7 Limits and continuity: Review from Calculus 2

7.1 Limits

The *tolerance set* is

$$\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}.$$

Let (X, d) be a metric space and let $f: X \to \mathbb{R}$. Let $a \in X$ and $\ell \in \mathbb{R}$.

$$\lim_{x \to a} f(x) = \ell \qquad \text{means}$$

 $\text{if } \varepsilon \in \mathbb{E} \text{ then there exists } \delta \in \mathbb{E} \text{ such that} \quad \text{ if } d(x,a) < \delta \text{ then } d(f(x),\ell) < \varepsilon.$

Here is a translation into the language of "English":

In English The client has a machine f that produces steel rods of length ℓ for sales.	In Math Let $f: X \to \mathbb{R}$ and let $\ell \in \mathbb{R}$
The output of f gets closer and closer to ℓ as the input gets closer and closer to a means	$\lim_{x \to a} f(x) = \ell \text{ means}$
if you give me a tolerance the client needs, in other words, the number of decimal places of accuracy the client requires	$\text{if }\varepsilon\in\mathbb{E}$
then my business will tell you	then there exists
the accuracy you need on the dials of the machine so that	$\delta \in \mathbb{E}$ such that
if the dials are set within δ of a	if $d(x, a) < \delta$
then the output of the machine will be within ε of ℓ .	then $d(f(x), \ell) < \epsilon$.

Let (X, d) be a metric space and let a_1, a_2, \ldots be a sequence in X. Let $\ell \in \mathbb{R}$.

$$\lim_{n \to \infty} a_n = \ell \qquad \text{means}$$

 $\text{if } \varepsilon \in \mathbb{E} \text{ then there exists } N \in \mathbb{Z}_{>0} \text{ such that} \quad \text{ if } n \in \mathbb{Z}_{\geq N} \text{ then } d(a_n, \ell) < \varepsilon.$

7.2 Continuity

Let $p \in \mathbb{R}^m$. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at p if

$$\lim_{x \to p} f(x) = f(p)$$

7.3 Limits and continuity results

7.3.1 x^n and e^x are continuous

Proposition 7.1.

(a) Let $n \in \mathbb{Z}_{>0}$. The function $f : \mathbb{C} \to \mathbb{C}$ given by $f(x) = x^n$ is continuous.

(b) The function $f: \mathbb{C} \to \mathbb{C}$ given by $f(x) = e^x$ is continuous.

7.3.2 Behavior of x^n as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$\lim_{n \to \infty} x^n = \begin{cases} 0, & \text{if } |x| < 1, \\ \text{diverges in } \mathbb{C}, & \text{if } |x| > 1, \\ 1, & \text{if } x = 1, \\ \text{diverges in } \mathbb{C}, & \text{if } |x| = 1 \text{ and } x \neq 1. \end{cases}$$

7.3.3 Behavior of $1 + x + x^2 + \cdots + x^n$ as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$\lim_{n \to \infty} (1 + x + x^2 + \dots + x^n) = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \begin{cases} \frac{1}{1 - x}, & \text{if } |x| < 1, \\ \text{diverges in } \mathbb{C}, & \text{if } |x| \ge 1. \end{cases}$$

For example, if $x = \frac{1}{2}$ then

$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n \right) = \lim_{n \to \infty} \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = \frac{1}{1 - \frac{1}{2}} = 2.$$

7.3.4 Favorite limits

Proposition 7.2. (a) If $n \in \mathbb{Z}_{>0}$ then, in \mathbb{R} , $\lim_{x \to \infty} x^n e^{-x} = 0$.

(b) If $\alpha \in \mathbb{R}_{>0}$ then $\lim_{x \to \infty} x^{-\alpha} \log x = 0$. (c) Let $p \in \mathbb{R}_{>0}$. Then $\lim_{n \to \infty} \frac{1}{n^p} = 0$. (d) Let $p \in \mathbb{R}_{>0}$. Then $\lim_{n \to \infty} p^{1/n} = 0$.

(e)
$$\lim_{n \to \infty} n^{1/n} = 1.$$

7.4 Limits and continuity proofs

7.4.1 x^n and e^x are continuous

Proposition 7.3.

(a) Let n ∈ Z_{>0}. The function f: C → C given by f(x) = xⁿ is continuous.
(b) The function f: C → C given by f(x) = e^x is continuous.

