11 Limits and Topologies

11.1 **Spaces**

The point of this section is to introduce topological spaces and metric spaces and to explain how to make a metric space into a topological space.

Topological spaces 11.1.1

A topological space is a set X with a specification of the open subsets of X where it is required that

- (a) \emptyset is open in X and X is open in X,
- (b) Unions of open sets in X are open in X,
- (c) Finite intersections of open sets in X are open in X.

In other words, a *topology* on X is a set \mathcal{T} of subsets of X such that

- (a) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- (b) If $\mathcal{S} \subseteq \mathcal{T}$ then $(\bigcup_{U \in \mathcal{S}} U) \in \mathcal{T}$, (c) If $\ell \in \mathbb{Z}_{>0}$ and $U_1, U_2, \dots, U_\ell \in \mathcal{T}$ then $U_1 \cap U_2 \cap \dots \cap U_\ell \in \mathcal{T}$.

A topological space (X, \mathcal{T}) is a set X with a topology \mathcal{T} on X. An open set in X is a set in \mathcal{T} .

The four possible topologies on $X = \{0, 1\}$.

In a topological space, perhaps even more important than the open sets are the neighborhoods. Let (X, \mathcal{T}) be a topological space. Let $x \in X$. The neighborhood filter of x is

$$\mathcal{N}(x) = \{ N \subseteq X \mid \text{there exists } U \in \mathcal{T} \text{ such that } x \in U \text{ and } U \subseteq N \}.$$
(11.1)

A neighborhood of x is a set in $\mathcal{N}(x)$.

Neighborhoods of x.

11.1.2 Metric spaces

A strict metric space is a set X with a function $d: X \times X \to \mathbb{R}_{>0}$ such that

- (a) (diagonal condition) If $x \in X$ then d(x, x) = 0,
- (b) (diagonal condition) If $x, y \in X$ and d(x, y) = 0 then x = y,
- (c) (symmetry condition) If $x, y \in X$ then d(x, y) = d(y, x),
- (d) (the triangle inequality) If $x, y, z \in X$ then $d(x, y) \leq d(x, z) + d(z, y)$.

Conditions (a) and (b) are equivalent to $d^{-1}(0) = \Delta(X)$, where the diagonal of X is $\Delta(X) = \{(x, x) \mid x \in X\}$ and $d^{-1}(0) = \{(x, y) \in X \times X \mid d(x, y) = 0\}.$

Distances between points in the metric space \mathbb{R}^2 .

11.1.3 Making metric spaces into topological spaces

Let $\mathbb{E} = \{10^{-k} \mid k \in \mathbb{Z}_{>0}\}$. The set \mathbb{E} is the *accuracy set*. Specifying an element of \mathbb{E} specifies the desired number of decimal places of accuracy.

Let (X, d) be a strict metric space. Let $x \in X$ and let $\epsilon \in \mathbb{E}$. The open ball of radius ϵ at x is

$$B_{\epsilon}(x) = \{ y \in X \mid d(x, y) < \epsilon \}.$$

The neighborhood filter of an element $x \in X$ is

 $\mathcal{N}(x) = \{ N \subseteq X \mid \text{there exists } \epsilon \in \mathbb{E} \text{ such that } B_{\epsilon}(x) \subseteq N \}.$

The metric space topology on X is

 $\mathcal{T} = \{ U \subseteq X \mid \text{if } x \in U \text{ then there exists } \epsilon \in \mathbb{E} \text{ such that } B_{\epsilon}(x) \subseteq U \}.$

The following characterization of the metric space topology is frequently used as the definition of the metric space topology.

Proposition 11.1. Let (X, d) be a strict metric space.

Let $\mathbb{E} = \{10^{-k} \mid k \in \mathbb{Z}_{>0}\}$ and let $\mathcal{B} = \{B_{\epsilon}(x) \mid \epsilon \in \mathbb{E} \text{ and } x \in X\}.$

Let \mathcal{T} be the metric space topology on X. Let $U \subseteq X$. Then $U \in \mathcal{T}$ if and only if

there exists $S \subseteq \mathcal{B}$ such that $U = \bigcup_{B \in S} B$.

Proof. (Sketch) If $U = \bigcup_{B \in \mathcal{S}} B$ and $x \in U$ then there exists $B_{\delta}(y) \in \mathcal{S}$ with $x \in B_{\delta}(y)$. Letting $\epsilon < \delta - d(x, y)$ then $B_{\epsilon}(x) \subseteq U$. So $U \in \mathcal{T}$.

Generators of the neighborhood filter of x = (2, 2) in the metric space \mathbb{R}^2 .

11.2 Continuous functions, interiors and closures

11.2.1 Interiors and closures

Let (X, \mathcal{T}) be a topological space. An open set in X is a subset U of X such that $U \in \mathcal{T}$. A closed set in X is a subset C of X such that the complement of C is an open set in X, i.e.

C is closed if $X - C = \{x \in X \mid x \notin C\}$ is an open set in X.

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. The *interior* of A is the subset A° of X such that

- (a) A° is open in X and $A^{\circ} \subseteq A$,
- (b) If U is open X and $U \subseteq A$ then $U \subseteq A^{\circ}$.

