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11 Limits and Topologies

11.1 Spaces

The point of this section is to introduce topological spaces and metric spaces and to explain how to
make a metric space into a topological space.

11.1.1 Topological spaces

A topological space is a set X with a specification of the open subsets of X where it is required that

(a) ; is open in X and X is open in X,
(b) Unions of open sets in X are open in X,
(c) Finite intersections of open sets in X are open in X.

In other words, a topology on X is a set T of subsets of X such that

(a) ; 2 T and X 2 T ,
(b) If S ✓ T then

�S
U2S U

�
2 T ,

(c) If ` 2 Z>0 and U1, U2, . . . , U` 2 T then U1 \ U2 \ · · · \ U` 2 T .

A topological space (X, T ) is a set X with a topology T on X. An open set in X is a set in T .

The four possible topologies on X = {0, 1}.

In a topological space, perhaps even more important than the open sets are the neighborhoods.
Let (X, T ) be a topological space. Let x 2 X. The neighborhood filter of x is

N (x) = {N ✓ X | there exists U 2 T such that x 2 U and U ✓ N}. (11.1)

A neighborhood of x is a set in N (x).

Neighborhoods of x.

135



MAST30026 Resources, Arun Ram, July 14, 2022

11.1.2 Metric spaces

A strict metric space is a set X with a function d : X ⇥X ! R�0 such that

(a) (diagonal condition) If x 2 X then d(x, x) = 0,
(b) (diagonal condition) If x, y 2 X and d(x, y) = 0 then x = y,
(c) (symmetry condition) If x, y 2 X then d(x, y) = d(y, x),
(d) (the triangle inequality) If x, y, z 2 X then d(x, y)  d(x, z) + d(z, y).

Conditions (a) and (b) are equivalent to d
�1(0) = �(X), where the diagonal of X is �(X) =

{(x, x) | x 2 X} and d
�1(0) = {(x, y) 2 X ⇥X | d(x, y) = 0}.

Distances between points in the metric space R2.

11.1.3 Making metric spaces into topological spaces

Let E = {10�k
| k 2 Z>0}. The set E is the accuracy set. Specifying an element of E specifies the

desired number of decimal places of accuracy.
Let (X, d) be a strict metric space. Let x 2 X and let ✏ 2 E. The open ball of radius ✏ at x is

B✏(x) = {y 2 X | d(x, y) < ✏}.

The neighborhood filter of an element x 2 X is

N (x) = {N ✓ X | there exists ✏ 2 E such that B✏(x) ✓ N}.

The metric space topology on X is

T = {U ✓ X | if x 2 U then there exists ✏ 2 E such that B✏(x) ✓ U}.

The following characterization of the metric space topology is frequently used as the definition of the
metric space topology.

Proposition 11.1. Let (X, d) be a strict metric space.

Let E = {10�k
| k 2 Z>0} and let B = {B✏(x) | ✏ 2 E and x 2 X}.
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Let T be the metric space topology on X. Let U ✓ X. Then U 2 T if and only if

there exists S ✓ B such that U =
[

B2S
B.

Proof. (Sketch) If U =
S

B2S B and x 2 U then there exists B�(y) 2 S with x 2 B�(y). Letting
✏ < � � d(x, y) then B✏(x) ✓ U . So U 2 T .

Generators of the neighborhood filter of x = (2, 2) in the metric space R2.

11.2 Continuous functions, interiors and closures

11.2.1 Interiors and closures

Let (X, T ) be a topological space. An open set in X is a subset U of X such that U 2 T . A closed
set in X is a subset C of X such that the complement of C is an open set in X, i.e.

C is closed if X � C = {x 2 X | x 62 C} is an open set in X.

Let (X, T ) be a topological space and let A ✓ X.

The interior of A is the subset A� of X such that

(a) A
� is open in X and A

�
✓ A,

(b) If U is open X and U ✓ A then U ✓ A
�.

The closure of A is the subset A of X such that

(a) A is closed in X and A ◆ A,
(b) If C is closed in X and C ◆ A then C ◆ A.

Let (X, T ) be a topological space and let A ✓ X.

An interior point of A is a element x 2 X such that

there exists N 2 N (x) such that N ✓ A.
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A close point to A is an element x 2 X such that

if N 2 N (x) then N \A 6= ;.

Proposition 11.2. Let (X, T ) be a topological space and let A ✓ X.

