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25 Problem list: Compactness

25.1 Relating types of compactness

1. (cover compact implies sequentially compact) Let (X, d) be a metric space and let A ✓ X. Show
that if A is cover compact then A is sequentially compact.

2. (sequentially compact implies cover compact) Let (X, d) be a metric space and let A ✓ X. Show
that if A is sequentially compact then A is cover compact.

3. (sequentially compact implies Cauchy compact) Let (X, d) be a metric space and let A ✓ X.
Show that if A is sequentially compact then A is Cauchy compact.

4. (cover compact implies ball compact) Let (X, d) be a metric space and let A ✓ X. Show that if
A is cover compact then A is ball compact.

5. (ball compact implies bounded) Let (X, d) be a metric space and let A ✓ X. Show that if A is
ball compact then A is bounded.

6. (sequentially compact implies Cauchy compact) Let (X, d) be a metric space and let A ✓ X.
Show that if A is Cauchy compact then A is closed.

7. (ball compact does not imply closed) Let A = (0, 1) ✓ R with the standard metric on R. Show
that A is ball compact and not closed.

8. (ball compact does not imply cover compact) Let A = (0, 1) ✓ R with the standard metric on
R. Show that A is ball compact and not cover compact.

9. (ball compact does not imply Cauchy compact) Let A = (0, 1) ✓ R with the standard metric on
R. Show that A is ball compact and not Cauchy compact.

10. (bounded does not imply ball compact) Let X = R with metric given by d(x, y) = min{|x�y|, 1}
and let A = X. Show that A is bounded but not ball compact.

11. (closed does not imply Cauchy compact) Let X = R(0,1) = {x 2 R | 0 < x < 1} with metric
given by d(x, y) = |x� y| and let A = X. Show that A is closed in X but not Cauchy compact.

12. (Cauchy compact does not imply bounded) Let X = R with metric given by d(x, y) = |x � y|

and let A = X. Show that A is Cauchy compact but not bounded.

13. (Cauchy compact does not imply cover compact) LetX = R with metric given by d(x, y) = |x�y|

and let A = X. Show that A is Cauchy compact but not cover compact.
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14. (Cauchy compact does not imply ball compact) Let X = R with metric given by d(x, y) = |x�y|

and let A = X. Show that A is Cauchy compact but not ball compact.

15. (ball compact+Cauchy compact implies cover compact) Let (X, d) be a metric space and let
A ✓ X. Show that if A is ball compact and Cauchy compact if and only if A is cover compact.

16. (In Rn closed and bounded implies cover compact) Let X = Rn with the standard metric and
let A ✓ X. Show that A closed and bounded if and only if A is cover compact.

17. (In Rn closed implies Cauchy compact) Let X = Rn with the standard metric and let A ✓ X.
Show that if A is closed in X then A is Cauchy compact.

18. (closed subsets of Cauchy compact spaces are Cauchy compact) Let (X, d) be a Cauchy compact
metric space and let A ✓ X. Show that if A is closed in X then A is Cauchy compact.

19. (bounded subsets of ball compact spaces are ball compact) Let (X, d) be a ball compact metric
space and let A ✓ X. Show that if A is bounded then A is ball compact.

20. (closed subsets of cover compact spaces are cover compact) Let (X, d) be a cover compact metric
space and let A ✓ X. Show that if A is closed in X then A is cover compact.

21. (compact subsets of Hausdor↵ topological spaces are closed) Let (X, T ) be a Hausdor↵ topo-
logical space and let K be a compact subset of X. Let x 2 K

c. Since X is Hausdor↵, for each
y 2 K there exist Uxy 2 T and Vxy 2 T such that

Uxy \ Vxy = ; and then {Vxy | y 2 K} is an open cover of K.

SinceK is compact there exists a finite subcover {Vxy1 , Vxy2 , . . . , Vxy`
} ofK. If U = Uxy1\· · ·Uxy`

then
x 2 U and U \K ✓ (Uxy1 \ · · · \ Uxy`

) \ (Vxy1 [ · · · [ Vxy`
) = ;.

So x 2 U and U ✓ K
c, and thus x is an interior point of Kc. So K

c is open and K is closed.

22. (compact subsets of topological spaces are not necessarily closed) Let X be a set with more than
one point with topology T = {;, X}. Show that every subset A ✓ X is compact but the only
closed subsets of X are ; and X. Note that X is not Hausdor↵.

23. (boundedness and completeness are not topological properties) Show that (0, 1) is homeomorphic
to R.

Show that
(0, 1) is bounded, (0, 1) is not complete,
R is not bounded, R is complete.

Conclude that boundedness and completeness are not topological properties.
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25.2 Separability and compactness for metric spaces

1. (cover compact metric spaces have a countable base) [BR, Ch. 2 Ex. 25] Assume X is cover
compact. If n 2 Z>0 then S 1

n

= {B 1
n

(x) | x 2 X} contains a finite subcover B 1
n

of X. Show

that the union of the B 1
n

is a countable base of X.

2. (sequentially compact metric spaces have a countable dense set) [BR, Ch. 2 Ex. 24] Let � 2 R>0

and x1 2 X. For i 2 Z>0 let

xi 2 X such that d(xj , xi) � � for j = 1, 2, . . . , i� 1.

Use the fact that X is sequentially compact to show that this process must stop after a finite
number of steps and conclude that X can be covered by a finite number of open balls of radius
�. Do this for � 2 {1, 12 ,

1
3 , . . .} to obtain a countable collection of open balls whose centers form

a countable dense subset of X.