The closure of A is the subset \overline{A} of X such that

- (a) \overline{A} is closed in X and $\overline{A} \supseteq A$,
- (b) If C is closed in X and $C \supseteq A$ then $C \supseteq \overline{A}$.

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. An *interior point of* A is a element $x \in X$ such that

there exists $N \in \mathcal{N}(x)$ such that $N \subseteq A$.

A close point to A is an element $x \in X$ such that

if
$$N \in \mathcal{N}(x)$$
 then $N \cap A \neq \emptyset$.

Proposition 11.2. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$.

(a) The interior of A is the set of interior points of A.

(b) The closure of A is the set of close points of A.

Proof. (Sketch) For part (a): Let $I = \{\text{interior points of } A\}$ and use the definitions to show that $I \subseteq A^{\circ}$ and $A^{\circ} \subseteq I$. Part (b) is obtained from part(a) by carefully taking complements.

An interior point and a close point of $B_1(x)$ where x = (2, 2) in \mathbb{R}^2 .

11.2.2 Continuous functions

Continuous functions are for comparing topological spaces.

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A continuous function from X to Y is a function $f: X \to Y$ such that

if V is an open set of Y then $f^{-1}(V)$ is an open set of X,

where $f^{-1}(V) = \{x \in X \mid f(x) \in V\}$. An isomorphism of topological spaces, or homeomorphism, is a continuous function $f: X \to Y$ such that the inverse function $f^{-1}: Y \to X$ exists and is continuous. Let X and Y be topological spaces and let $a \in X$. A function $f: X \to Y$ is continuous at a if f satisfies the condition

if V is a neighborhood of f(a) in Y then $f^{-1}(V)$ is a neighborhood of a in X, i.e. if $V \in \mathcal{N}(f(a))$ then $f^{-1}(V) \in \mathcal{N}(a)$.

Proposition 11.3. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let $f: X \to Y$ be a function. Then f is continuous if and only if f satisfies

if
$$a \in X$$
 then f is continuous at a.

Proof. (Sketch) This is a combination of the definitions of continuous, continuous at a, and the definition of $\mathcal{N}(a)$ as in (11.1).

11.3 Limits in topological spaces

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$ be a function and let $a \in X$ and $y \in Y$. Write

$$y = \lim_{x \to a} f(x)$$
 if f satisfies: if $N \in \mathcal{N}(y)$ then
there exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P)$.

Assume $a \in X$ such that $a \in \overline{X - \{a\}}$ (in English: *a* is in the closure of the complement of $\{a\}$ so that *a* is not an isolated point). Write

$$y = \lim_{\substack{x \to a \\ x \neq a}} f(x) \quad \text{if } f \text{ satisfies:} \quad \begin{array}{l} \text{if } N \in \mathcal{N}(y) \quad \text{then} \\ \text{there exists } P \in \mathcal{N}(a) \text{ such that } N \supseteq f(P - \{a\}). \end{array}$$

For example, using the standard topology on \mathbb{R} , the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 2, & \text{if } x \neq 0, \\ 4, & \text{if } x = 0, \end{cases} \quad \text{has} \quad \lim_{\substack{x \to 0 \\ x \neq 0}} f(x) = 2 \quad \text{and} \quad \lim_{x \to 0} f(x) \text{ does not exist,} \end{cases}$$

and, using the subspace topology on $\{0,1\}$ (a subspace of \mathbb{R}), the function $g: \{0,1\} \to \mathbb{R}$ given by

$$g(x) = 2$$
, has $\lim_{x \to 0} f(x) = 2$ and $\lim_{\substack{x \to 0 \ x \neq 0}} f(x)$ is not defined.

 $f: \mathbb{R} \to \mathbb{R}$ is not continuous at a

a

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces.

A sequence in X is a function $\vec{x}: \mathbb{Z}_{>0} \to X$ $n \mapsto x_n$

Let (X, \mathcal{T}) be a topological space. Let (x_1, x_2, \ldots) be a sequence in X and let $z \in X$. Write

 $z = \lim_{n \to \infty} x_n \quad \text{if } (x_1, x_2, \ldots) \text{ satisfies:} \qquad \begin{array}{l} \text{if } N \in \mathcal{N}(z) \quad \text{then } N \text{ contains all but} \\ \text{a finite number of elements of } \{x_1, x_2, \ldots\}. \end{array}$

More precisely,

$$z = \lim_{n \to \infty} x_n \quad \text{if } (x_1, x_2, \ldots) \text{ satisfies:} \qquad \begin{array}{l} \text{if } N \in \mathcal{N}(z) \quad \text{then there exists } \ell \in \mathbb{Z}_{>0} \\ \text{such that } N \supseteq \{x_\ell, x_{\ell+1}, \ldots\}. \end{array}$$

The spiral sequence $a_n = \left(\frac{1}{2}e^{i\pi/4}\right)^n$ in $\mathbb C$ has limit point 0

The sequence $a_n = (-1)^{n-1}(1+\frac{1}{n})$ in \mathbb{R} has cluster points at 1 and at -1

11.3.1 Limits and continuity

Proposition 11.4. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$ be a function. (a) Let $a \in X$. Then

f is continuous at a if and only if
$$\lim_{x \to a} f(x) = f(a)$$
.