(a) The interior of A is the set of interior points of A.

(b) The closure of A is the set of close points of A.

Proof. (Sketch) For part (a): Let I = {interior points of A} and use the definitions to show that
I ✓ A

� and A
�
✓ I. Part (b) is obtained from part(a) by carefully taking complements.

An interior point and a close point of B1(x) where x = (2, 2) in R2.

11.2.2 Continuous functions

Continuous functions are for comparing topological spaces.

Let (X, TX) and (Y, TY ) be topological spaces. A continuous function from X to Y is a function
f : X ! Y such that

if V is an open set of Y then f
�1(V ) is an open set of X,

where f
�1(V ) = {x 2 X | f(x) 2 V }. An isomorphism of topological spaces, or homeomorphism, is a

continuous function f : X ! Y such that the inverse function f
�1 : Y ! X exists and is continuous.

Let X and Y be topological spaces and let a 2 X. A function f : X ! Y is continuous at a if f
satisfies the condition

if V is a neighborhood of f(a) in Y then f
�1(V ) is a neighborhood of a in X,

i.e. if V 2 N (f(a)) then f
�1(V ) 2 N (a).
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Proposition 11.3. Let (X, TX) and (Y, TY ) be topological spaces and let f : X ! Y be a function.
Then f is continuous if and only if f satisfies

if a 2 X then f is continuous at a.

Proof. (Sketch) This is a combination of the definitions of continuous, continuous at a, and the defi-
nition of N (a) as in (11.1).

11.3 Limits in topological spaces

Let (X, TX) and (Y, TY ) be topological spaces. Let f : X ! Y be a function and let a 2 X and y 2 Y .
Write

y = lim
x!a

f(x) if f satisfies:
if N 2 N (y) then
there exists P 2 N (a) such that N ◆ f(P ).

Assume a 2 X such that a 2 X � {a} (in English: a is in the closure of the complement of {a} so
that a is not an isolated point). Write

y = lim
x!a

x 6=a

f(x) if f satisfies:
if N 2 N (y) then

there exists P 2 N (a) such that N ◆ f(P � {a}).

For example, using the standard topology on R, the function f : R ! R given by

f(x) =

(
2, if x 6= 0,

4, if x = 0,
has lim

x!0
x 6=0

f(x) = 2 and lim
x!0

f(x) does not exist,

and, using the subspace topology on {0, 1} (a subspace of R), the function g : {0, 1} ! R given by

g(x) = 2, has lim
x!0

f(x) = 2 and lim
x!0
x 6=0

f(x) is not defined.
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f : R ! R is continuous

f : R ! R is not continuous at a

Let (X, TX) and (Y, TY ) be topological spaces.

A sequence in X is a function
~x : Z>0 ! X

n 7! xn

Let (X, T ) be a topological space. Let (x1, x2, . . .) be a sequence in X and let z 2 X. Write

z = lim
n!1

xn if (x1, x2, . . .) satisfies:
if N 2 N (z) then N contains all but

a finite number of elements of {x1, x2, . . .}.

More precisely,

z = lim
n!1

xn if (x1, x2, . . .) satisfies:
if N 2 N (z) then there exists ` 2 Z>0

such that N ◆ {x`, x`+1, . . .}.
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The spiral sequence an =
�
1
2e

i⇡/4
�
n
in C has limit point 0

The sequence an = (�1)n�1(1 + 1
n
) in R has cluster points at 1 and at �1

11.3.1 Limits and continuity

Proposition 11.4. Let (X, TX) and (Y, TY ) be topological spaces. Let f : X ! Y be a function.

(a) Let a 2 X. Then

f is continuous at a if and only if lim
x!a

f(x) = f(a).

(b) Let a 2 X such that a 2 X � {a}. Then

f is continuous at a if and only if lim
x!a

x 6=a

f(x) = f(a).

Proof. (Sketch) The notation lim
x!a

f(x) = f(a) means that if N 2 N (f(a)) then f
�1(N) ◆ P , where

P 2 N (a). But then f
�1(N) 2 N (a).
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11.3.2 Limits in metric spaces

Let E = {10�1
, 10�2

, . . .}.

Proposition 11.5. Let (X, dX) and (Y, dY ) be strict metric spaces. Let f : X ! Y be a function and
let y 2 Y .

(a) Let a 2 X. Then

lim
x!a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and dX(x, a) < � then dY (f(x), y) < ✏.

