7 Limits and continuity: Review from Calculus 2

7.1 Limits

The tolerance set is

$$
\mathbb{E}=\left\{10^{-1}, 10^{-2}, \ldots\right\} .
$$

Let (X, d) be a metric space and let $f: X \rightarrow \mathbb{R}$. Let $a \in X$ and $\ell \in \mathbb{R}$.

$$
\lim _{x \rightarrow a} f(x)=\ell \quad \text { means }
$$

if $\varepsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that \quad if $d(x, a)<\delta$ then $d(f(x), \ell)<\varepsilon$.
Here is a translation into the language of "English":

In English
The client has a machine f that produces steel rods of length ℓ for sales.

The output of f gets closer and closer to ℓ as the input gets closer and closer to a means
if you give me a tolerance the client needs, in other words,
the number of decimal places of accuracy
the client requires
then my business will tell you then there exists
the accuracy you need on the dials of the machine $\quad \delta \in \mathbb{E}$ such that so that
if the dials are set within δ of a
then the output of the machine will be within ε of ℓ.

In Math
Let $f: X \rightarrow \mathbb{R}$ and let $\ell \in \mathbb{R}$.
$\lim _{x \rightarrow a} f(x)=\ell$ means
if $\varepsilon \in \mathbb{E}$
if $d(x, a)<\delta$
then $d(f(x), \ell)<\epsilon$.

Let (X, d) be a metric space and let a_{1}, a_{2}, \ldots be a sequence in X. Let $\ell \in \mathbb{R}$.

$$
\lim _{n \rightarrow \infty} a_{n}=\ell \quad \text { means }
$$

if $\varepsilon \in \mathbb{E}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $d\left(a_{n}, \ell\right)<\varepsilon$.

7.2 Continuity

Let $p \in \mathbb{R}^{m}$. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at p if

$$
\lim _{x \rightarrow p} f(x)=f(p)
$$

7.3 Limits and continuity results

7.3.1 x^{n} and e^{x} are continuous

Proposition 7.1.

(a) Let $n \in \mathbb{Z}_{>0}$. The function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(x)=x^{n}$ is continuous.
(b) The function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(x)=e^{x}$ is continuous.

7.3.2 Behavior of x^{n} as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$
\lim _{n \rightarrow \infty} x^{n}= \begin{cases}0, & \text { if }|x|<1 \\ \text { diverges in } \mathbb{C}, & \text { if }|x|>1 \\ 1, & \text { if } x=1, \\ \text { diverges in } \mathbb{C}, & \text { if }|x|=1 \text { and } x \neq 1\end{cases}
$$

7.3.3 Behavior of $1+x+x^{2}+\cdots+x^{n}$ as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$
\lim _{n \rightarrow \infty}\left(1+x+x^{2}+\cdots+x^{n}\right)=\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{1-x}= \begin{cases}\frac{1}{1-x}, & \text { if }|x|<1 \\ \text { diverges in } \mathbb{C}, & \text { if }|x| \geq 1\end{cases}
$$

For example, if $x=\frac{1}{2}$ then

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots+\left(\frac{1}{2}\right)^{n}\right)=\lim _{n \rightarrow \infty} \frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}=\frac{1}{1-\frac{1}{2}}=2
$$

7.3.4 Favorite limits

Proposition 7.2. (a) If $n \in \mathbb{Z}_{>0}$ then, in $\mathbb{R}, \lim _{x \rightarrow \infty} x^{n} e^{-x}=0$.
(b) If $\alpha \in \mathbb{R}_{>0}$ then $\lim _{x \rightarrow \infty} x^{-\alpha} \log x=0$.
(c) Let $p \in \mathbb{R}_{>0}$. Then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$.
(d) Let $p \in \mathbb{R}_{>0}$. Then $\lim _{n \rightarrow \infty} p^{1 / n}=0$.
(e) $\lim _{n \rightarrow \infty} n^{1 / n}=1$.

7.4 Limits and continuity proofs

7.4.1 x^{n} and e^{x} are continuous

Proposition 7.3.

(a) Let $n \in \mathbb{Z}_{>0}$. The function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(x)=x^{n}$ is continuous.
(b) The function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(x)=e^{x}$ is continuous.