(b) Let $a \in X$ such that $a \in \overline{X - \{a\}}$. Then

f is continuous at a if and only if
$$\lim_{\substack{x \to a \\ x \neq a}} f(x) = f(a).$$

Proof. (Sketch) The notation $\lim_{x\to a} f(x) = f(a)$ means that if $N \in \mathcal{N}(f(a))$ then $f^{-1}(N) \supseteq P$, where $P \in \mathcal{N}(a)$. But then $f^{-1}(N) \in \mathcal{N}(a)$.

11.3.2 Limits in metric spaces

Let
$$\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}.$$

Proposition 11.5. Let (X, d_X) and (Y, d_Y) be strict metric spaces. Let $f: X \to Y$ be a function and let $y \in Y$.

(a) Let $a \in X$. Then

 $\lim_{x \to a} f(x) = y \quad if and only if \quad f \ satisfies$ $if \ \epsilon \in \mathbb{E} \ then \ there \ exists \ \delta \in \mathbb{E} \ such \ that$ $if \ x \in X \ and \ d_X(x, a) < \delta \quad then \quad d_Y(f(x), y) < \epsilon.$

(b) Let $a \in X$ be such that $a \in \overline{X - \{a\}}$. Then

 $\lim_{\substack{x \to a \\ x \neq a}} f(x) = y \quad if and only if \quad f \ satisfies$ $if \ \epsilon \in \mathbb{E} \ then \ there \ exists \ \delta \in \mathbb{E} \ such \ that$ $if \ x \in X \ and \ 0 < d_X(x, a) < \delta \quad then \quad d_Y(f(x), y) < \epsilon.$

(c) Let (x_1, x_2, \ldots) be a sequence in X and let $z \in X$. Then

 $\lim_{n \to \infty} x_n = z \quad if and only if \quad (x_1, x_2, \ldots) \text{ satisfies}$ $if \ \epsilon \in \mathbb{E} \ then \ there \ exists \ \ell \in \mathbb{Z}_{>0} \ such \ that$ $if \ n \in \mathbb{Z}_{\geq \ell} \quad then \quad d(x_n, z) < \epsilon.$

Proof. (Sketch) The proof is accomplished by a careful conversion of the definitions of the limits using the definition of the metric space topology and the definition of the open ball $B_{\epsilon}(y)$ of radius ϵ centered at y.

11.3.3 Limits of sequences capture closure and continuity in metric spaces

Theorem 11.6. (Closure in metric spaces) Let (X, d) be a strict metric space and let \mathcal{T}_X be the metric space topology on X. Let $A \subseteq X$. Then

 $\overline{A} = \{ z \in X \mid \text{there exists a sequence } (a_1, a_2, \ldots) \text{ in } A \text{ such that } z = \lim_{n \to \infty} a_n \},$

where \overline{A} is the closure of A in X.

Proof. (Sketch) If z is a close point to A then a sequence (a_1, a_2, \ldots) such that

 $a_1 \in B_{0.1}(z) \cap A, \quad a_2 \in B_{0.01}(z) \cap A, \quad a_3 \in B_{0.001}(z) \cap A, \quad \dots,$

will have $z = \lim_{n \to \infty} a_n$.

Theorem 11.7. (Continuity for metric spaces) Let (X, d_X) and (Y, d_Y) be strict metric spaces. Let \mathcal{T}_X be the metric space topology on X and let \mathcal{T}_Y be the metric space topology on Y. Let $f: X \to Y$ be a function. Then f is continuous if and only if f satisfies

if $(x_1, x_2, ...)$ is a sequence in X and $\lim_{n \to \infty} x_n$ exists then $f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n)$.

Proof. (Sketch) The \Rightarrow implication is similar to the proof of Theorem 11.4 For the \Leftarrow implication prove the contrapositive: If f is not continuous at a then there exists $N \in \mathcal{N}(f(a))$ such that $f^{-1}(N) \notin \mathcal{N}(a)$ and letting

$$x_1 \in B_{0,1}(a) \cap f^{-1}(N)^c, \quad x_2 \in B_{0,01}(a) \cap f^{-1}(N)^c, \quad \dots$$

produces a sequence such that $\lim_{n \to \infty} x_n = a$ and $\lim_{n \to \infty} f(x_n) \neq f(a)$.

11.4 Limits of sequences capture closure and continuity in topological spaces with countably generated neighborhood filters

A topological space (X, \mathcal{T}) has countably generated neighborhood filters, or is first countable, if (X, \mathcal{T}) satisfies:

if $x \in X$ then there exist subsets B_1, B_2, \ldots of X such that $\mathcal{N}(x) = \{N \subseteq X \mid \text{there exists } k \in \mathbb{Z}_{>0} \text{ such that } N \supseteq B_k\}.$

Theorem 11.8. (Closure in topological spaces with countably generated neighborhood filters) Let (X, \mathcal{T}) be a topological space with countably generated neighborhood filters. Let $A \subseteq X$. Then

 $\overline{A} = \{ z \in X \mid \text{there exists a sequence } (a_1, a_2, \ldots) \text{ in } A \text{ such that } z = \lim_{n \to \infty} a_n \},$

Proof. (Sketch) If z is a close point to A and B_1, B_2, \ldots are generators of $\mathcal{N}(z)$ then a sequence (a_1, a_2, \ldots) such that

$$a_1 \in B_1(z) \cap A, \quad a_2 \in B_2(z) \cap A, \quad a_3 \in B_3(z) \cap A, \quad \dots,$$

will have $z = \lim_{n \to \infty} a_n$.