(b) Let a 2 X be such that a 2 X � {a}. Then

lim
x!a

x 6=a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and 0 < dX(x, a) < � then dY (f(x), y) < ✏.

(c) Let (x1, x2, . . .) be a sequence in X and let z 2 X. Then

lim
n!1

xn = z if and only if (x1, x2, . . .) satisfies

if ✏ 2 E then there exists ` 2 Z>0 such that
if n 2 Z�` then d(xn, z) < ✏.

Proof. (Sketch) The proof is accomplished by a careful conversion of the definitions of the limits using
the definition of the metric space topology and the definition of the open ball B✏(y) of radius ✏ centered
at y.

11.3.3 Limits of sequences capture closure and continuity in metric spaces

Theorem 11.6. (Closure in metric spaces) Let (X, d) be a strict metric space and let TX be the metric
space topology on X. Let A ✓ X. Then

A =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A such that z = lim

n!1
an

 
,

where A is the closure of A in X.

Proof. (Sketch) If z is a close point to A then a sequence (a1, a2, . . .) such that

a1 2 B0.1(z) \A, a2 2 B0.01(z) \A, a3 2 B0.001(z) \A, . . . ,

will have z = lim
n!1

an.

Theorem 11.7. (Continuity for metric spaces) Let (X, dX) and (Y, dY ) be strict metric spaces. Let
TX be the metric space topology on X and let TY be the metric space topology on Y . Let f : X ! Y

be a function. Then f is continuous if and only if f satisfies

if (x1, x2, . . .) is a sequence in X and lim
n!1

xn exists then f

⇣
lim
n!1

xn

⌘
= lim

n!1
f(xn).
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Proof. (Sketch) The) implication is similar to the proof of Theorem 11.4. For the( implication prove
the contrapositive: If f is not continuous at a then there exists N 2 N (f(a)) such that f�1(N) 62 N (a)
and letting

x1 2 B0.1(a) \ f
�1(N)c, x2 2 B0.01(a) \ f

�1(N)c, . . .

produces a sequence such that lim
n!1

xn = a and lim
n!1

f(xn) 6= f(a).

11.4 Limits of sequences capture closure and continuity in topological spaces with
countably generated neighborhood filters

A topological space (X, T ) has countably generated neighborhood filters, or is first countable, if (X, T )
satisfies:

if x 2 X then there exist subsets B1, B2, . . . of X such that
N (x) = {N ✓ X | there exists k 2 Z>0 such that N ◆ Bk}.

Theorem 11.8. (Closure in topological spaces with countably generated neighborhood filters) Let
(X, T ) be a topological space with countably generated neighborhood filters. Let A ✓ X. Then

A =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A such that z = lim

n!1
an

 
,

Proof. (Sketch) If z is a close point to A and B1, B2, . . . are generators of N (z) then a sequence
(a1, a2, . . .) such that

a1 2 B1(z) \A, a2 2 B2(z) \A, a3 2 B3(z) \A, . . . ,

will have z = lim
n!1

an.

Theorem 11.9. (Continuity for topological spaces with countably generated neighborhood filters) Let
(X, TX) and (Y, TY ) be topological spaces and assume that (X, TX) has countably generated neighbor-
hood filters. Let f : X ! Y be a function. Then f is continuous if and only if f satisfies

if (x1, x2, . . .) is a sequence in X and lim
n!1

xn exists then f

⇣
lim
n!1

xn

⌘
= lim

n!1
f(xn).

Proof. (Sketch) The proof is similar to the proof of Theorem 11.7 except with generators B1, B2, . . .

of N (a) replacing the open balls B0.1(a), B0.01(a), . . ..

11.5 Some proofs

11.5.1 Alternative characterization of the metric space topology

Proposition 11.10. Let (X, d) be a strict metric space. Let

E = {10�1
, 10�2

, . . .} and let B = {B✏(x) | ✏ 2 E and x 2 X},

the set of open balls in X. Let T be the metric space topology on X. Let U ✓ X. Then U 2 T if and
only if

there exists S ✓ B such that U =
[

B2S
B.
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Proof.

(: Assume U =
S

B2S B.
To show: U 2 T .
To show: If x 2 U then there exists ✏ 2 E such that B✏(x) ✓ U .
Assume x 2 U .
Since U =

S
B2S B then there exists B 2 S such that x 2 B.

