(u_{1}, \ldots, u_{n}\right) \text { of } \mathbb{C}^{n}
\end{array}\right\}
\end{array}\right. \longrightarrow \\
& U_{n}(\mathbb{C}) \\
&\left(u_{1}, \ldots, u_{n}\right) \longmapsto U=\left(\begin{array}{ccc}
\mid & \mid \\
u_{1} & \cdots & u_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { is a bijection. }
\end{aligned}
$$

The following proposition explains the role of normal matrices.
Proposition 3.12. Let $V=\mathbb{C}^{n}$ with inner product given by (3.1). Let

$$
A \in M_{n}(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad \text { and } \quad V_{\lambda}=\operatorname{ker}(\lambda-A)
$$

If $A A^{*}=A^{*} A$ then
V_{λ} is A-invariant, $\quad V_{\lambda}^{\perp}$ is A-invariant, $\quad V_{\lambda}$ is A^{*}-invariant and $\quad V_{\lambda}^{\perp}$ is A^{*}-invariant.
Theorem 3.13. (Spectral theorem)
Let $n \in \mathbb{Z}_{>0}$ and $V=\mathbb{C}^{n}$ with inner product given by (3.1).
(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_{n}(\mathbb{C})$ such that $A A^{*}=A^{*} A$. Then there exists a unitary $U \in M_{n}(\mathbb{C})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

(b) Let $f: V \rightarrow V$ be a linear transformation such that $f f^{*}=f^{*} f$. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of V consisting of eigenvectors of f.
$\mathbf{H W}$: Show that if $A \in M_{n}(\mathbb{C})$ is self adjoint then its eigenvalues are real.
HW: Show that if $U \in M_{n}(\mathbb{C})$ is unitary then its eigenvalues have absolute value 1 .
Theorem 3.14. (Spectral theorem)
Let $n \in \mathbb{Z}_{>0}$ and $V=\mathbb{C}^{n}$ with inner product given by (3.1).
(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_{n}(\mathbb{C})$ such that $A A^{*}=A^{*} A$. Then there exists a unitary $U \in M_{n}(\mathbb{C})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

(b) Let $f: V \rightarrow V$ be a linear transformation such that $f f^{*}=f^{*} f$. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of V consisting of eigenvectors of f.

3.13 Some proofs

3.13.1 The Pythagorean theorem and reconstruction

Theorem 3.15. Let V be a vector space over a field \mathbb{F} and let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a bilinear form. Let $\left\|\|^{2}: V \rightarrow \mathbb{F}\right.$ be the quadratic form associated to \langle,$\rangle .$
(a) (Parallelogram property) If $x, y \in V$ then

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y\rangle=0$ and $\langle y, x\rangle=0$ then

$$
\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2} .
$$

(c) (Reconstruction) Assume that \langle,$\rangle is symmetric and that 2 \neq 0$ in \mathbb{F}. Let $x, y \in V$. Then

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right) .
$$

Proof.
(a) Assume $x, y \in V$. Then

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle+\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =2\|x\|^{2}+2\|y\|^{2} .
\end{aligned}
$$

(b) Assume $x, y \in V$ and $\langle x, y\rangle=0$ and $\langle y, x\rangle=0$. Then

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y,+x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+0+0+\|y\|^{2}=\|x\|^{2}+0+0+\|y\|^{2} .
\end{aligned}
$$

(c) Assume $x, y \in V$. Then

$$
\begin{aligned}
\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2} & =\langle x+y, x+y\rangle-\langle x, x\rangle-\langle y, y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle-\langle x, x\rangle-\langle y, y\rangle \\
& =2\langle x, y\rangle .
\end{aligned}
$$

3.13.2 Cauchy-Schwarz

Theorem 3.16. Let \mathbb{F} be a field with an involution ${ }^{-}: \mathbb{F} \rightarrow \mathbb{F}$ such that the fixed field

$$
\mathbb{K}=\{a \in \mathbb{F} \mid a=\bar{a}\} \quad \text { is an ordered field. }
$$

For $a \in \mathbb{K}$ define

$$
|a|^{2}=a \bar{a} .
$$

Let V be an \mathbb{K}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ such that
(a) If $x, y \in V$ then $\langle y, x\rangle=\overline{\langle x, y\rangle}$.
(b) If $x \in V$ then $\langle x, x\rangle \in \mathbb{K}_{\geq 0}$.