Proof. Assume $n \in \mathbb{Z}_{>0}$. To show: If $a \in \mathbb{C}$ then $\lim_{x \to a} x^n = a^n$. Assume $a \in \mathbb{C}$. To show $\lim x^n = a^n$. Using Theorem 7.6 To show: $\lim_{x \to a} (y + a)^n = a^n$. Using Theorem 7.5(a)To show: $\lim_{x \to 0} |(\overline{y+a})^n - a^n| = 0.$ $\lim_{y \to 0} |(y+a)^n - a^n| = \lim_{y \to 0} |y^n + ny^{n-1}a + \dots + na^{n-1}y + a^n - a^n|$ $= \lim_{y \to 0} |y^{n} + ny^{n-1}a + \dots + na^{n-1}y|$ $= \lim_{y \to 0} |y(y^{n-1} + ny^{n-2}a + \dots + na^{n-1})|$ $= \lim_{y \to 0} |y| |(y^{n-1} + ny^{n-2}a + \dots + na^{n-1})|$ $\leq \lim_{y \to 0} |y| \left(|y|^{n-1} + n|y|^{n-2}|a| + \dots + n|a|^{n-1} \right)$ (triangle inequality for | |) $\leq \lim_{y \to 0} |y| \cdot n |a|^{n-1}$ (by using Theorem 7.7(b)) $= 0 \cdot n |a|^{n-1} = 0.$ (by using Theorem 7.5(b)) = 0.

So $f(x) = x^n$ is continuous at a.

(An alternative proof (sketch) is that

(1) f(x) = x (the identity function) is continuous,

(2) the product is continuous (since \mathbb{C} is a topological field),

and therefore, by induction, if $a \in \mathbb{C}$ then $\lim_{x \to a} x^n = a^n$.) (b) To show: If $a \in \mathbb{C}$ then $\lim_{x \to a} e^x = e^a$. Assume $a \in \mathbb{C}$. To show: $\lim_{x \to a} e^x = e^a$. *Case 1:* a = 0. To show: $\lim_{x \to 0} e^x = e^0$. Using Theorem 7.5(a), To show $\lim_{x \to 0} |e^x - 1| = 0$.

$$\begin{split} \lim_{x \to 0} |e^x - 1| &= \lim_{x \to 0} \left| \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \right) - 1 \right| \\ &= \lim_{x \to 0} \left| x \left(1 + x + \frac{x}{2!} + \frac{x^2}{3!} + \cdots \right) \right| \\ &\leq \lim_{x \to 0} |x| \left(1 + |x| + \frac{|x|}{2!} + \frac{|x|^2}{3!} + \cdots \right) \\ &\leq \lim_{x \to 0} |x| \left(1 + |x| + |x| + |x|^2 + \cdots \right) \\ &= \lim_{x \to 0} |x| \frac{1}{1 - |x|} = 0 \cdot 1 \\ &= 0. \end{split}$$
 (by Theorem 7.5(b))

Case 2:
$$a \neq 0$$
. To show $\lim_{x \to a} e^x = e^a$.

$$\lim_{x \to a} e^x = \lim_{y \to 0} e^{y+a}$$
 (by Theorem 7.6)
$$= \lim_{y \to 0} e^a e^y = e^a \lim_{y \to 0} e^y$$
 (by Theorem 7.5(b))
$$= e^a \cdot e^0$$
 (by Case 1)
$$= e^{a+0} = e^a.$$

So e^x is continuous at x = a.

7.4.2 Behavior of x^n as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

 $\lim_{n \to \infty} x^n = \begin{cases} 0, & \text{if } |x| < 1, \\ \text{diverges in } \mathbb{C}, & \text{if } |x| > 1, \\ 1, & \text{if } x = 1, \\ \text{diverges in } \mathbb{C}, & \text{if } |x| = 1 \text{ and } x \neq 1. \end{cases}$

Proof. Let $x \in \mathbb{C}$. Case |x| < 1. To show: $\lim_{n \to \infty} x^n = 0$. Let $N \in \mathbb{Z}_{>0}$ such that $|x| < 1 - \frac{1}{N+1}$. Then

$$\lim_{n \to \infty} |x^n - 0| = \lim_{n \to \infty} |x|^n \le \lim_{n \to \infty} \left(1 - \frac{1}{N+1}\right)^n$$
$$= \lim_{n \to \infty} \left(\frac{N+1-1}{N+1}\right)^n = \lim_{n \to \infty} \left(\frac{N}{N+1}\right)^n = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{N}\right)^n}$$
$$= \lim_{n \to \infty} \frac{1}{1+n\frac{1}{N}+\dots+\left(\frac{1}{N}\right)^n}$$
$$\le \lim_{n \to \infty} \frac{1}{1+\frac{n}{N}} = \lim_{n \to \infty} \frac{N}{n+N} = N \cdot \lim_{n \to \infty} \frac{1}{n+N} = N \cdot 0 = 0$$

Case |x| > 1. To show: $\lim_{n \to \infty} x^n$ diverges in \mathbb{C} .