Proof. Assume $n \in \mathbb{Z}_{>0}$.
To show: If $a \in \mathbb{C}$ then $\lim _{x \rightarrow a} x^{n}=a^{n}$.
Assume $a \in \mathbb{C}$.
To show $\lim _{x \rightarrow a} x^{n}=a^{n}$.
Using Theorem 7.6
To show: $\lim _{y \rightarrow 0}(y+a)^{n}=a^{n}$.
Using Theorem 7.5 (a)
To show: $\lim _{y \rightarrow 0}\left|(y+a)^{n}-a^{n}\right|=0$.

$$
\begin{aligned}
\lim _{y \rightarrow 0}\left|(y+a)^{n}-a^{n}\right| & =\lim _{y \rightarrow 0}\left|y^{n}+n y^{n-1} a+\cdots+n a^{n-1} y+a^{n}-a^{n}\right| & & \\
& =\lim _{y \rightarrow 0}\left|y^{n}+n y^{n-1} a+\cdots+n a^{n-1} y\right| & & \\
& =\lim _{y \rightarrow 0}\left|y\left(y^{n-1}+n y^{n-2} a+\cdots+n a^{n-1}\right)\right| & & \\
& =\lim _{y \rightarrow 0}|y|\left|\left(y^{n-1}+n y^{n-2} a+\cdots+n a^{n-1}\right)\right| & & \\
& \leq \lim _{y \rightarrow 0}|y|\left(|y|^{n-1}+n|y|^{n-2}|a|+\cdots+n|a|^{n-1}\right) & & \text { (triangle inequality for }|\mid) \\
& \leq \lim _{y \rightarrow 0}|y| \cdot n|a|^{n-1} & & \text { (by using Theorem } 7.7(\mathrm{~b}) \text {) } \\
& =0 \cdot n|a|^{n-1}=0 . & & \text { (by using Theorem } 7.5(\mathrm{~b}) \text {) } \\
& =0 . & &
\end{aligned}
$$

So $f(x)=x^{n}$ is continuous at a.
(An alternative proof (sketch) is that
(1) $f(x)=x$ (the identity function) is continuous,
(2) the product is continuous (since \mathbb{C} is a topological field),
and therefore, by induction, if $a \in \mathbb{C}$ then $\lim _{x \rightarrow a} x^{n}=a^{n}$.)
(b) To show: If $a \in \mathbb{C}$ then $\lim _{x \rightarrow a} e^{x}=e^{a}$.

Assume $a \in \mathbb{C}$.
To show: $\lim _{x \rightarrow a} e^{x}=e^{a}$.
Case 1: $a=0$. To show: $\lim _{x \rightarrow 0} e^{x}=e^{0}$.
Using Theorem 7.5 (a), To show $\lim _{x \rightarrow 0}\left|e^{x}-1\right|=0$.

$$
\begin{array}{rlr}
\lim _{x \rightarrow 0}\left|e^{x}-1\right| & =\lim _{x \rightarrow 0}\left|\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)-1\right| \\
& =\lim _{x \rightarrow 0}\left|x\left(1+x+\frac{x}{2!}+\frac{x^{2}}{3!}+\cdots\right)\right| \\
& \leq \lim _{x \rightarrow 0}|x|\left(1+|x|+\frac{|x|}{2!}+\frac{|x|^{2}}{3!}+\cdots\right) & \text { (triangle inequality for | |) } \\
& \leq \lim _{x \rightarrow 0}|x|\left(1+|x|+|x|+|x|^{2}+\cdots\right) & \text { (by Theorem 7.7) } \\
& =\lim _{x \rightarrow 0}|x| \frac{1}{1-|x|}=0 \cdot 1 & \text { (by Theorem 7.5(b)) } \\
& =0 . &
\end{array}
$$

Case 2: $a \neq 0$. To show $\lim _{x \rightarrow a} e^{x}=e^{a}$.

$$
\begin{array}{rlr}
\lim _{x \rightarrow a} e^{x} & =\lim _{y \rightarrow 0} e^{y+a} & \text { (by Theorem 7.6) } \\
& =\lim _{y \rightarrow 0} e^{a} e^{y}=e^{a} \lim _{y \rightarrow 0} e^{y} & \text { (by Theorem 7.5(b)) } \\
& =e^{a} \cdot e^{0} & \text { (by Case 1) } \\
& =e^{a+0}=e^{a} . &
\end{array}
$$

So e^{x} is continuous at $x=a$.