Let $\left\|\|: V \rightarrow \mathbb{F}\right.$ be the corresponding quadratic form and assume that if $a \in \mathbb{K}_{\geq 0}$ then there exists a unique $c \in \mathbb{K}_{\geq 0}$ such that $c^{2}=a$. Then
(c) (Cauchy-Schwarz) If $x, y \in V$ then $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(d) (Triangle inequality) If $x, y \in V$ then $\|x+y\| \leq\|x\|+\|y\|$.

Proof. (c) Let $x, y \in V$. If $x=0$ then both sides of the Cauchy-Schwarz inequality are 0 . Assume $x \neq 0$. The Gram-Schmidt process on the vectors (x, y) suggests the consideration of

$$
u_{1}=\frac{x}{\|x\|} \quad \text { and } \quad u_{2}=y-\frac{\langle y, x\rangle}{\langle x, x\rangle} x .
$$

To avoid denominators, let $u=\langle x, x\rangle y-\langle y, x\rangle x$. Then

$$
\begin{aligned}
0 & \leq\langle u, u\rangle=\langle\langle x, x\rangle y-\langle y, x\rangle x,\langle x, x\rangle y-\langle y, x\rangle x\rangle \\
& =\overline{\langle x, x\rangle}\langle x, x\rangle\left|\langle y, y\rangle-\langle x, x\rangle \overline{\langle y, x\rangle}\langle y, x\rangle-\langle y, x\rangle \overline{\langle x, x\rangle}\langle x, y\rangle+|\langle y, x\rangle|^{2}\langle x, x\rangle\right. \\
& =\overline{\langle x, x\rangle}\left(\langle x, x\rangle\langle y, y\rangle-|\langle y, x\rangle|^{2}\right)
\end{aligned}
$$

Since $x \neq 0$ then $\langle x, x\rangle \in \mathbb{K}_{>0}$ and so $\overline{\langle x, x\rangle}=\langle x, x\rangle \in \mathbb{K}_{>0}$. Thus,

$$
0 \leq\langle x, x\rangle\langle y, y\rangle-|\langle y, x\rangle|^{2} \quad \text { and so } \quad|\langle y, x\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle .
$$

Since the function $f: \mathbb{K}_{\geq 0} \rightarrow \mathbb{K}_{\geq 0}$ given by $f(z)=z^{2}$ is injective and monotone (Proposition 3.3) then $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(d) Let $a \in \mathbb{F}$. Using that if $z \in \mathbb{F}$ then $|z|^{2}=z \bar{z} \in \mathbb{K}_{\geq 0}$, then

$$
|a+\bar{a}|^{2} \leq|a+\bar{a}|^{2}+|a-\bar{a}|^{2}=(a+\bar{a})^{2}-(a-\bar{a})^{2}=4 a \bar{a}=4|a|^{2} .
$$

So $|a+\bar{a}| \leq 2|a|$. Also

$$
\text { if } a+\bar{a} \in \mathbb{K}_{\leq 0} \text { then } a+\bar{a} \leq 0 \leq|a+\bar{a}| \quad \text { and } \quad \text { if } a+\bar{a} \in \mathbb{K}_{\geq 0} \text { then } a+\bar{a}=|a+\bar{a}| .
$$

Combining these with $|a+\bar{a}| \leq 2|a|$ gives

$$
a+\bar{a} \leq 2|a| .
$$

Assume $x, y \in V$. Then

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\mid y \|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle} \\
& \leq\|x\|^{2}+\left|y \|^{2}+2\right|\langle x, y\rangle \mid \\
& \leq\|x\|^{2}+\left|y\left\|^{2}+2\right\| x\right| \cdot\|y\| \\
& =(\|x\|+\|y\|)^{2} .
\end{aligned}
$$

Thus $\|x+y\| \leq\|x\|+\|y\|$.

3.13.3 Nondegeneracy and dual bases

Proposition 3.17. Let V be a vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional, that $\left(w_{1}, \ldots, w_{k}\right)$ is a basis of W and that G is the Gram matrix of \langle,$\rangle with respect to the basis \left\{w_{1}, \ldots, w_{k}\right\}$. The following are equivalent:
(a) A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ exists.
(b) G is invertible.
(c) $W \cap W^{\perp}=0$.
(d) The linear transformation

$$
\begin{aligned}
\Psi_{W}: \quad W & \rightarrow W^{*} \\
v & \longmapsto \varphi_{v}
\end{aligned} \quad \text { given by } \quad \varphi_{v}(w)=\langle v, w\rangle,
$$

is an isomorphism.
Proof.
(a) $\Rightarrow(\mathrm{b})$: Assume that $\left\{w^{1}, \ldots, w^{k}\right\}$ exists.