Theorem 11.9. (Continuity for topological spaces with countably generated neighborhood filters) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and assume that (X, \mathcal{T}_X) has countably generated neighborhood filters. Let $f: X \to Y$ be a function. Then f is continuous if and only if f satisfies

if
$$(x_1, x_2, ...)$$
 is a sequence in X and $\lim_{n \to \infty} x_n$ exists then $f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n)$.

Proof. (Sketch) The proof is similar to the proof of Theorem 11.7 except with generators B_1, B_2, \ldots of $\mathcal{N}(a)$ replacing the open balls $B_{0.1}(a), B_{0.01}(a), \ldots$

11.5 Some proofs

11.5.1 Alternative characterization of the metric space topology

Proposition 11.10. Let (X, d) be a strict metric space. Let

$$\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\} \text{ and let } \mathcal{B} = \{B_{\epsilon}(x) \mid \epsilon \in \mathbb{E} \text{ and } x \in X\},\$$

the set of open balls in X. Let \mathcal{T} be the metric space topology on X. Let $U \subseteq X$. Then $U \in \mathcal{T}$ if and only if

there exists
$$\mathcal{S} \subseteq \mathcal{B}$$
 such that $U = \bigcup_{B \in \mathcal{S}} B$

Proof.

 \Leftarrow : Assume $U = \bigcup_{B \in S} B$. To show: $U \in \mathcal{T}$. To show: If $x \in U$ then there exists $\epsilon \in \mathbb{E}$ such that $B_{\epsilon}(x) \subseteq U$. Assume $x \in U$. Since $U = \bigcup_{B \in S} B$ then there exists $B \in S$ such that $x \in B$. By definition of \mathcal{B} there exists $\delta \in \mathbb{E}$ and $y \in X$ such that $B = B_{\delta}(y)$. Since $x \in B = B_{\delta}(y)$ then $d(x, y) < \delta$. Let $\epsilon = 10^{-k}$, where $k \in \mathbb{Z}_{>0}$ is such that $0 < 10^{-k} < \delta - d(x, y)$. To show: $B_{\epsilon}(x) \subseteq B_{\delta}(y)$. To show: If $p \in B_{\epsilon}(x)$ then $p \in B_{\delta}(y)$. Assume $p \in B_{\epsilon}(x)$. Since $d(p, y) \le d(p, x) + d(x, y) < \epsilon + d(x, y) < \delta$ then $p \in B_{\delta}(y)$. So $B_{\epsilon}(x) \subseteq B_{\delta}(y) \subseteq U$. Since $B_{\delta}(y) = B$ and $B \in S$ then $B_{\epsilon}(x) \subseteq U$. So $U \in \mathcal{T}$. \Rightarrow : Assume $U \in \mathcal{T}$. If $x \in U$ then there exists $\epsilon_x \in \mathbb{E}$ such that $B_{\epsilon_x}(x) \subseteq U$. To show: There exists $S \subseteq B$ such that $U = \bigcup_{B \in S} B$. Let $\mathcal{S} = \{ B_{\epsilon_x}(x) \mid x \in U \}.$ To show: $U = \bigcup_{B \in S} B$. To show: (a) $U \supseteq \bigcup_{B \in \mathcal{S}} B$. (b) $U \subseteq \bigcup_{B \in \mathcal{S}} B$.

- (a) If $B \in S$ then $B = B_{\epsilon_x}(x) \subseteq U$. So $U \supseteq \bigcup_{B \in S} B$.
- (b) To show: If $x \in U$ then $x \in \left(\bigcup_{B \in \mathcal{S}} B\right)$. Assume $x \in U$. Since $x \in B_{\epsilon_x}(x)$ and $B_{\epsilon_x}(x) \in \mathcal{S}$ then $x \in \bigcup_{B \in \mathcal{S}} B$. So $U \subseteq \left(\bigcup_{B \in \mathcal{S}} B\right)$.

So $U = \bigcup_{B \in \mathcal{S}} B$.

11.5.2 Interiors and closures

Proposition 11.11. Let X be a topological space. Let $A \subseteq X$.

(a) The interior of A is the set of interior points of A.

(b) The closure of A is the set of close points of A.

Proof.

- (a) Let $I = \{x \in A \mid x \text{ is an interior point of } A\}$. To show: $A^{\circ} = I$. To show: (aa) $I \subseteq A^{\circ}$. (ab) $A^{\circ} \subseteq I$.
 - (aa) Let $x \in I$. Then there exists a neighborhood N of x with $N \subseteq A$.

So there exists an open set U with $x \in U \subseteq N \subseteq A$. Since $U \subseteq A$ and U is open $U \subseteq A^{\circ}$. So $x \in A^{\circ}$. So $I \subseteq A^{\circ}$.