Let $N \in \mathbb{Z}_{>0}$ such that $|x| > 1 - \frac{1}{N}$. Then

$$|x|^n > \left(1 + \frac{1}{N}\right)^n = 1 + n\left(\frac{1}{N}\right) + \dots \left(\frac{1}{N}\right)^n > \left(\frac{1}{N}\right)n$$

Since $\left(\frac{1}{N}\right)n$ is unbounded as n gets larger and larger then $|x|^n$ is unbounded as $n \to \infty$. So $\lim_{n\to\infty} x^n$ diverges in \mathbb{C} .

Case x = 1. In this case $(x, x^2, x^3, x^4, ...) = (1, 1^2, 1^3, 1^4, ...) = (1, 1, 1, 1, ...)$. So $\lim_{n \to \infty} x^n = \lim_{n \to \infty} 1^n = \lim_{n \to \infty} 1 = 1$.

Case |x| = 1 and $x \neq 1$. Then $x = e^{i\theta}$ with $\theta \in \mathbb{R}_{(0,2\pi)}$. FINISH THE PROOF to show that this case diverges in \mathbb{C} .

7.4.3 Behavior of $1 + x + x^2 + \cdots + x^n$ as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$\lim_{n \to \infty} (1 + x + x^2 + \dots + x^n) = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \begin{cases} \frac{1}{1 - x}, & \text{if } |x| < 1, \\ \text{diverges in } \mathbb{C}, & \text{if } |x| \ge 1. \end{cases}$$

For example, if $x = \frac{1}{2}$ then

$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots + \left(\frac{1}{2}\right)^n \right) = \lim_{n \to \infty} \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = \frac{1}{1 - \frac{1}{2}} = 2.$$

7.4.4 Favorite limits

Proposition 7.4. (a) If $n \in \mathbb{Z}_{>0}$ then, in \mathbb{R} , $\lim_{x \to \infty} x^n e^{-x} = 0$.

(b) If $\alpha \in \mathbb{R}_{>0}$ then $\lim_{x \to \infty} x^{-\alpha} \log x = 0$. (c) Let $p \in \mathbb{R}_{>0}$. Then $\lim_{n \to \infty} \frac{1}{n^p} = 0$. (d) Let $p \in \mathbb{R}_{>0}$. Then $\lim_{n \to \infty} p^{1/n} = 0$. (e) $\lim_{n \to \infty} n^{1/n} = 1$.

Proof sketches. (a) Let $n \in \mathbb{Z}_{>0}$. Then, in \mathbb{R} ,

$$0 \le \lim_{x \to \infty} x^n e^{-x} = \lim_{x \to \infty} \frac{x^n}{e^x} \le \lim_{x \to \infty} \frac{x^n}{\frac{1}{(n+1)!} x^{n+1}} = \lim_{x \to \infty} \frac{(n+1)!}{x} = (n+1)! \lim_{x \to \infty} \frac{1}{x} = 0.$$

(b) Let $\alpha \in \mathbb{R}_{>0}$ and let $\epsilon \in \mathbb{E}$ with $\varepsilon < \alpha$. Then

$$0 \leq \lim_{x \to \infty} x^{-\alpha} \log x = \lim_{x \to \infty} \left(x^{-\alpha} \int_{1}^{x} \frac{1}{t} dt \right)$$
$$\leq \lim_{x \to \infty} \left(x^{-\alpha} \int_{1}^{x} t^{\varepsilon - 1} dt \right) = \lim_{x \to \infty} x^{-\alpha} \left(\frac{x^{\varepsilon} - 1^{\varepsilon}}{\varepsilon} \right)$$
$$= \lim_{x \to \infty} \left(\frac{x^{\varepsilon - \alpha} - x^{-\alpha}}{\varepsilon} \right) \leq \lim_{x \to \infty} \frac{x^{\varepsilon - \alpha}}{\varepsilon} = 0.$$

(c) To show: If $\varepsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{>N}$ then $\left|\frac{1}{n^p}\right| < \varepsilon$. Assume $\varepsilon \in \mathbb{R}_{>0}$.