To show: G is invertible.
Define $H(\ell, i) \in \mathbb{F}$ by

$$
w^{i}=\sum_{\ell=1}^{k} H(i, \ell) w_{\ell} .
$$

Then

$$
\delta_{i j}=\left\langle w^{i}, w_{j}\right\rangle=\sum_{\ell=1}^{k} H(i, \ell)\left\langle w_{\ell}, w_{j}\right\rangle=\sum_{\ell=1}^{k} H(i, \ell) G(\ell, j)=(H G)(i, j) .
$$

So $H G=1, H$ is the inverse of G, and G is invertible.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$: Assume that G is invertible.
For $i \in\{1, \ldots, k\}$ define

$$
w^{i}=\sum_{\ell=1}^{k} G^{-1}(i, \ell) w_{\ell}, \quad \text { for } i \in\{1, \ldots, k\} .
$$

Then

$$
\left\langle w^{i}, w_{j}\right\rangle=\sum_{\ell=1}^{k} G^{-1}(i, \ell)\left\langle w_{\ell}, w_{j}\right\rangle=\sum_{\ell=1}^{k} G^{-1}(i, \ell) G(\ell, j)=\left(G^{-1} G\right)(i, j)=\delta_{i j} .
$$

So $\left\{w^{1}, \ldots, w^{k}\right\}$ is a dual basis to $\left\{w_{1}, \ldots, w_{k}\right\}$.
(b) \Rightarrow (c): Assume that G is invertible.

To show: $W \cap W^{\perp}=0$.
Let $w \in W \cap W^{\perp}$.
To show: $w=0$.
Write $w=c_{1} w_{1}+\cdots+c_{k} w_{k}$.
To show: If $j \in\{1, \ldots, k\}$ then $c_{j}=0$.
Since $w \in W^{\perp}$ then $\left\langle w, w_{r}\right\rangle=0$ for $r \in\{1, \ldots, k\}$ and

$$
\begin{aligned}
c_{j} & =\sum_{\ell=1}^{n} c_{\ell} \delta_{\ell j}=\sum_{\ell=1}^{n} c_{\ell} G(\ell, r) G^{-1}(r, j) \\
& =\sum_{\ell=1}^{k} c_{\ell}\left\langle w_{\ell}, w_{r}\right\rangle G^{-1}(r, j)=\sum_{r=1}^{k}\left\langle w, w_{r}\right\rangle G^{-1}(r, j)=0 .=\sum_{r=1}^{k} 0 \cdot G^{-1}(r, j)=0 .
\end{aligned}
$$

So $w=0$.
(c) \Rightarrow (b): Assume that $W \cap W^{\perp}=0$.

To show: G is invertible.
To show: The rows of G are linearly independent.
To show: If $c_{1}, \ldots, c_{k} \in \mathbb{F}$ and $\left(c_{1}, \ldots, c_{k}\right) G=0$ then $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.
Assume $c_{1}, \ldots, c_{k} \in \mathbb{F}$ and $\left(c_{1}, \ldots, c_{k}\right) G=0$.
To show: $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.
Let $w=c_{1} w_{1}+\cdots+c_{k} w_{k}$.
If $i \in\{1, \ldots, k\}$ then, since $\left(c_{1}, \ldots, c_{k}\right) G=0$,

$$
0=\sum_{\ell=1}^{k} c_{\ell} G(\ell, i)=\sum_{\ell=1}^{k} c_{k}\left\langle w_{\ell}, w_{i}\right\rangle=\left\langle c_{1} w_{1}+\cdots c_{k} w_{k}, w_{i}\right\rangle=\left\langle w, w_{i}\right\rangle .
$$

So $w \in W^{\perp}$.
So $w \in W \cap W^{\perp}$.
So $w=0$.
So $c_{1}=0, c_{2}=0, \ldots, c_{k}=0$.
Thus the rows of G are linearly independent and G is invertible.
(c) \Rightarrow (d): Assume that $W \cap W^{\perp}=0$