7.4.2 Behavior of x^{n} as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$
\lim _{n \rightarrow \infty} x^{n}= \begin{cases}0, & \text { if }|x|<1 \\ \text { diverges in } \mathbb{C}, & \text { if }|x|>1 \\ 1, & \text { if } x=1, \\ \text { diverges in } \mathbb{C}, & \text { if }|x|=1 \text { and } x \neq 1\end{cases}
$$

Proof. Let $x \in \mathbb{C}$.
Case $|x|<1$. To show: $\lim _{n \rightarrow \infty} x^{n}=0$.
Let $N \in \mathbb{Z}_{>0}$ such that $|x|<1-\frac{1}{N+1}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|x^{n}-0\right| & =\lim _{n \rightarrow \infty}|x|^{n} \leq \lim _{n \rightarrow \infty}\left(1-\frac{1}{N+1}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{N+1-1}{N+1}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{N}{N+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{N}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1+n \frac{1}{N}+\cdots+\left(\frac{1}{N}\right)^{n}} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{1+\frac{n}{N}}=\lim _{n \rightarrow \infty} \frac{N}{n+N}=N \cdot \lim _{n \rightarrow \infty} \frac{1}{n+N}=N \cdot 0=0 .
\end{aligned}
$$

Case $|x|>1$. To show: $\lim _{n \rightarrow \infty} x^{n}$ diverges in \mathbb{C}.

Let $N \in \mathbb{Z}_{>0}$ such that $|x|>1-\frac{1}{N}$. Then

$$
|x|^{n}>\left(1+\frac{1}{N}\right)^{n}=1+n\left(\frac{1}{N}\right)+\cdots\left(\frac{1}{N}\right)^{n}>\left(\frac{1}{N}\right) n
$$

Since $\left(\frac{1}{N}\right) n$ is unbounded as n gets larger and larger then $|x|^{n}$ is unbounded as $n \rightarrow \infty$.
So $\lim _{n \rightarrow \infty} x^{n}$ diverges in \mathbb{C}.
Case $x=1$. In this case $\left(x, x^{2}, x^{3}, x^{4}, \ldots\right)=\left(1,1^{2}, 1^{3}, 1^{4}, \ldots\right)=(1,1,1,1, \ldots)$.
So $\lim _{n \rightarrow \infty} x^{n}=\lim _{n \rightarrow \infty} 1^{n}=\lim _{n \rightarrow \infty} 1=1$.
Case $|x|=1$ and $x \neq 1$. Then $x=e^{i \theta}$ with $\theta \in \mathbb{R}_{(0,2 \pi)}$. FINISH THE PROOF to show that this case diverges in \mathbb{C}.

7.4.3 Behavior of $1+x+x^{2}+\cdots+x^{n}$ as $n \in \mathbb{Z}_{>0}$ gets large

HW: Let $x \in \mathbb{C}$. Show that

$$
\lim _{n \rightarrow \infty}\left(1+x+x^{2}+\cdots+x^{n}\right)=\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{1-x}= \begin{cases}\frac{1}{1-x}, & \text { if }|x|<1 \\ \text { diverges in } \mathbb{C}, & \text { if }|x| \geq 1\end{cases}
$$

For example, if $x=\frac{1}{2}$ then

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots+\left(\frac{1}{2}\right)^{n}\right)=\lim _{n \rightarrow \infty} \frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}=\frac{1}{1-\frac{1}{2}}=2
$$

7.4.4 Favorite limits

Proposition 7.4. (a) If $n \in \mathbb{Z}_{>0}$ then, in \mathbb{R}, $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$.
(b) If $\alpha \in \mathbb{R}_{>0}$ then $\lim _{x \rightarrow \infty} x^{-\alpha} \log x=0$.
(c) Let $p \in \mathbb{R}_{>0}$. Then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$.
(d) Let $p \in \mathbb{R}_{>0}$. Then $\lim _{n \rightarrow \infty} p^{1 / n}=0$.
(e) $\lim _{n \rightarrow \infty} n^{1 / n}=1$.