(ab) Assume $x \in A^{\circ}$. Then A° is open and $x \in A^{\circ} \subseteq A$. So x is a interior point of A. So $x \in I$. So $A^{\circ} \subseteq I$.

So $I = A^{\circ}$.

(b) Let $C = \{x \in X \mid \text{if } N \in \mathcal{N}(x) \text{ then } N \cap A \neq \emptyset\}$ be the set of close points of A. Then

$$C^{c} = \{x \in X \mid \text{there exists } N \in \mathcal{N}(x) \text{ such that } N \cap A = \emptyset\}$$
$$= \{x \in X \mid \text{there exists } N \in \mathcal{N}(x) \text{ such that } N \subseteq A^{c}\}.$$

which is the set of interior points of A^c . Thus, by part (a), $C^c = (A^c)^\circ$. So $C = ((A^c)^\circ)^c$. To show: $C = \overline{A}$. To show: $((A^c)^\circ)^c = \overline{A}$.

Claim: If $F \subseteq X$ then $(F^{\circ})^c = \overline{F^c}$. Let $F \subseteq X$. Then F° is open and $(F^{\circ})^c$ is closed. Since $F^{\circ} \subseteq \underline{F}$, then $(F^{\circ})^c \supseteq F^c$. So $(F^{\circ})^c \supseteq \overline{F^c}$. If V is closed and $V \supseteq F^c$ then V^c is open and $V^c \subseteq F$. Thus, if V is closed and $V \supseteq F^c$ then $V^c \subseteq F^{\circ}$. Thus, if V is closed and $V \supseteq F^c$ then $V \supseteq (F^{\circ})^c$. So $(F^{\circ})^c = \overline{F^c}$. Thus $((A^c)^{\circ})^c = \overline{(A^c)^c}$. Thus $C = ((A^c)^{\circ})^c = \overline{(A^c)^c} = \overline{A}$.

11.5.3 Limits and continuity

Theorem 11.12. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Let $f: X \to Y$ be a function.

(a) Bou, Ch. 1 §2 Theorem 1(d) f is continuous if and only if f satisfies:

if $a \in X$ then f is continuous at a.

(b) Bou, Ch. 1 §7 Prop. 9] Let $a \in X$. Then

f is continuous at a if and only if $\lim_{x \to a} f(x) = f(a)$.

(c) [Bou, Ch. 1 §7 no. 5] Let $a \in X$ such that $a \in \overline{X - \{a\}}$. Then

f is continuous at a if and only if $\lim_{\substack{x \to a \\ x \neq a}} f(x) = f(a).$

(d) Bou, Ch. IX §2 no. 7 Proposition 10 and the remark following] Let (X, d) be a strict metric space and let \mathcal{T}_X be the metric space topology on X. Then f is continuous if and only if f satisfies:

if (x_1, x_2, \ldots) is a sequence in X and

if
$$\lim_{n \to \infty} x_n$$
 exists then $\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right)$.

Proof.

(a) \Rightarrow : To show: If f is continuous then f satisfies: if $a \in X$ then f is continuous at a. Assume f is continuous. To show: If $a \in X$ then f is continuous at a. Assume $a \in X$. To show: If $N \in \mathcal{N}(f(a))$ then $f^{-1}(N) \in \mathcal{N}(a)$. Assume $N \in \mathcal{N}(f(a))$. Then there exists $V \in \mathcal{T}_Y$ such that $f(a) \in V \subseteq N$. To show: $f^{-1}(N) \in \mathcal{N}(a)$. To show: There exists $U \in \mathcal{T}_X$ such that $a \in U \subseteq f^{-1}(N)$. Let $U = f^{-1}(V)$. Since f is continuous then U is open in X. Since $f(a) \in V \subseteq N$ then $a \in f^{-1}(V) = U \subseteq f^{-1}(N)$. So $f^{-1}(N) \in \mathcal{N}(a)$. So f is continuous at a. (a) \Leftarrow : Assume that if $a \in X$ then f is continuous at a. To show: f is continuous. To show: If $V \in \mathcal{T}_Y$ then $f^{-1}(V) \in \mathcal{T}_X$. Assume $V \in \mathcal{T}_Y$. To show: $f^{-1}(V)$ is open in X. To show: If $a \in f^{-1}(V)$ then a is an interior point of $f^{-1}(V)$. Assume $a \in f^{-1}(V)$. To show: There exists $U \in \mathcal{N}(a)$ such that $a \in U \subseteq f^{-1}(V)$. Since $V \in \mathcal{T}_Y$ and $f(a) \in V$ then $V \in \mathcal{N}(f(a))$. Since f is continuous at a then $f^{-1}(V) \in \mathcal{N}(a)$. Let $U = f^{-1}(V)$. Then $a \in U \subseteq f^{-1}(V)$. So a is an interior point of $f^{-1}(V)$. So $f^{-1}(V)$ is open in X. So f is continuous. (b) \Rightarrow : To show: If f is continuous at a then $\lim_{x\to a} f(x) = f(a)$. Assume f is continuous at a. To show: $\lim_{x\to a} f(x) = f(a)$. To show: If $N \in \mathcal{N}(f(a))$ then there exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P)$. Assume $N \in \mathcal{N}(f(a))$. To show: There exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P)$. Since f is continuous at a and $N \in \mathcal{N}(f(a))$ then $f^{-1}(N) \in \mathcal{N}(a)$. Let $P = f^{-1}(N)$. Then $f(P) = f(f^{-1}(N)) \subseteq N$. So $\lim_{x\to a} f(x) = f(a)$.