To show: $\Psi_{W}: W \rightarrow W^{*}$ is an isomorphism.
To show: (ca) Ψ_{W} is injective.
(cb) Ψ_{W} is surjective.
(ca) Since $\operatorname{ker}\left(\Psi_{W}\right)=W \cap W^{\perp}$ then $\operatorname{ker}\left(\Psi_{W}\right)=0$.
So Ψ_{W} is injective.
(cb) If $\left\{w_{1}, \ldots, w_{k}\right\}$ is a basis of W then defining $\varphi^{i}: W \rightarrow \mathbb{F}$ by

$$
\text { if } c_{1}, \ldots, c_{k} \in \mathbb{F} \text { then } \quad \varphi^{i}\left(c_{1} w_{1}+\cdots+c_{k} w_{k}\right)=c_{i}
$$

produces a basis $\left\{\varphi^{1}, \ldots, \varphi^{k}\right\}$ of the dual space W^{*}.
So $\operatorname{dim}(W)=\operatorname{dim}\left(W^{*}\right)$.
Since Ψ_{W} is injective W is finite dimensional then $\operatorname{dim}\left(\operatorname{im}\left(\Psi_{W}\right)\right)=\operatorname{dim}(W)=\operatorname{dim}\left(W^{*}\right)$. So $\operatorname{im}\left(\Psi_{W}\right)=W^{*}$ and ψ_{W} is surjective.
So Ψ_{W} is an isomorphism.
$(\mathrm{d}) \Rightarrow(\mathrm{c})$: Assume that Ψ_{W} is an isomorphism.
So Ψ_{W} is injective.
So $\operatorname{ker}\left(\Psi_{W}\right)=0$.
Since $\operatorname{ker}\left(\Psi_{W}\right)=W \cap W^{\perp}$ then $W \cap W^{\perp}=0$.

3.13.4 Isotropy and nondegeneracy

Proposition 3.18. A sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ satisfies
(no isotropic vectors condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
if and only if it satisfies
(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp}=0$.

Proof. \Rightarrow : Assume that if $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
To show: If W is a subspace of V then $W \cap W^{\perp}=0$.
Assume W is a subspace of V.
To show: If $w \in W \cap W^{\perp}$ then $w=0$.
Assume $w \in W \cap W^{\perp}$.
Then $\langle w, w\rangle=0$.
So $w=0$.
\Leftarrow : Assume that if W is a subspace of V then $W \cap W^{\perp}=0$.
To show: If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
Assume $v \in V$.
To show: If $v \neq 0$ then $\langle v, v\rangle \neq 0$.
Assume $v \neq 0$.
Let $W=\mathbb{F} v$, a one-dimensional subspace of V.
Since $\mathbb{F} v \cap(\mathbb{F} v)^{\perp}=0$ then $v \notin(\mathbb{F} v)^{\perp}$.
So $\langle v, v\rangle \neq 0$.

3.13.5 Characterizing orthogonal projections

Proposition 3.19. (Characterization of orthogonal projection) Let \mathbb{F} be a field and let V be an \mathbb{F} vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form. Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$. The orthogonal projection onto W is the unique linear transformation $P: V \rightarrow V$ such that
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$.

Proof. Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of W and let $\left(w^{1}, \ldots, w^{k}\right)$ be the dual basis of W. The orthogonal projection onto W is the function

$$
P_{W}: V \rightarrow V \quad \text { given by } \quad P_{W}(v)=\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i} .
$$

To show: (a) P_{W} is a linear transformation that satisfies conditions (1) and (2).
(b) If Q is a linear transformation that satisfies (1) and (2) then $Q=P_{W}$.
(a) To show: (0) P_{W} is a linear transformation.
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$.
(0) To show: If $c \in \mathbb{F}$ and $v, v_{1}, v_{2} \in V$ then $P_{W}(c v)=c P_{W}(v)$ and $P_{W}\left(v_{1}+v_{2}\right)=P_{W}\left(v_{1}\right)+$ $P_{W}\left(v_{2}\right)$.
Assume $c \in \mathbb{F}$ and $v, v_{1}, v_{2} \in V$.
To show: $P_{W}(c v)=c P_{W}(v)$ and $P_{W}\left(v_{1}+v_{2}\right)=P_{W}\left(v_{1}\right)+P_{W}\left(v_{2}\right)$.
Since \langle,$\rangle ls linear in the first coordinate then$