Let N be an integer greater than $\left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}}$. To show: If $n \in \mathbb{Z}_{>N}$ then $\left|\frac{1}{n^{p}}\right| < \varepsilon$. Assume $n \in \mathbb{Z}_{>N}$. To show: $\left|\frac{1}{n^{p}}\right| < \varepsilon$. $\left|\frac{1}{n^{p}}\right| \leq \left|\frac{1}{N^{p}}\right| = \frac{1}{\left(\left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}}\right)^{p}} = \frac{1}{\left(\frac{1}{\varepsilon}\right)} = \varepsilon$.

(d)

$$\lim_{n \to \infty} p^{1/n} = \lim_{n \to \infty} (e^{\log p})^{1/n} = \lim_{n \to \infty} e^{\frac{1}{n} \log p} = e^{\log p \lim_{n \to \infty} \frac{1}{n}} = e^{\log p \cdot 0} = e^{0} = 1.$$

(e) To show: $\lim_{n \to \infty} n^{1/n} = 1$. To show: $\lim_{n \to \infty} \left(n^{1/n} - 1 \right) = 0$. We know:

$$n = (n^{1/n})^n = \left((n^{1/n} - 1) + 1 \right)^n$$

= 1 + n(n^{1/n} - 1) + $\frac{n(n-1)}{2} (n^{1/n} - 1)^2 + \dots \ge \frac{n(n-1)}{2} (n^{1/n} - 1)^2.$

So $(n^{1/n} - 1)^2 \leq \frac{2}{n-1}$. So $0 \leq \lim_{n \to \infty} (n^{1/n} - 1)^2 \leq \lim_{n \to \infty} \frac{2}{n-1} = 0$. So $\lim_{n \to \infty} (n^{1/n} - 1) = 0$.

7.4.5 The interest sequence

7.4.6 Picard iteration

7.5 Limits and addition, scalar multiplication, multiplication, composition and order

The tolerance set is

$$\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}$$

Let (X, d) be a metric space and let $f: X \to \mathbb{R}$. Let $a \in X$ and $\ell \in \mathbb{R}$.

$$\lim_{x \to a} f(x) = \ell \qquad \text{means}$$

if $\varepsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $d(x, a) < \delta$ then $d(f(x), \ell) < \varepsilon$.

Let (X, d) be a metric space and let a_1, a_2, \ldots be a sequence in X. Let $\ell \in \mathbb{R}$.

$$\lim_{n \to \infty} a_n = \ell \qquad \text{means}$$

if $\varepsilon \in \mathbb{E}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{>N}$ then $d(a_n, \ell) < \varepsilon$.

Theorem 7.5. Let (X,d) be a metric space. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions and let $a \in X$.

Assume that
$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$ exist.

Then

(a)
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$$

(b) If
$$c \in \mathbb{R}$$
 then $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$,

(c)
$$\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$$

Theorem 7.6. Let (X, d) and (Y, ρ) and (Z, σ) be metric spaces. Let $f: X \to Z$ and $g: X \to Y$ be functions and let $a \in X$ and $\ell \in Y$.

Assume that
$$\lim_{x \to a} g(x)$$
 and $\lim_{x \to a} f(g(x))$ exist and $\lim_{x \to a} g(x) = \ell$.

Then

$$\lim_{y \to \ell} f(y) = \lim_{x \to a} f(g(x)).$$

Theorem 7.7.

(a) Let (a_1, a_2, \ldots) and (b_1, b_2, \ldots) be sequences in \mathbb{R} . Assume that $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist and

if
$$n \in \mathbb{Z}_{>0}$$
 then $a_n \leq b_n$. Then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$

(b) Let (X, d) be a metric space and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions. Let $a \in X$. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist and

$$\label{eq:gamma} \textit{if } x \in X \textit{ then } f(x) \leq g(x). \qquad \textit{Then} \qquad \lim_{x \to a} f(x) \leq \lim_{x \to a} g(x).$$

7.6 Limits and operations proofs

Theorem 7.8. (Limits and addition, scalar multiplication and multiplication) Let (X, d) be a metric space. Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions and let $a \in X$.

Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist.

Then

(a) $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$

$$(b) \ \ \text{If} \ c \in \mathbb{R} \ \ then \ \lim_{x \to a} cf(x) = c \lim_{x \to a} f(x),$$

(c)
$$\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$$

Proof.

(a) Let $l_1 = \lim_{x \to a} f(x)$ and $l_2 = \lim_{x \to a} g(x)$. To show: $\lim_{x \to a} (f(x) + g(x)) = l_1 + l_2$.