Proof sketches. (a) Let $n \in \mathbb{Z}_{>0}$. Then, in \mathbb{R},

$$
0 \leq \lim _{x \rightarrow \infty} x^{n} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}} \leq \lim _{x \rightarrow \infty} \frac{x^{n}}{\frac{1}{(n+1)!} x^{n+1}}=\lim _{x \rightarrow \infty} \frac{(n+1)!}{x}=(n+1)!\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

(b) Let $\alpha \in \mathbb{R}_{>0}$ and let $\epsilon \in \mathbb{E}$ with $\varepsilon<\alpha$. Then

$$
\begin{aligned}
0 & \leq \lim _{x \rightarrow \infty} x^{-\alpha} \log x=\lim _{x \rightarrow \infty}\left(x^{-\alpha} \int_{1}^{x} \frac{1}{t} d t\right) \\
& \leq \lim _{x \rightarrow \infty}\left(x^{-\alpha} \int_{1}^{x} t^{\varepsilon-1} d t\right)=\lim _{x \rightarrow \infty} x^{-\alpha}\left(\frac{x^{\varepsilon}-1^{\varepsilon}}{\varepsilon}\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{x^{\varepsilon-\alpha}-x^{-\alpha}}{\varepsilon}\right) \leq \lim _{x \rightarrow \infty} \frac{x^{\varepsilon-\alpha}}{\varepsilon}=0
\end{aligned}
$$

(c) To show: If $\varepsilon \in \mathbb{R}_{>0}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{>N}$ then $\left|\frac{1}{n^{p}}\right|<\varepsilon$.

Assume $\varepsilon \in \mathbb{R}_{>0}$.
Let N be an integer greater than $\left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}}$.
To show: If $n \in \mathbb{Z}_{>N}$ then $\left|\frac{1}{n^{p}}\right|<\varepsilon$.
Assume $n \in \mathbb{Z}_{>N}$.
To show: $\left|\frac{1}{n^{p}}\right|<\varepsilon$.

$$
\left|\frac{1}{n^{p}}\right| \leq\left|\frac{1}{N^{p}}\right|=\frac{1}{\left(\left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}}\right)^{p}}=\frac{1}{\left(\frac{1}{\varepsilon}\right)}=\varepsilon
$$

(d)

$$
\lim _{n \rightarrow \infty} p^{1 / n}=\lim _{n \rightarrow \infty}\left(e^{\log p}\right)^{1 / n}=\lim _{n \rightarrow \infty} e^{\frac{1}{n} \log p}=e^{\log p \lim _{n \rightarrow \infty} \frac{1}{n}}=e^{\log p \cdot 0}=e^{0}=1
$$

(e) To show: $\lim _{n \rightarrow \infty} n^{1 / n}=1$.

To show: $\lim _{n \rightarrow \infty}\left(n^{1 / n}-1\right)=0$.
We know:

$$
\begin{aligned}
n & =\left(n^{1 / n}\right)^{n}=\left(\left(n^{1 / n}-1\right)+1\right)^{n} \\
& =1+n\left(n^{1 / n}-1\right)+\frac{n(n-1)}{2}\left(n^{1 / n}-1\right)^{2}+\cdots \geq \frac{n(n-1)}{2}\left(n^{1 / n}-1\right)^{2}
\end{aligned}
$$

So $\left(n^{1 / n}-1\right)^{2} \leq \frac{2}{n-1}$.
So $0 \leq \lim _{n \rightarrow \infty}\left(n^{1 / n}-1\right)^{2} \leq \lim _{n \rightarrow \infty} \frac{2}{n-1}=0$.
So $\lim _{n \rightarrow \infty}\left(n^{1 / n}-1\right)=0$.

7.4.5 The interest sequence

7.4.6 Picard iteration

7.5 Limits and addition, scalar multiplication, multiplication, composition and order

The tolerance set is

$$
\mathbb{E}=\left\{10^{-1}, 10^{-2}, \ldots\right\}
$$

Let (X, d) be a metric space and let $f: X \rightarrow \mathbb{R}$. Let $a \in X$ and $\ell \in \mathbb{R}$.

$$
\lim _{x \rightarrow a} f(x)=\ell \quad \text { means }
$$

if $\varepsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that \quad if $d(x, a)<\delta$ then $d(f(x), \ell)<\varepsilon$.