$$
\begin{aligned}
& P_{W}(c v)=\sum_{i=1}^{k}\left\langle c v, w_{i}\right\rangle w^{i}=\sum_{i=1}^{k} c\left\langle v, w_{i}\right\rangle w^{i}=c\left(\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}\right)=c P_{W}(v), \quad \text { and } \\
& P_{W}(c v)=\sum_{i=1}^{k}\left\langle v_{1}+v_{2}, w_{i}\right\rangle w^{i}=\sum_{i=1}^{k} c\left\langle v_{1}, w_{i}\right\rangle w^{i}+\sum_{i=1}^{k} c\left\langle v_{1}, w_{i}\right\rangle w^{i}=P W\left(v_{1}\right)+P_{W}\left(v_{2}\right) .
\end{aligned}
$$

So P_{W} is a linear transformation.
(1) Assume $v \in V$.

Since $w^{1}, \ldots, w^{k} \in W$ and $P_{W}(v)=\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}$ then $P_{W}(v) \in W$.
(2) Assume $v \in V$ and $w \in W$.

Since $\left\{w_{1}, \ldots, w_{k}\right\}$ is a basis of W then there exist $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $w=c_{1} w_{1}+$ $\cdots+c_{k} w_{k}$.
Then

$$
\left\langle P_{W}(v), w\right\rangle=\left\langle\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}, \sum_{j=1}^{k} c_{j} w_{j}\right\rangle=\sum_{i=1}^{k} \overline{c_{i}}\left\langle v, w_{i}\right\rangle=\langle v, w\rangle .
$$

Thus $P_{W}(v)$ is a linear transformation that satisfies (1) and (2).
(b) Assume $Q: V \rightarrow V$ is a linear transformation that satisfies (1) and (2).

To show: $Q=P_{W}$.
To show: If $v \in V$ then $Q(v)=P_{W}(v)$.
Assume $v \in V$.
Since Q satisfies property (2), if $w \in W$ then $\langle Q(v), w\rangle=\langle v, w\rangle$.
So $\langle Q(v), w\rangle=\langle v, w\rangle=\left\langle P_{W}(v), w\right\rangle$.
So, if $w \in W$ then $\left\langle P_{W}(v)-Q(v), w\right\rangle=0$.
So $P_{W}(v)-Q(v) \in W^{\perp}$.
By Property (1), $P_{W}(v)-Q(v) \in W$.
So $P_{W}(v)-Q(v) \in W \cap W^{\perp}$.
Since $W \cap W^{\perp}=0$ then $P_{W}(v)-Q(v)=0$.
So $P_{W}=Q$.

3.13.6 Orthogonal decomposition

Theorem 3.20. Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\operatorname{dim}(V)=n$. Let W be a subspace of V such that $W \cap W^{\perp}=0$. Let P_{W} be the orthogonal projection onto W and let $P_{W^{\perp}}=1-P_{W}$. Then

$$
\begin{gathered}
P_{W}^{2}=P_{W}, \quad P_{W^{\perp}}^{2}=P_{W^{\perp}}, \quad P_{W} P_{W^{\perp}}=P_{W^{\perp}} P_{W}=0, \quad 1=P_{W}+P_{W^{\perp}}, \\
\operatorname{ker}\left(P_{W}\right)=W^{\perp}, \quad \operatorname{im}\left(P_{W}\right)=W \quad \text { and } \quad V=W \oplus W^{\perp} .
\end{gathered}
$$

Proof. (a) Assume $v \in V$. Then, by properties (1) and (2) of Proposition 3.7,

$$
P_{W}^{2}(v)=\sum_{i=1}^{k}\left\langle P_{W}(v), w^{i}\right\rangle w_{i}=\sum_{i=1}^{k}\left\langle v, w^{i}\right\rangle w_{i}=P_{W}(v) . \quad \text { So } P_{W}^{2}=P_{W}
$$

(b) Since $P_{W}^{2}=P_{W}$ then

$$
P_{W^{\perp}}^{2}=\left(1-P_{W}\right)^{2}=1-2 P_{W}+P_{W}^{2}=1-2 P_{W}+P_{W}=1-P_{W}=P_{W^{\perp}} .
$$

(c) Since $P_{W}^{2}=P_{W}$ and $P_{W^{\perp}}=1-P_{W}$ then

$$
\begin{aligned}
& P_{W} P_{W^{\perp}}=P_{W}\left(1-P_{W}\right)=P_{W}-P_{W}^{2}=P_{W}-P_{W}=0 \quad \text { and } \\
& P_{W^{\perp}} P_{W}=\left(1-P_{W}\right) P_{W}=P_{W}-P_{W}^{2}=P_{W}-P_{W}=0 .
\end{aligned}
$$

(d) Since $P_{W^{\perp}}=1-P_{W}$ then $P_{W}+P_{W^{\perp}}=P_{W}+\left(1-P_{W}\right)=1$.
(e) To show $\operatorname{ker}\left(P_{W}\right)=W^{\perp}$.