> To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in B_{\delta}(a)$ then $|(f(x)+g(x))-(l_1+l_2)| < \epsilon$. Assume $\epsilon \in \mathbb{E}$.

We know: There exists $\delta_1 \in \mathbb{E}$ such that if $x \in B_{\delta_1}(a)$ then $|f(x) - l_1| < \frac{\epsilon}{2}$. We know: There exists $\delta_2 \in \mathbb{E}$ such that if $x \in B_{\delta_2}(a)$ then $|f(x) - l_2| < \frac{\epsilon}{2}$. Let $\delta = \min(\delta_1, \delta_2)$.

To show: $|(f(x) + g(x)) - (l_1 + l_2)| < \epsilon$.

$$|(f(x) + g(x)) - (l_1 + l_2)| = |(f(x) - l_1) + (g(x) - l_2)|$$

$$\leq |f(x) - l_1| + |g(x) - l_2|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

So $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$

(b) Let $l = \lim_{x \to a} f(x)$. To show: $\lim_{x \to a} cf(x)$

To show: $\lim_{x \to a} cf(x) = cl$.

To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $d(x, a) < \delta$ then $d(cf(x), cl) < \epsilon$. Assume $\epsilon \in \mathbb{E}$.

We know: There exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $d(x, a) < \delta$ then $d(f(x), l) < \frac{\epsilon}{|c|}$. To show: If $x \in X$ and $d(x, a) < \delta$ then $d(cf(x), cl) < \epsilon$. Assume $x \in X$ and $d(x, a) < \delta$. To show: $d(cf(x), cl) < \epsilon$.

$$d(cf(x),cl) = |cf(x) - cl| = |c| \cdot |f(x) - l| < |c| \cdot \frac{\epsilon}{|c|} = \epsilon.$$

So $\lim_{x \to a} cf(x) = cl$.

(c) Let $l_1 = \lim_{x \to a} f(x)$ and $l_2 = \lim_{x \to a} g(x)$.

To show: $\lim_{x \to a} (f(x)g(x)) = l_1 l_2.$ To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $x \in B_{\delta}(a)$ then $|f(x)g(x)-l_1l_2| < 1$ $\epsilon.$

Assume $\epsilon \in \mathbb{E}$. Let $\epsilon_1 = \min\left(\frac{\epsilon}{|\ell_1| + |\ell_2| + 1}, 1\right).$ Since $\lim_{x \to a} f(x) = l_1$, there exists $\delta_1 \in \mathbb{E}$ such that if $x \in X$ and $d(x, a) < \delta_1$ then $|f(x) - l_1| < \epsilon_1$. Since $\lim_{x \to a} f(x) = l_2$, there exists $\delta_2 \in \mathbb{E}$ such that if $x \in X$ and $d(x, a) < \delta_2$ then $|f(x) - l_2| < \epsilon_1$. Let $\delta = \min(\delta_1, \delta_2)$. Assume $x \in X$ and $d(x, a) < \delta$. To show: $|f(x)g(x) - l_1l_2| < \epsilon$.

$$\begin{split} |f(x)g(x) - l_1l_2| &= |(f(x) - l_1)g(x) + l_1(g(x) - l_2)| \\ &\leq |(f(x) - l_1)g(x)| + |l_1(g(x) - l_2)|, \quad \text{by the triangle inequality,} \\ &= |(f(x) - l_1)(g(x) - l_2) + (f(x) - l_1)l_2| + |l_1| |g(x) - l_2| \\ &\leq |f(x) - l_1)(g(x) - l_2)| + |f(x) - l_1)l_2| + |l_1| |g(x) - l_2| \\ &\leq |f(x) - l_1| |g(x) - l_2| + |f(x) - l_1| |l_2| + |l_1| |g(x) - l_2| \\ &\leq \epsilon_1^2 + \epsilon_1 |l_2| + |l_1|\epsilon_1 = \epsilon_1(|l_1| + |l_2| + \epsilon_1) \\ &\leq \epsilon_1(|l_1| + |l_2| + 1) \leq \epsilon. \end{split}$$

So $\lim_{x \to a} (f(x)g(x)) = l_1 l_2$.

Theorem 7.9. (Limits and composition of functions)

Let (X, d) and (Y, ρ) and (Z, σ) be metric spaces. Let $f: Y \to Z$ and $g: X \to Y$ be functions and let $a \in X$ and $\ell \in Y$.

Assume that
$$\lim_{x \to a} g(x)$$
 and $\lim_{x \to a} f(g(x))$ exist and $\lim_{x \to a} g(x) = \ell$.