By definition of B there exists � 2 E and y 2 X such that B = B�(y).
Since x 2 B = B�(y) then d(x, y) < �.
Let ✏ = 10�k, where k 2 Z>0 is such that 0 < 10�k

< � � d(x, y).
To show: B✏(x) ✓ B�(y).
To show: If p 2 B✏(x) then p 2 B�(y).
Assume p 2 B✏(x).
Since d(p, y)  d(p, x) + d(x, y) < ✏+ d(x, y) < � then p 2 B�(y).
So B✏(x) ✓ B�(y) ✓ U .
Since B�(y) = B and B 2 S then B✏(x) ✓ U .
So U 2 T .

): Assume U 2 T .
If x 2 U then there exists ✏x 2 E such that B✏x(x) ✓ U .
To show: There exists S ✓ B such that U =

S
B2S B.

Let S = {B✏x(x) | x 2 U}.

To show: U =
S

B2S B.
To show: (a) U ◆

S
B2S B.

(b) U ✓
S

B2S B.

(a) If B 2 S then B = B✏x(x) ✓ U .
So U ◆

S
B2S B.

(b) To show: If x 2 U then x 2

⇣S
B2S B

⌘
.

Assume x 2 U .
Since x 2 B✏x(x) and B✏x(x) 2 S then x 2

S
B2S B.

So U ✓

⇣S
B2S B

⌘
.

So U =
S

B2S B.

11.5.2 Interiors and closures

Proposition 11.11. Let X be a topological space. Let A ✓ X.

(a) The interior of A is the set of interior points of A.

(b) The closure of A is the set of close points of A.

Proof.

(a) Let I = {x 2 A | x is an interior point of A}.
To show: A� = I.
To show: (aa) I ✓ A

�.
(ab) A�

✓ I.

(aa) Let x 2 I.
Then there exists a neighborhood N of x with N ✓ A.
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So there exists an open set U with x 2 U ✓ N ✓ A.
Since U ✓ A and U is open U ✓ A

�.
So x 2 A

�.
So I ✓ A

�.

(ab) Assume x 2 A
�.

Then A
� is open and x 2 A

�
✓ A.

So x is a interior point of A.
So x 2 I.
So A

�
✓ I.

So I = A
�.

(b) Let C = {x 2 X | if N 2 N (x) then N \A 6= ;} be the set of close points of A.
Then

C
c = {x 2 X | there exists N 2 N (x) such that N \A = ;}

= {x 2 X | there exists N 2 N (x) such that N ✓ A
c
}.

which is the set of interior points of Ac.
Thus, by part (a), Cc = (Ac)�.
So C = ((Ac)�)c.
To show: C = A.
To show: ((Ac)�)c = A.

Claim: If F ✓ X then (F �)c = F c.
Let F ✓ X.
Then F

� is open and (F �)c is closed.
Since F

�
✓ F , then (F �)c ◆ F

c.
So (F �)c ◆ F c.
If V is closed and V ◆ F

c then V
c is open and V

c
✓ F .

Thus, if V is closed and V ◆ F
c then V

c
✓ F

�.
Thus, if V is closed and V ◆ F

c then V ◆ (F �)c.
So (F �)c = F c.

Thus ((Ac)�)c = (Ac)c.
Thus C = ((Ac)�)c = (Ac)c = A.

11.5.3 Limits and continuity

Theorem 11.12. Let (X, TX) and (Y, TY ) be topological spaces.
Let f : X ! Y be a function.

(a) [Bou, Ch. 1 §2 Theorem 1(d)] f is continuous if and only if f satisfies:

if a 2 X then f is continuous at a.

(b) [Bou, Ch. 1 §7 Prop. 9] Let a 2 X. Then

f is continuous at a if and only if lim
x!a

f(x) = f(a).

(c) [Bou, Ch. 1 §7 no. 5] Let a 2 X such that a 2 X � {a}. Then

f is continuous at a if and only if lim
x!a

x 6=a

f(x) = f(a).
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(d) [Bou, Ch. IX §2 no. 7 Proposition 10 and the remark following] Let (X, d) be a strict metric space
and let TX be the metric space topology on X. Then f is continuous if and only if f satisfies:

if (x1, x2, . . .) is a sequence in X and

if lim
n!1

xn exists then lim
n!1

f(xn) = f

⇣
lim
n!1

xn

⌘
.

Proof.