To show: (ea) $\operatorname{ker}\left(P_{W}\right) \subseteq W^{\perp}$.
(eb) $W^{\perp} \subseteq \operatorname{ker}\left(P_{W}\right)$.
(ea) Assume $v \in \operatorname{ker}\left(P_{W}\right)$.
By property (2) in Proposition 3.7, $\langle v, w\rangle=\left\langle P_{W}(v), w\right\rangle=\langle 0, w\rangle=0$.
So $v \in W^{\perp}$.
So $\operatorname{ker}\left(P_{W}\right) \subseteq W^{\perp}$.
(eb) Assume $v \in W^{\perp}$.
If $w \in W$ then $\left\langle P_{W}(v), w\right\rangle=\langle v, w\rangle=0$ and so $P_{W}(v) \in W^{\perp}$.
By property (1), $P_{W}(v) \in W$ and so $P_{W}(v) \in W \cap W^{\perp}=0$.
So $v \in \operatorname{ker}\left(P_{W}\right)$.
So $W^{\perp} \subseteq \operatorname{ker}\left(P_{W}\right)$.
So $\operatorname{ker}\left(P_{W}\right)=W^{\perp}$.
(f) To show: $\operatorname{im}\left(P_{W}\right)=W$.

To show: (fa) $\operatorname{im}\left(P_{W}\right) \subseteq W$.
(fb) $W \subseteq \operatorname{im}\left(P_{W}\right)$.
(fa) By property (1) of Proposition 3.7 $\mathrm{im}\left(P_{W}\right) \subseteq W$.
(fb) Assume $w \in W$.
Let $c_{1}, \ldots, c_{k} \in \mathbb{F}$ such that $w=c_{1} w^{1}+\cdots+c_{k} w^{k}$.
Since $\left\langle w^{i}, w_{j}\right\rangle=\delta_{i j}$ then

$$
P_{W}(w)=\sum_{i=1}^{k}\left\langle w, w_{i}\right\rangle w^{i}=\sum_{i=1}^{k} \sum_{j=1}^{k}\left\langle c_{j} w^{j}, w_{i}\right\rangle w^{i}=\sum_{j=1}^{k} c_{j} w^{i}=w .
$$

So $W \subseteq \operatorname{im}\left(P_{W}\right)$.
So $\operatorname{im}\left(P_{W}\right)=W$.
(g) If $v \in V$ then $v=P_{W}(v)+\left(1-P_{W}\right)(v) \in W+W^{\perp}$.

So $V=W+W^{\perp}$.
By assumption $W \cap W^{\perp}=0$, and so $V=W \oplus W^{\perp}$.

3.13.7 Orthonormal sequences are linearly independent

Proposition 3.21. Let V be an \mathbb{F}-vector space with a Hermitian form. An orthonormal sequence $\left(a_{1}, a_{2}, \ldots\right)$ in V is linearly independent.

Proof. Let $\left(a_{1}, a_{2}, \ldots\right)$ be an orthonormal sequence in V.
To show: $\left\{a_{1}, a_{2}, \ldots\right\}$ is linearly independent.
To show: If $\ell \in \mathbb{Z}_{>0}$ and $\mu_{1} a_{1}+\mu_{2} a_{2}+\cdots+\mu_{\ell} a_{\ell}=0$ then $\mu_{j}=0$ for $j \in\{1,2, \ldots, \ell\}$.
Assume $\ell \in \mathbb{Z}_{>0}$ and $\mu_{1} a_{1}+\mu_{2} a_{2}+\cdots+\mu_{\ell} a_{\ell}=0$.
To show: If $j \in\{1, \ldots, \ell\}$ then $\mu_{j}=0$.
Assume $j \in\{1, \ldots, \ell\}$.
Then $0=\left\langle\mu_{1} a_{1}+\mu_{2} a_{2}+\cdots+\mu_{\ell} a_{\ell}, a_{j}\right\rangle=\mu_{j}\left\langle a_{j}, a_{j}\right\rangle=\mu_{j}$.
So $\left\{a_{1}, a_{2}, \ldots\right\}$ is linearly independent.