Let (X, d) be a metric space and let a_{1}, a_{2}, \ldots be a sequence in X. Let $\ell \in \mathbb{R}$.

$$
\lim _{n \rightarrow \infty} a_{n}=\ell \quad \text { means }
$$

if $\varepsilon \in \mathbb{E}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq N}$ then $d\left(a_{n}, \ell\right)<\varepsilon$.
Theorem 7.5. Let (X, d) be a metric space. Let $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ be functions and let $a \in X$.

$$
\text { Assume that } \quad \lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x) \quad \text { exist. }
$$

Then
(a) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$,
(b) If $c \in \mathbb{R}$ then $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$,
(c) $\lim _{x \rightarrow a}(f(x) g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$.

Theorem 7.6. Let (X, d) and (Y, ρ) and (Z, σ) be metric spaces. Let $f: X \rightarrow Z$ and $g: X \rightarrow Y$ be functions and let $a \in X$ and $\ell \in Y$.

$$
\text { Assume that } \quad \lim _{x \rightarrow a} g(x) \text { and } \lim _{x \rightarrow a} f(g(x)) \text { exist } \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=\ell
$$

Then

$$
\lim _{y \rightarrow \ell} f(y)=\lim _{x \rightarrow a} f(g(x))
$$

Theorem 7.7.

(a) Let $\left(a_{1}, a_{2}, \ldots\right)$ and $\left(b_{1}, b_{2}, \ldots\right)$ be sequences in \mathbb{R}.

Assume that $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist and

$$
\text { if } n \in \mathbb{Z}_{>0} \text { then } a_{n} \leq b_{n} . \quad \text { Then } \quad \lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}
$$

(b) Let (X, d) be a metric space and let $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ be functions. Let $a \in X$.

Assume that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist and

$$
\text { if } x \in X \text { then } f(x) \leq g(x) . \quad \text { Then } \quad \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

7.6 Limits and operations proofs

Theorem 7.8. (Limits and addition, scalar multiplication and multiplication) Let (X, d) be a metric space. Let $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ be functions and let $a \in X$.

$$
\text { Assume that } \quad \lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x) \quad \text { exist. }
$$

Then
(a) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$,
(b) If $c \in \mathbb{R}$ then $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$,
(c) $\lim _{x \rightarrow a}(f(x) g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$.

Proof.
(a) Let $l_{1}=\lim _{x \rightarrow a} f(x)$ and $l_{2}=\lim _{x \rightarrow a} g(x)$.

To show: $\lim _{x \rightarrow a}(f(x)+g(x))=l_{1}+l_{2}$.
To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in B_{\delta}(a)$ then $\left|(f(x)+g(x))-\left(l_{1}+l_{2}\right)\right|<\epsilon$.
Assume $\epsilon \in \mathbb{E}$.
We know: There exists $\delta_{1} \in \mathbb{E}$ such that if $x \in B_{\delta_{1}}(a)$ then $\left|f(x)-l_{1}\right|<\frac{\epsilon}{2}$.
We know: There exists $\delta_{2} \in \mathbb{E}$ such that if $x \in B_{\delta_{2}}(a)$ then $\left|f(x)-l_{2}\right|<\frac{\epsilon}{2}$.
Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$.
To show: $\left|(f(x)+g(x))-\left(l_{1}+l_{2}\right)\right|<\epsilon$.

$$
\begin{aligned}
\left|(f(x)+g(x))-\left(l_{1}+l_{2}\right)\right| & =\left|\left(f(x)-l_{1}\right)+\left(g(x)-l_{2}\right)\right| \\
& \leq\left|f(x)-l_{1}\right|+\left|g(x)-l_{2}\right| \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

So $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.
(b) Let $l=\lim _{x \rightarrow a} f(x)$.

To show: $\lim _{x \rightarrow a} c f(x)=c l$.
To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $d(x, a)<\delta$ then $d(c f(x), c l)<\epsilon$.
Assume $\epsilon \in \mathbb{E}$.
We know: There exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $d(x, a)<\delta$ then $d(f(x), l)<\frac{\epsilon}{|c|}$.
To show: If $x \in X$ and $d(x, a)<\delta$ then $d(c f(x), c l)<\epsilon$.
Assume $x \in X$ and $d(x, a)<\delta$.
To show: $d(c f(x), c l)<\epsilon$.

$$
d(c f(x), c l)=|c f(x)-c l|=|c| \cdot|f(x)-l|<|c| \cdot \frac{\epsilon}{|c|}=\epsilon .
$$

So $\lim _{x \rightarrow a} c f(x)=c l$.
(c) Let $l_{1}=\lim _{x \rightarrow a} f(x)$ and $l_{2}=\lim _{x \rightarrow a} g(x)$.