(b)
$$\Leftarrow$$
: To show: If $\lim_{x\to a} f(x) = f(a)$ then f is continuous at a.

Assume $\lim_{x\to a} f(x) = f(a)$. To show: f is continuous at a. To show: If $N \in \mathcal{N}(f(a))$ then $f^{-1}(N) \in \mathcal{N}(a)$. Assume $N \in \mathcal{N}(f(a))$. To show: $f^{-1}(N) \in \mathcal{N}(a)$. To show: There exists $U \in \mathcal{T}_X$ such that $a \in U \subseteq f^{-1}(N)$. Since $\lim_{x\to a} f(x) = f(a)$ then there exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P)$. So $f^{-1}(N) \supseteq P$. Since $P \in \mathcal{N}(a)$, there exists $U \in \mathcal{T}_X$ such that $a \in U \subseteq P$. So there exists $U \in \mathcal{T}_X$ such that $a \in U \subseteq P \subseteq f^{-1}(N)$. So $f^{-1}(N) \in \mathcal{N}(a)$. So f is continuous at a. (c) \Rightarrow : Assume $a \in X - \{a\}$. To show: If f is continuous at a then $\lim_{x \to a} f(x) = f(a)$. $x \rightarrow a$ $x \neq a$ Assume f is continuous at a. To show: $\lim_{x \to a} f(x) = f(a)$. $x \neq a$ To show: If $N \in \mathcal{N}(f(a))$ then there exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P - \{a\})$. Assume $N \in \mathcal{N}(f(a))$. To show: There exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P - \{a\})$. Since f is continuous at a and $N \in \mathcal{N}(f(a))$ then $f^{-1}(N) \in \mathcal{N}(a)$. Let $P = f^{-1}(N)$. Then $f(P - \{a\}) \subseteq f(P) = f(f^{-1}(N)) \subseteq N$. So $\lim_{x \to a} f(x) = f(a)$. $x \neq a$ (c) \Leftarrow : Assume $a \in X - \{a\}$. To show: If $\lim_{x \to a} f(x) = f(a)$ then f is continuous at a. $x \neq a$ Assume $\lim_{x \to a} f(x) = f(a)$. $x \neq a$ To show: f is continuous at a. To show: If $N \in \mathcal{N}(f(a))$ then $f^{-1}(N) \in \mathcal{N}(a)$. Assume $N \in \mathcal{N}(f(a))$. To show: $f^{-1}(N) \in \mathcal{N}(a)$. To show: There exists $U \in \mathcal{T}_X$ such that $a \in U \subseteq f^{-1}(N)$. Since $\lim_{x \to a} f(x) = f(a)$ there exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P - \{a\})$. $x \rightarrow a$ $x \neq a$ So $f^{-1}(N) \supseteq P - \{a\}$. Since $N \in \mathcal{N}(f(a))$ then $f(a) \in N$ and $a \in f^{-1}(N)$. So $f^{-1}(N) \supseteq P$. Since $P \in \mathcal{N}(a)$, there exists $U \in \mathcal{T}_X$ such that $a \in U \subseteq P$. So there exists $U \in \mathcal{T}_X$ such that $a \in U \subseteq P \subseteq f^{-1}(N)$. So $f^{-1}(N) \in \mathcal{N}(a)$. So f is continuous at a. (d) \Rightarrow : Assume f is continuous. To show: f satisfies

if
$$(x_1, x_2, ...)$$
 is a sequence in X and $\lim_{n \to \infty} x_n$ exists
then $f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n).$ (*)

Assume (x_1, x_2, \ldots) is a sequence in X and $\lim_{n\to\infty} x_n = a$. To show: $f(a) = \lim f(x_n)$. To show: If $N \in \mathcal{N}(f(a))$ then there exists $t \in \mathbb{Z}_{>0}$ such that $N \supseteq (f(x_t), f(x_{t+1}), \ldots)$. Assume $N \in \mathcal{N}(f(a))$. Since f is continuous then $f^{-1}(N) \in \mathcal{N}(a)$. Since $\lim_{n\to\infty} x_n = a$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that $f^{-1}(N) \supseteq \{x_\ell, x_{\ell+1}, \ldots\}$. Let $t = \ell$. Then $f^{-1}(N) \supseteq \{x_t, x_{t+1}, \ldots\}.$ So $N \supseteq \{f(x_t), f(x_{t+1}), \ldots\}$. So f satisfies (*). (d) \Leftarrow : To show: If f is not continuous then f does not satisfy (*). Assume f is not continuous. Then there exists a such that f is not continuous at a. So there exists $N \in \mathcal{N}(f(a))$ such that $f^{-1}(N) \notin \mathcal{N}(a)$. To show: There exists a sequence (x_1, x_2, \ldots) such that $\lim_{n \to \infty} x_n$ exists and $\lim_{n \to \infty} f(x_n) \neq 0$ $f(\lim_{n\to\infty} x_n).$ Since $f^{-1}(N) \not\in \mathcal{N}(a)$ then $f^{-1}(N) \not\supseteq B_{10^{-\ell}}(a)$, for $\ell \in \mathbb{Z}_{>0}$. Let $x_1 \in B_{10^{-1}}(a) \cap f^{-1}(N)^c, \quad x_2 \in B_{10^{-2}}(a) \cap f^{-1}(N)^c, \quad \dots$