(a) ): To show: If f is continuous then f satisfies: if a 2 X then f is continuous at a.
Assume f is continuous.
To show: If a 2 X then f is continuous at a.
Assume a 2 X.
To show: If N 2 N (f(a)) then f

�1(N) 2 N (a).
Assume N 2 N (f(a)).
Then there exists V 2 TY such that f(a) 2 V ✓ N .
To show: f�1(N) 2 N (a).
To show: There exists U 2 TX such that a 2 U ✓ f

�1(N).
Let U = f

�1(V ).
Since f is continuous then U is open in X.
Since f(a) 2 V ✓ N then a 2 f

�1(V ) = U ✓ f
�1(N).

So f
�1(N) 2 N (a).

So f is continuous at a.
(a) (: Assume that if a 2 X then f is continuous at a.

To show: f is continuous.
To show: If V 2 TY then f

�1(V ) 2 TX .
Assume V 2 TY .
To show: f�1(V ) is open in X.
To show: If a 2 f

�1(V ) then a is an interior point of f�1(V ).
Assume a 2 f

�1(V ).
To show: There exists U 2 N (a) such that a 2 U ✓ f

�1(V ).
Since V 2 TY and f(a) 2 V then V 2 N (f(a)).
Since f is continuous at a then f

�1(V ) 2 N (a).
Let U = f

�1(V ).
Then a 2 U ✓ f

�1(V ).
So a is an interior point of f�1(V ).
So f

�1(V ) is open in X.
So f is continuous.

(b) ): To show: If f is continuous at a then limx!a f(x) = f(a).
Assume f is continuous at a.
To show: limx!a f(x) = f(a).
To show: If N 2 N (f(a)) then there exists P 2 N (a) such that N ◆ f(P ).
Assume N 2 N (f(a)).
To show: There exists P 2 N (a) such that N ◆ f(P ).
Since f is continuous at a and N 2 N (f(a)) then f

�1(N) 2 N (a).
Let P = f

�1(N).
Then f(P ) = f(f�1(N)) ✓ N .
So limx!a f(x) = f(a).

(b) (: To show: If limx!a f(x) = f(a) then f is continuous at a.
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Assume limx!a f(x) = f(a).
To show: f is continuous at a.
To show: If N 2 N (f(a)) then f

�1(N) 2 N (a).
Assume N 2 N (f(a)).
To show: f�1(N) 2 N (a).
To show: There exists U 2 TX such that a 2 U ✓ f

�1(N).
Since limx!a f(x) = f(a) then there exists P 2 N (a) such that N ◆ f(P ).
So f

�1(N) ◆ P .
Since P 2 N (a), there exists U 2 TX such that a 2 U ✓ P .
So there exists U 2 TX such that a 2 U ✓ P ✓ f

�1(N).
So f

�1(N) 2 N (a).
So f is continuous at a.

(c) ): Assume a 2 X � {a}.
To show: If f is continuous at a then lim

x!a

x 6=a

f(x) = f(a).

Assume f is continuous at a.
To show: lim

x!a

x 6=a

f(x) = f(a).

To show: If N 2 N (f(a)) then there exists P 2 N (a) such that N ◆ f(P � {a}).
Assume N 2 N (f(a)).
To show: There exists P 2 N (a) such that N ◆ f(P � {a}).
Since f is continuous at a and N 2 N (f(a)) then f

�1(N) 2 N (a).
Let P = f

�1(N).
Then f(P � {a}) ✓ f(P ) = f(f�1(N)) ✓ N .
So lim

x!a

x 6=a

f(x) = f(a).

(c) (: Assume a 2 X � {a}.
To show: If lim

x!a

x 6=a

f(x) = f(a) then f is continuous at a.

Assume lim
x!a

x 6=a

f(x) = f(a).

To show: f is continuous at a.
To show: If N 2 N (f(a)) then f

�1(N) 2 N (a).
Assume N 2 N (f(a)).
To show: f�1(N) 2 N (a).
To show: There exists U 2 TX such that a 2 U ✓ f

�1(N).
Since lim

x!a

x 6=a

f(x) = f(a) there exists P 2 N (a) such that N ◆ f(P � {a}).

So f
�1(N) ◆ P � {a}.

Since N 2 N (f(a)) then f(a) 2 N and a 2 f
�1(N).

So f
�1(N) ◆ P .