3.13.8 Gram-Schmidt

Theorem 3.22. (Gram-Schmidt) Let V be an \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Assume that \langle,$\rangle is nonisotropic and that \langle$,$\rangle is Hermitian i.e.,$
(1) (Nonisotropy condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$, and
(2) (Hermitian condition) If $v_{1}, v_{2} \in V$ then $\left\langle v_{2}, v_{1}\right\rangle=\overline{\left\langle v_{1}, v_{2}\right\rangle}$.

Let p_{1}, p_{2}, \ldots be a sequence of linear independent elements of V.
(a) Define $b_{1}=p_{1}$ and

$$
b_{n+1}=p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, \quad \text { for } n \in \mathbb{Z}_{>0}
$$

Then $\left(b_{1}, b_{2}, \ldots\right)$ is an orthogonal sequence in V.
(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Let $\left(b_{1}, \ldots, b_{n}\right)$ be an orthogonal basis of V. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|}
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of V.
Proof. (Sketch) The proof is by induction on n.
For the base case, there is only one vector b_{1} and so there is nothing to show.
Induction step: Assume $\left(b_{1}, \ldots, b_{n}\right)$ are orthogonal.
Let $j \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
& \left\langle b_{n+1}, b_{j}\right\rangle=\left\langle p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle}\left\langle b_{1}, b_{j}\right\rangle-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle}\left\langle b_{n}, b_{j}\right\rangle \\
& =\left\langle p_{n+1}, b_{j}\right\rangle-\frac{\left\langle p_{n+1}, b_{j}\right\rangle}{\left\langle b_{j}, b_{j}\right\rangle}\left\langle b_{j}, b_{j}\right\rangle=\left\langle p_{n+1}, b_{j}\right\rangle-\left\langle p_{n+1}, b_{j}\right\rangle=0 \quad \text { and } \\
& \left\langle b_{j}, b_{n+1}\right\rangle=\left\langle b_{j}, p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}\right\rangle \\
& =\left\langle b_{j}, p_{n+1}\right\rangle-\frac{\overline{\left\langle p_{n+1}, b_{1}\right\rangle}}{\left\langle b_{1}, b_{1}\right\rangle}\left\langle b_{j}, b_{1}\right\rangle-\cdots-\frac{\overline{\left\langle p_{n+1}, b_{n}\right\rangle}}{\left\langle b_{n}, b_{n}\right\rangle}\left\langle b_{j}, b_{n}\right\rangle \\
& =\left\langle b_{j}, p_{n+1}\right\rangle-\frac{\overline{\left\langle p_{n+1}, b_{j}\right\rangle}}{\left\langle b_{j}, b_{j}\right\rangle}\left\langle b_{j}, b_{j}\right\rangle=\left\langle b_{j}, p_{n+1}\right\rangle-\overline{\left\langle p_{n+1}, b_{j}\right\rangle}=0,
\end{aligned}
$$

where the identity $\overline{\left\langle b_{k}, b_{k}\right\rangle}=\left\langle b_{k}, b_{k}\right\rangle$ and the last equality follow from the assumption that \langle,$\rangle is$ Hermitian. So (b_{1}, \ldots, b_{n+1}) are orthogonal.

3.13.9 The role of normal matrices

Proposition 3.23. Let $V=\mathbb{C}^{n}$ with inner product given by (3.1). Let

$$
A \in M_{n}(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad \text { and } \quad V_{\lambda}=\operatorname{ker}(\lambda-A) .
$$

If $A A^{*}=A^{*} A$ then
V_{λ} is A-invariant, $\quad V_{\lambda}^{\perp}$ is A-invariant, $\quad V_{\lambda}$ is A^{*}-invariant and V_{λ}^{\perp} is A^{*}-invariant.
Proof.
(a) Let $p \in V_{\lambda}$. Then $A p=\lambda p \in V_{\lambda}$. So V_{λ} is A invariant.
(b) Let $p \in V_{\lambda}$. Since $A\left(A^{*} p\right)=A^{*} A p=\lambda A^{*} p$ then $A^{*} p \in V_{\lambda}$. So V_{λ} is A^{*} invariant.
(c) Let $z \in V_{\lambda}^{\perp}$.