Then

$$\lim_{y \to \ell} f(y) = \lim_{x \to a} f(g(x))$$

Proof.

Let $L = \lim_{y \to \ell} f(y)$. To show: $\lim_{x \to a} f(g(x)) = L$.

To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $\delta \in \mathbb{R}_{>0}$ such that if $x \in X$ and $d(x, a) < \delta$ then $\sigma(f(g(x), L) < \epsilon.$

Assume $\epsilon \in \mathbb{R}_{>0}$.

To show: There exists $\delta \in \mathbb{R}_{>0}$ such that if $x \in X$ and $d(x, a) < \delta$ then $\sigma(f(g(x)), L) < \epsilon$. Since $\lim_{y\to\ell} f(y) = L$, there exists $\delta_1 \in \mathbb{R}_{>0}$ such that if $y \in Y$ and $\rho(y, \ell) < \delta_1$ then $\sigma(f(y), L) < \epsilon$. Since $\lim_{x \to a} g(x) = \ell$, there exists $\delta \in \mathbb{R}_{>0}$ such that if $x \in X$ and $d(x, a) < \delta$ then $\rho(g(x), \ell) < \delta_1$. To show: If $x \in X$ and $d(x, a) < \delta$ then $\sigma(f(g(x)), L) < \epsilon$. Assume $x \in X$ and $d(x, a) < \delta$.

To show: $\sigma(f(g(x)), L) < \epsilon$. Since $d(x, a) < \delta$ then $\rho(g(x)), \ell) < \delta_1$ and so $\sigma(f(g(x)), L) < \epsilon$. So $\lim_{x \to a} f(g(x)) = L$.

Theorem 7.10. (Limits and order)

(a) Let $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ be sequences in \mathbb{R} . Assume that $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist and

if
$$n \in \mathbb{Z}_{>0}$$
 then $a_n \leq b_n$. Then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

(b) Let (X, d) be a metric space and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions. Let $a \in X$. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist and

if
$$x \in X$$
 then $f(x) \le g(x)$. Then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.

Proof.

(a) Let $\ell_1 = \lim_{n \to \infty} a_n$ and $\ell_2 = \lim_{n \to \infty} b_n$. To show: $\ell_1 \leq \ell_2$. Proof by contradiction. Assume $\ell_1 > \ell_2$. Let $\epsilon = \ell_1 - \ell_2$. Let $N_1 \in \mathbb{Z}_{>0}$ be such that if $n \in \mathbb{Z}_{>0}$ and $n > N_1$ then $|a_n - \ell_1| < \frac{\epsilon}{2}$. Let $N_2 \in \mathbb{Z}_{>0}$ be such that if $n \in \mathbb{Z}_{>0}$ and $n > N_2$ then $|b_n - \ell_2| < \frac{\epsilon}{2}$. Let $N = \max(N_1, N_2)$. Then $a_N > \ell_1 - \frac{\epsilon}{2} = \ell_1 - \ell_2 + \ell_2 - \frac{\epsilon}{2} = \epsilon + \ell_2 - \frac{\epsilon}{2} = \ell_2 + \frac{\epsilon}{2} > b_N.$ This is a contradiction to $a_N \leq b_N$. Thus $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$. (b) Let $\ell_1 = \lim_{x \to a} f(x)$ and $\ell_2 = \lim_{x \to a} g(x)$. To show: $\ell_1 \leq \ell_2$. Proof by contradiction. Assume $\ell_1 > \ell_2$. Let $\epsilon = \ell_1 - \ell_2$. Let $\delta_1 \in \mathbb{R}_{>0}$ be such that if $x \in X$ and $d(x, a) < \delta_1$ then $|f(x) - \ell_1| < \frac{\epsilon}{2}$. Let $\delta_2 \in \mathbb{R}_{>0}$ be such that if $x \in X$ and $d(x, a) < \delta_2$ then $|g(x) - \ell_2| < \frac{\epsilon}{2}$. Let $\delta = \min(\delta_1, \delta_2)$ and let $x \in X$ such that $d(x, a) < \delta$. Then $f(x) > \ell_1 - \frac{\epsilon}{2} = \ell_1 - \ell_2 + \ell_2 - \frac{\epsilon}{2} = \epsilon + \ell_2 - \frac{\epsilon}{2} = \ell_2 + \frac{\epsilon}{2} > g(x).$

This is a contradiction to $f(x) \le g(x)$. Thus $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.

	r	_	_	-	-
1					