Since P 2 N (a), there exists U 2 TX such that a 2 U ✓ P .
So there exists U 2 TX such that a 2 U ✓ P ✓ f

�1(N).
So f

�1(N) 2 N (a).
So f is continuous at a.

(d) ): Assume f is continuous.
To show: f satisfies

if (x1, x2, . . .) is a sequence in X and limn!1 xn exists

then f

⇣
lim
n!1

xn

⌘
= lim

n!1
f(xn).

(*)
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Assume (x1, x2, . . .) is a sequence in X and limn!1 xn = a.
To show: f(a) = lim

n!1
f(xn).

To show: If N 2 N (f(a)) then there exists t 2 Z>0 such that N ◆ (f(xt), f(xt+1), . . .).
Assume N 2 N (f(a)).
Since f is continuous then f

�1(N) 2 N (a).
Since limn!1 xn = a then there exists ` 2 Z>0 such that f�1(N) ◆ {x`, x`+1, . . .}.
Let t = `.
Then f

�1(N) ◆ {xt, xt+1, . . .}.
So N ◆ {f(xt), f(xt+1), . . .}.
So f satisfies (*).

(d) (: To show: If f is not continuous then f does not satisfy (*).
Assume f is not continuous.
Then there exists a such that f is not continuous at a.
So there exists N 2 N (f(a)) such that f�1(N) 62 N (a).
To show: There exists a sequence (x1, x2, . . .) such that limn!1 xn exists and limn!1 f(xn) 6=
f
�
limn!1 xn

�
.

Since f
�1(N) 62 N (a) then f

�1(N) 6◆ B10�`(a), for ` 2 Z>0. Let

x1 2 B10�1(a) \ f
�1(N)c, x2 2 B10�2(a) \ f

�1(N)c, . . . .

To show: (da) limn!1 xn = a.
(db) limn!1 f(xn) 6= f(a).

(da) To show: If P 2 N (a) then there exists ` 2 Z>0 such that if n 2 Z�` then xn 2 P .
Assume P 2 N (a).
To show: There exists ` 2 Z>0 such that P ◆ {x`, x`+1, . . .}.
Since P 2 N (a) then there exists ` 2 Z>0 such that P ◆ B10�`(a).
To show: P ◆ {x`, x`+1, . . .}.
To show: If n 2 Z�` then xn 2 P .
Assume n 2 Z�`.
Since n � ` then 10�`

 10�n and xn 2 B10�n(a) ✓ B10�`(a) ✓ P .
So P ◆ {x`, x`+1, . . .}.
So limn!1 xn = a.

(db) To show: limn!1 f(xn) 6= f(a).
To show: There exists M 2 N (f(a)) such that {j 2 Z>0 | f(xj) 2 M

c
} is infinite.

Let M = N .
To show: {j 2 Z>0 | f(xj) 2 N

c
} is infinite.

Since xj 2 f
�1(N)c then f(xj) 62 N , for j 2 Z>0.

So {f(x1), f(x2), . . .} ✓ N
c.

So {j 2 Z>0 | f(xj) 2 N
c
} is infinite.

So limn!1 f(xn) 6= f(a).

So f does not satisfy (*).

To change the proof of (d) above to a proof for first countable topological spaces (X, TX), replace
the use of the open balls B10�1(a) ◆ B10�2(a) ◆ · · · by generators B1 ◆ B2 ◆ · · · of N (a), the
neighborhood filter of a.
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11.5.4 The topology in a metric space is determined by limits of sequences

Theorem 11.13. Let (X, d) be a strict metric space and let A ✓ X and let A be the closure of A.
Then

A =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an

 
.

Proof. Let R =
�
z 2 X | there exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an

 
.

To show: (a) R ✓ A.
(b) A ✓ R.

(a) To show: If z 2 R then z 2 A.
Assume z 2 R.
To show: z 2 A.
We know there exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an.

To show: z is a close point of A.
To show: If N is a neighborhood of z then N \A 6= ;.
Assume N is a neighborhood of z.
Since limn!1 an = z then there exists ` 2 Z>0 such that if n 2 Z�` then an 2 N .
So N \A 6= ;.
So z is a close point of A.
So R ✓ A.

(b) To show: A ✓ R.
To show: If z 2 A then z 2 R.
Let z 2 A.
To show: z 2 R.
To show: There exists a sequence (a1, a2, . . .) in A with z = lim

n!1
an.