To show: (da) $\lim_{n\to\infty} x_n = a$. (db) $\lim_{n\to\infty} f(x_n) \neq f(a)$.

(da) To show: If $P \in \mathcal{N}(a)$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $x_n \in P$. Assume $P \in \mathcal{N}(a)$. To show: There exists $\ell \in \mathbb{Z}_{>0}$ such that $P \supseteq \{x_{\ell}, x_{\ell+1}, \ldots\}$. Since $P \in \mathcal{N}(a)$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that $P \supseteq B_{10^{-\ell}}(a)$. To show: $P \supseteq \{x_{\ell}, x_{\ell+1}, \ldots\}$. To show: If $n \in \mathbb{Z}_{\geq \ell}$ then $x_n \in P$. Assume $n \in \mathbb{Z}_{\geq \ell}$. Since $n \ge \ell$ then $10^{-\ell} \le 10^{-n}$ and $x_n \in B_{10^{-n}}(a) \subseteq B_{10^{-\ell}}(a) \subseteq P$. So $P \supseteq \{x_{\ell}, x_{\ell+1}, \ldots\}$. So $\lim_{n\to\infty} x_n = a$. (db) To show: $\lim_{n\to\infty} f(x_n) \ne f(a)$. To show: There exists $M \in \mathcal{N}(f(a))$ such that $\{j \in \mathbb{Z}_{>0} \mid f(x_j) \in M^c\}$ is infinite. Let M = N. To show: $\{j \in \mathbb{Z}_{>0} \mid f(x_j) \in N^c\}$ is infinite. Since $x_j \in f^{-1}(N)^c$ then $f(x_j) \notin N$, for $j \in \mathbb{Z}_{>0}$. So $\{f(x_1), f(x_2), \ldots\} \subseteq N^c$. So $\{j \in \mathbb{Z}_{>0} \mid f(x_j) \in N^c\}$ is infinite. So $\lim_{n\to\infty} f(x_n) \ne f(a)$.

```
So f does not satisfy (*).
```

To change the proof of (d) above to a proof for first countable topological spaces (X, \mathcal{T}_X) , replace the use of the open balls $B_{10^{-1}}(a) \supseteq B_{10^{-2}}(a) \supseteq \cdots$ by generators $B_1 \supseteq B_2 \supseteq \cdots$ of $\mathcal{N}(a)$, the neighborhood filter of a.

11.5.4 The topology in a metric space is determined by limits of sequences

Theorem 11.13. Let (X, d) be a strict metric space and let $A \subseteq X$ and let \overline{A} be the closure of A. Then

 $\overline{A} = \{ z \in X \mid \text{ there exists a sequence } (a_1, a_2, \ldots) \text{ in } A \text{ with } z = \lim_{n \to \infty} a_n \}.$

Proof. Let $R = \{z \in X \mid \text{there exists a sequence } (a_1, a_2, \ldots) \text{ in } A \text{ with } z = \lim_{n \to \infty} a_n \}.$

To show: (a) $R \subseteq \overline{A}$. (b) $\overline{A} \subseteq R$. (a) To show: If $z \in R$ then $z \in \overline{A}$. Assume $z \in R$. To show: $z \in \overline{A}$. We know there exists a sequence $(a_1, a_2, ...)$ in A with $z = \lim_{n \to \infty} a_n$. To show: z is a close point of A. To show: If N is a neighborhood of z then $N \cap A \neq \emptyset$. Assume N is a neighborhood of z. Since $\lim_{n\to\infty} a_n = z$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $a_n \in N$. So $N \cap A \neq \emptyset$. So z is a close point of A. So $R \subseteq \overline{A}$. (b) To show: $\overline{A} \subseteq R$. To show: If $z \in \overline{A}$ then $z \in R$. Let $z \in \overline{A}$. To show: $z \in R$.

To show: There exists a sequence $(a_1, a_2, ...)$ in A with $z = \lim_{n \to \infty} a_n$. Using that z is a close point of A,

let
$$a_1 \in B_{0,1}(z) \cap A$$
, $a_2 \in B_{0,01}(z) \cap A$, $a_3 \in B_{0,001}(z) \cap A$,

To show: $z = \lim_{n \to \infty} a_n$. To show: If P is a neighborhood of z then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $a_n \in P$. Let P be a neighborhood of z. Then there exists $\ell \in \mathbb{Z}_{>0}$ such that $B_{10^{-\ell}}(z) \subseteq P$. To show: If $n \in \mathbb{Z}_{\geq \ell}$ then $a_n \in P$. Assume $n \in \mathbb{Z}_{\geq \ell}$. Since $n \geq \ell$ then $10^{-n} \leq 10^{-\ell}$ and

$$a_n \in B_{10^{-n}}(z) \subseteq B_{10^{-\ell}}(z) \subseteq P,$$

So $\lim_{n \to \infty} a_n = z$. So $z \in R$. So $\overline{A} \subseteq R$.