To show: $\lim _{x \rightarrow a}(f(x) g(x))=l_{1} l_{2}$.
To show: If $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $x \in B_{\delta}(a)$ then $\left|f(x) g(x)-l_{1} l_{2}\right|<$ ϵ.
Assume $\epsilon \in \mathbb{E}$.
Let $\epsilon_{1}=\min \left(\frac{\epsilon}{\left|\ell_{1}\right|+\left|\ell_{2}\right|+1}, 1\right)$.
Since $\lim _{x \rightarrow a} f(x)=l_{1}$, there exists $\delta_{1} \in \mathbb{E}$ such that if $x \in X$ and $d(x, a)<\delta_{1}$ then $\left|f(x)-l_{1}\right|<\epsilon_{1}$.
Since $\lim _{x \rightarrow a} f(x)=l_{2}$, there exists $\delta_{2} \in \mathbb{E}$ such that if $x \in X$ and $d(x, a)<\delta_{2}$ then $\left|f(x)-l_{2}\right|<\epsilon_{1}$.
Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$.
Assume $x \in X$ and $d(x, a)<\delta$.
To show: $\left|f(x) g(x)-l_{1} l_{2}\right|<\epsilon$.

$$
\begin{aligned}
\left|f(x) g(x)-l_{1} l_{2}\right| & =\left|\left(f(x)-l_{1}\right) g(x)+l_{1}\left(g(x)-l_{2}\right)\right| \\
& \leq\left|\left(f(x)-l_{1}\right) g(x)\right|+\left|l_{1}\left(g(x)-l_{2}\right)\right|, \quad \text { by the triangle inequality, } \\
& =\left|\left(f(x)-l_{1}\right)\left(g(x)-l_{2}\right)+\left(f(x)-l_{1}\right) l_{2}\right|+\left|l_{1}\right|\left|g(x)-l_{2}\right| \\
& \left.\left.\leq \mid f(x)-l_{1}\right)\left(g(x)-l_{2}\right)|+| f(x)-l_{1}\right) l_{2}\left|+\left|l_{1}\right|\right| g(x)-l_{2} \mid \\
& \leq\left|f(x)-l_{1}\right|\left|g(x)-l_{2}\right|+\left|f(x)-l_{1}\right|\left|l_{2}\right|+\left|l_{1}\right|\left|g(x)-l_{2}\right| \\
& \leq \epsilon_{1}^{2}+\epsilon_{1}\left|l_{2}\right|+\left|l_{1}\right| \epsilon_{1}=\epsilon_{1}\left(\left|l_{1}\right|+\left|l_{2}\right|+\epsilon_{1}\right) \\
& \leq \epsilon_{1}\left(\left|l_{1}\right|+\left|l_{2}\right|+1\right) \leq \epsilon .
\end{aligned}
$$

So $\lim _{x \rightarrow a}(f(x) g(x))=l_{1} l_{2}$.

Theorem 7.9. (Limits and composition of functions)

Let (X, d) and (Y, ρ) and (Z, σ) be metric spaces.
Let $f: Y \rightarrow Z$ and $g: X \rightarrow Y$ be functions and let $a \in X$ and $\ell \in Y$.

$$
\text { Assume that } \quad \lim _{x \rightarrow a} g(x) \text { and } \lim _{x \rightarrow a} f(g(x)) \text { exist and } \quad \lim _{x \rightarrow a} g(x)=\ell \text {. }
$$

Then

$$
\lim _{y \rightarrow \ell} f(y)=\lim _{x \rightarrow a} f(g(x)) .
$$

Proof.
Let $L=\lim _{y \rightarrow \ell} f(y)$.
To show: $\lim _{x \rightarrow a} f(g(x))=L$.
To show: If $\epsilon \in \mathbb{R}_{>0}$ then there exists $\delta \in \mathbb{R}_{>0}$ such that if $x \in X$ and $d(x, a)<\delta$ then $\sigma(f(g(x), L)<\epsilon$.
Assume $\epsilon \in \mathbb{R}_{>0}$.
To show: There exists $\delta \in \mathbb{R}_{>0}$ such that if $x \in X$ and $d(x, a)<\delta$ then $\sigma(f(g(x)), L)<\epsilon$.
Since $\lim _{y \rightarrow \ell} f(y)=L$, there exists $\delta_{1} \in \mathbb{R}_{>0}$ such that if $y \in Y$ and $\rho(y, \ell)<\delta_{1}$ then $\sigma(f(y), L)<\epsilon$.
Since $\lim _{x \rightarrow a} g(x)=\ell$, there exists $\delta \in \mathbb{R}_{>0}$ such that if $x \in X$ and $d(x, a)<\delta$ then $\rho(g(x), \ell)<\delta_{1}$.
To show: If $x \in X$ and $d(x, a)<\delta$ then $\sigma(f(g(x)), L)<\epsilon$.
Assume $x \in X$ and $d(x, a)<\delta$.