Using that z is a close point of A,

let a1 2 B0.1(z) \A, a2 2 B0.01(z) \A, a3 2 B0.001(z) \A, . . . .

To show: z = limn!1 an.
To show: If P is a neighborhood of z then there exists ` 2 Z>0 such that if n 2 Z�` then an 2 P .
Let P be a neighborhood of z.
Then there exists ` 2 Z>0 such that B10�`(z) ✓ P .
To show: If n 2 Z�` then an 2 P .
Assume n 2 Z�`.
Since n � ` then 10�n

 10�` and

an 2 B10�n(z) ✓ B10�`(z) ✓ P,

So lim
n!1

an = z.

So z 2 R.
So A ✓ R.

To change the proof of (b) above to a proof for first countable topological spaces (X, TX), replace
the use of the open balls B10�1(a) ◆ B10�2(a) ◆ · · · by generators B1 ◆ B2 ◆ · · · of N (a), the
neighborhood filter of a.
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11.5.5 Limits in metric spaces

Proposition 11.14. Let (X, dX) and (Y, dY ) be strict metric spaces, let TX be the metric space
topology on X and let TY be the metric space topology on Y . Let f : X ! Y be a function and let
y 2 Y .

(a) Let a 2 X. Then lim
x!a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and dX(x, a) < � then dY (f(x), y) < ✏.

(b) Let a 2 X such that a 2 X � {a}. Then lim
x!a

x 6=a

f(x) = y if and only if f satisfies

if ✏ 2 E then there exists � 2 E such that
if x 2 X and 0 < dX(x, a) < � then dY (f(x), y) < ✏.

(c) Let (x1, x2, . . .) be a sequence in X and let z 2 X. Then lim
n!1

xn = z if and only if (x1, x2, . . .)

satisfies
if " 2 E then there exists ` 2 Z>0 such that if n 2 Z�` then d(xn, z) < ".

Proof. (a) By definition, lim
x!a

f(x) = y if and only if f satisfies: if N 2 N (y) then there exists

P 2 N (a) such that N ◆ f(P ).

By definition of the metric space topology, N 2 N (y) if and only if there exists ✏ 2 E such that
B✏(y) ✓ N .

Thus lim
x!a

f(x) = y if and only if f satisfies: if B✏(y) is an open ball at y then there exists B�(a), an

open ball at a such that B✏(y) ◆ f(B�(a)).

By definition, B�(a) = {x 2 X | d(x, a) < �}.

Thus, lim
x!a

f(x) = y if and only if f satisfies: if " 2 E then there exists � 2 E such that if x 2 X and

dX(x, a) < � then dY (f(x), y) < ".

(b) By definition, lim
x!a

x 6=a

f(x) = y if and only if f satisfies: if N 2 N (y) then there exists P 2 N (a) such

that N ◆ f(P � {a}).

By definition of the metric space topology, N 2 N (y) if and only if there exists ✏ 2 E such that
B✏(y) ✓ N .

Thus lim
x!a

x 6=a

f(x) = y if and only if f satisfies: if B✏(y) is an open ball at y then there exists B�(a), an

open ball at a such that B✏(y) ◆ f(B�(a)� {a}).

By definition, B✏(y) = {x 2 Y | d(x, y) < ✏} and B�(a)� {a} = {x 2 X | 0 < d(x, a) < �}.

Thus, lim
x!a

x 6=a

f(x) = y if and only if f satisfies: if ✏ 2 E then there exists � 2 E such that if x 2 X and

0 < dX(x, a) < � then dY (f(x), y) < ✏.

(c) By definition, lim
n!1

xn = z if and only if (x1, x2, . . .) satisfies: if P 2 N (z) then there exists ` 2 Z>0

such that P ◆ {x`, x`+1, . . .}.

By definition of the metric space topology, P 2 N (y) if and only if there exists ✏ 2 E such that
B✏(y) ✓ P .

So lim
n!1

xn = z if and only if (x1, x2, . . .) satisfies: if ✏ 2 E then there exists ` 2 Z>0 such that

B✏(z) ◆ {x`, x`+1, . . . , }.
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By definition, B✏(a) = {x 2 X | d(x, a) < ✏}.

Thus, lim
n!1

xn = z if and only if (x1, x2, . . .) satisfies: if ✏ 2 E then there exists ` 2 Z>0 such that if

n 2 Z�` then d(xn, z) < ✏.
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