To change the proof of (b) above to a proof for first countable topological spaces (X, \mathcal{T}_X) , replace the use of the open balls $B_{10^{-1}}(a) \supseteq B_{10^{-2}}(a) \supseteq \cdots$ by generators $B_1 \supseteq B_2 \supseteq \cdots$ of $\mathcal{N}(a)$, the neighborhood filter of a.

11.5.5 Limits in metric spaces

Proposition 11.14. Let (X, d_X) and (Y, d_Y) be strict metric spaces, let \mathcal{T}_X be the metric space topology on X and let \mathcal{T}_Y be the metric space topology on Y. Let $f: X \to Y$ be a function and let $y \in Y$.

(a) Let $a \in X$. Then $\lim_{x \to a} f(x) = y$ if and only if f satisfies

if $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $d_X(x, a) < \delta$ then $d_Y(f(x), y) < \epsilon$.

(b) Let $a \in X$ such that $a \in \overline{X - \{a\}}$. Then $\lim_{\substack{x \to a \\ x \neq a}} f(x) = y$ if and only if f satisfies

if $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $0 < d_X(x, a) < \delta$ then $d_Y(f(x), y) < \epsilon$.

(c) Let (x_1, x_2, \ldots) be a sequence in X and let $z \in X$. Then $\lim_{n \to \infty} x_n = z$ if and only if (x_1, x_2, \ldots) satisfies

if $\varepsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $d(x_n, z) < \varepsilon$.

Proof. (a) By definition, $\lim_{x \to a} f(x) = y$ if and only if f satisfies: if $N \in \mathcal{N}(y)$ then there exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P)$.

By definition of the metric space topology, $N \in \mathcal{N}(y)$ if and only if there exists $\epsilon \in \mathbb{E}$ such that $B_{\epsilon}(y) \subseteq N$.

Thus $\lim_{x\to a} f(x) = y$ if and only if f satisfies: if $B_{\epsilon}(y)$ is an open ball at y then there exists $B_{\delta}(a)$, an open ball at a such that $B_{\epsilon}(y) \supseteq f(B_{\delta}(a))$.

By definition, $B_{\delta}(a) = \{x \in X \mid d(x, a) < \delta\}.$

Thus, $\lim_{x \to a} f(x) = y$ if and only if f satisfies: if $\varepsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $d_X(x,a) < \delta$ then $d_Y(f(x), y) < \varepsilon$.

(b) By definition, $\lim_{\substack{x \to a \\ x \neq a}} f(x) = y$ if and only if f satisfies: if $N \in \mathcal{N}(y)$ then there exists $P \in \mathcal{N}(a)$ such that $N \supseteq f(P - \{a\})$.

By definition of the metric space topology, $N \in \mathcal{N}(y)$ if and only if there exists $\epsilon \in \mathbb{E}$ such that $B_{\epsilon}(y) \subseteq N$.

Thus $\lim_{\substack{x \to a \\ x \neq a}} f(x) = y$ if and only if f satisfies: if $B_{\epsilon}(y)$ is an open ball at y then there exists $B_{\delta}(a)$, an

open ball at a such that $B_{\epsilon}(y) \supseteq f(B_{\delta}(a) - \{a\})$.

By definition, $B_{\epsilon}(y) = \{x \in Y \mid d(x, y) < \epsilon\}$ and $B_{\delta}(a) - \{a\} = \{x \in X \mid 0 < d(x, a) < \delta\}.$

Thus, $\lim_{x \to a} f(x) = y$ if and only if f satisfies: if $\epsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $x \in X$ and $0 \leq d \leq x \leq 1$ for $x \in X$ and $0 \leq d \leq x \leq 1$.

 $0 < d_X(x,a) < \delta$ then $d_Y(f(x),y) < \epsilon$.

(c) By definition, $\lim_{n \to \infty} x_n = z$ if and only if (x_1, x_2, \ldots) satisfies: if $P \in \mathcal{N}(z)$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that $P \supseteq \{x_\ell, x_{\ell+1}, \ldots\}$.

By definition of the metric space topology, $P \in \mathcal{N}(y)$ if and only if there exists $\epsilon \in \mathbb{E}$ such that $B_{\epsilon}(y) \subseteq P$.

So $\lim_{n\to\infty} x_n = z$ if and only if (x_1, x_2, \ldots) satisfies: if $\epsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that $B_{\epsilon}(z) \supseteq \{x_{\ell}, x_{\ell+1}, \ldots, \}.$

By definition, $B_{\epsilon}(a) = \{x \in X \mid d(x, a) < \epsilon\}.$ Thus, $\lim_{n \to \infty} x_n = z$ if and only if (x_1, x_2, \ldots) satisfies: if $\epsilon \in \mathbb{E}$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $d(x_n, z) < \epsilon$.