To show: $\sigma(f(g(x)), L)<\epsilon$.
Since $d(x, a)<\delta$ then $\rho(g(x)), \ell)<\delta_{1}$ and so $\sigma(f(g(x)), L)<\epsilon$.
So $\lim _{x \rightarrow a} f(g(x))=L$.

Theorem 7.10. (Limits and order)

(a) Let $\left(a_{1}, a_{2}, \ldots\right)$ and $\left(b_{1}, b_{2}, \ldots\right)$ be sequences in \mathbb{R}.

Assume that $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist and

$$
\text { if } n \in \mathbb{Z}_{>0} \text { then } a_{n} \leq b_{n} . \quad \text { Then } \quad \lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n} \text {. }
$$

(b) Let (X, d) be a metric space and let $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ be functions. Let $a \in X$. Assume that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x) \quad$ exist and

$$
\text { if } x \in X \text { then } f(x) \leq g(x) \text {. Then } \quad \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) \text {. }
$$

Proof.
(a) Let $\ell_{1}=\lim _{n \rightarrow \infty} a_{n}$ and $\ell_{2}=\lim _{n \rightarrow \infty} b_{n}$.

To show: $\ell_{1} \leq \ell_{2}$.
Proof by contradiction.
Assume $\ell_{1}>\ell_{2}$.
Let $\epsilon=\ell_{1}-\ell_{2}$.
Let $N_{1} \in \mathbb{Z}_{>0}$ be such that if $n \in \mathbb{Z}_{>0}$ and $n>N_{1}$ then $\left|a_{n}-\ell_{1}\right|<\frac{\epsilon}{2}$.
Let $N_{2} \in \mathbb{Z}_{>0}$ be such that if $n \in \mathbb{Z}_{>0}$ and $n>N_{2}$ then $\left|b_{n}-\ell_{2}\right|<\frac{\epsilon}{2}$.
Let $N=\max \left(N_{1}, N_{2}\right)$.
Then

$$
a_{N}>\ell_{1}-\frac{\epsilon}{2}=\ell_{1}-\ell_{2}+\ell_{2}-\frac{\epsilon}{2}=\epsilon+\ell_{2}-\frac{\epsilon}{2}=\ell_{2}+\frac{\epsilon}{2}>b_{N} .
$$

This is a contradiction to $a_{N} \leq b_{N}$.
Thus $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.
(b) Let $\ell_{1}=\lim _{x \rightarrow a} f(x)$ and $\ell_{2}=\lim _{x \rightarrow a} g(x)$.

To show: $\ell_{1} \leq \ell_{2}$.
Proof by contradiction.
Assume $\ell_{1}>\ell_{2}$.
Let $\epsilon=\ell_{1}-\ell_{2}$.
Let $\delta_{1} \in \mathbb{R}_{>0}$ be such that if $x \in X$ and $d(x, a)<\delta_{1}$ then $\left|f(x)-\ell_{1}\right|<\frac{\epsilon}{2}$.
Let $\delta_{2} \in \mathbb{R}_{>0}$ be such that if $x \in X$ and $d(x, a)<\delta_{2}$ then $\left|g(x)-\ell_{2}\right|<\frac{\epsilon}{2}$.
Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ and let $x \in X$ such that $d(x, a)<\delta$.
Then

$$
f(x)>\ell_{1}-\frac{\epsilon}{2}=\ell_{1}-\ell_{2}+\ell_{2}-\frac{\epsilon}{2}=\epsilon+\ell_{2}-\frac{\epsilon}{2}=\ell_{2}+\frac{\epsilon}{2}>g(x) .
$$

This is a contradiction to $f(x) \leq g(x)$.
Thus $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$.