To show $A z_{\lambda} \in V_{\lambda}^{\perp}$.
To show: If $u \in V_{\lambda}$ then $\langle A z, u\rangle=0$.
Assume $u \in V_{\lambda}$.
To show: $\langle A z, u\rangle=0$.
By (b), $A^{*} u \in V_{\lambda}$, and so $\langle A z, u\rangle=\left\langle z, A^{*} u\right\rangle=0$.
So $A z \in V_{\lambda}^{\perp}$.
So V_{λ}^{\perp} is A-invariant.
(d) Let $z \in V_{\lambda}^{\perp}$.

To show: If $u \in V_{\lambda}$ then $\left\langle A^{*} z, u\right\rangle=0$.

$$
\left\langle A^{*} z, u\right\rangle=\langle z, A u\rangle=0, \quad \text { since } A u \in V_{\lambda} .
$$

So $A^{*} z \in V_{\lambda}^{\perp}$. So V_{λ}^{\perp} is A^{*}-invariant.

3.13.10 The Spectral theorem

Theorem 3.24. (Spectral theorem)
Let $n \in \mathbb{Z}_{>0}$ and $V=\mathbb{C}^{n}$ with inner product given by 3.1).
(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_{n}(\mathbb{C})$ such that $A A^{*}=A^{*} A$. Then there exists a unitary $U \in M_{n}(\mathbb{C})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

(b) Let $f: V \rightarrow V$ be a linear transformation such that $f f^{*}=f^{*} f$. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of V consisting of eigenvectors of f.

Proof. The two statements are equivalent via the relation between A and f given by

$$
\begin{aligned}
f: \quad V & \longrightarrow \\
v & \longmapsto A v .
\end{aligned}
$$

The proof is by induction on n.
The base case is when $\operatorname{dim}(V)=1$. In this case $A \in M_{1}(\mathbb{C})$ is diagonal.
The induction step:
For $\mu \in \mathbb{C}$ let $V_{\mu}=\operatorname{ker}(\mu-f)$, the μ-eigenspace of f.
Since \mathbb{C} is algebraically closed, there exists $\lambda \in \mathbb{C}$ which is a root of the characteristic polynomial $\operatorname{det}(x-A)$.
So there exists $\lambda \in \mathbb{C}$ such that $\operatorname{det}(\lambda-A)=0$.
So there exists $\lambda \in \mathbb{C}$ such that $V_{\lambda}=\operatorname{ker}(\lambda-A) \neq 0$.
Let $k=\operatorname{dim}\left(V_{\lambda}\right)$ and let $\left(p_{1}, \ldots, p_{k}\right)$ be a basis of V_{λ}.
Use Gram-Schmidt to convert $\left(p_{1}, \ldots, p_{k}\right)$ to an orthogonal basis $\left(u_{1}, \ldots, u_{k}\right)$ of V_{λ}.
By definition of V_{λ}, the basis vectors $\left(u_{1}, \ldots, u_{k}\right)$ are all eigenvectors of f (of eigenvalue λ.
By Theorem 3.20 (orthogonal decomposition) and Proposition 3.12 .

$$
V=V_{\lambda} \oplus\left(V_{\lambda}\right)^{\perp} \quad \text { and } V_{\lambda}^{\perp} \text { is } A \text {-invariant and } A^{*} \text {-invariant. }
$$

Let

$$
\begin{aligned}
f_{1}: \quad V_{\lambda}^{\perp} & \rightarrow V_{\lambda}^{\perp} \\
v & \mapsto A v
\end{aligned} \quad \text { and } \quad g_{1}: \quad V_{\lambda}^{\perp} \quad \rightarrow V_{\lambda}^{\perp}
$$

Then $g_{1}=f_{1}^{*}$ and $f_{1} f_{1}^{*}=f_{1}^{*} f_{1}$.
Thus, by induction, there exists an orthonormal basis $\left(u_{k+1}, \ldots, u_{n}\right)$ of V_{λ}^{\perp} consisting of eigenvectors of f_{1}.
By definition of f_{1}, eigenvectors of f_{1} are eigenvectors of f.
So ($u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}$) is an orthonormal basis of eigenvectors of f.