3. (metric spaces with a countable base have countable open subcovers) (This exercise is one part
of [BR, Ch. 2 Ex. 26].) Let (X, d) be a metric space with a countable base. Show that every
open cover of X has a countable subcover.

25.3 The one point compactification

1. (The one point compactification) A locally compact space is a topological space (X, T ) such that
X is Hausdor↵ and

if x 2 X then there exists a neighborhood N of x such that N is cover compact.

Let (X, T ) be a locally compact space and let 1 be a symbol. The one-point compactification
of X is

X
+ = X [ {1}

with topology
U = T [ {X

+
�K | K is a cover compact subset of X}.

(a) Show that U is a topology on X
+ and that X+ is cover compact.

(b) Show that R�0 is locally compact and (R�0)+ is homeomorphic to [0, 1] = {x 2 R | 0 
x  1}.

(c) Show that R is locally compact and that R+ is homeomorphic to S
1 = {(x, y) 2 R2

| x
2 +

y
2 = 1}.

25.4 Cauchy sequences and convergent sequences

1. (convergent sequences are Cauchy) Let (X, d) be a metric space and let (x1, x2, . . .) be a a
sequence in X. Show that if there exists x 2 X with lim

n!1
xn = x then (x1, x2, . . .) is a Cauchy

sequence in X.
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2. (convergent sequences are bounded) Let (X, d) be a metric space and let (x1, x2, . . .) be a a
sequence in X. Show that if (x1, x2, . . .) converges in X then the set {x1, x2, . . .} is bounded.

3. (Cauchy sequences provide Cauchy filters) Let (X,X ) be a uniform space and let (x1, x2, . . .) be
a sequence in X. Let F be the filter consisting of all subsets of X which contain all but a finite
number of points of {x1, x2, . . .}. Show that F is a Cauchy filter if and only if (x1, x2, . . .) is a
Cauchy sequence.

4. (Convergent filters are Cauchy) Let (X,X ) be a uniform space and let F be a filter on X. Show
that if F is convergent then F is Cauchy.

5. (Convergent sequences are Cauchy) Let (X,X ) be a uniform space and let (x1, x2, . . .) be a
sequence in X. Show that if (x1, x2, . . . ) is convergent then (x1, x2, . . .) is a Cauchy sequence.

6. (Cauchy sequences are not necessarily convergent) Let X = R(0,1) = {x 2 R 0 < x < 1} with

metric given by d(x, y) = |x� y|. Show that the sequence (12 ,
1
3 ,

1
4 , . . .) is a Cauchy sequence in

X that does not converge in X.

7. (Cauchy filters do not necessarily have limit points) Let (X,X ) be a uniform space and let
(x1, x2, . . .) be a Cauchy sequence in X which does not have a limit point. Let F be the filter
on X generated by the sets ~x�N = {xm | m 2 Z�N} for N 2 Z>0. Show that F is a Cauchy
filter on X which does not have a limit point.

25.5 Favourite examples of complete spaces

1. (R is complete) Let X = R with metric given by d(x, y) = |x � y|. Show that R is a complete
metric space.

2. (Rn is complete) Let n 2 Z>0. Let X = Rn with metric given by d(x, y) = kx � yk where
k(x1, . . . , xn)k =

p
x
2
1 + · · ·+ x2n. Show that Rn is a complete metric space.

3. (The example ◆ : Q! R) The standard metric on R is

d : R⇥ R! R�0 given by d(x, y) = |y � x|,

where the standard absolute value | | : R! R�0 is given by

|x| =

(
x, if x � 0,

�x, if x  0.

Show that, with respect to the standard metric, R is the completion of Q.
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4. (The example ◆ : R[t]! R[[t]]) The t-adic metric on R[[t]] is

d : R[t]⇥ R[[t]]! R�0 given by d(x, y) = e
�v(y�x)

,

where e 2 R>1 and the t-adic valuation v : R[[t]]! Z�0 is given by

v(p) = max{n 2 Z�0 | p 2 t
nR[[t]]}.

Show that, with respect to the t-adic metric, R[[t]] is the completion of R[t].

5. (The example ◆ : R(t)! R((t))) The t-adic metric on R((t)) is

d : R((t))⇥ R((t))! R�0 given by d(x, y) = e
�v(y�x)

,

where e 2 R>1 and the t-adic valuation v : R((t))! Zge0 is given by

v(f) = max{n 2 Z�0 | f 2 t
nR[[t]]}.

Show that, with respect to the t-adic metric, R((t)) is the completion of R(t).

6. (The example ◆ : Q! Qp) Let p 2 Z>1 be prime. The p-adic metric on Qp is

d : Qp ⇥Qp ! R�0 given by d(x, y) = e
�vp(y�x)

,

where e 2 R>1 and the p-adic valuation vp : Qp ! Z is given by

vp(a) = max{n 2 Z | a 2 p
nZp}.

Show that, with respect to the p-adic metric, Qp is the completion of Q.

7. (The example ◆ : Z! Zp) Let p 2 Z>1 be prime. The p-adic metric on Zp is

d : Zp ⇥ Zp ! R�0 given by d(x, y) = e
�vp(y�x)

,

where e 2 R>1 and the p-adic valuation vp : Zp ! Z�0 is given by

vp(a) = max{n 2 Z�0 | a 2 p
nZp}.

Show that, with respect to the p-adic metric, Zp is the completion of Z.

8. (`2 is not ball compact) Let e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), . . . in `
2.

Show that

(a) If A = {e1, e2, . . .} then A ✓ Bp
2+.001(e1) so that A is bounded.

(b) If A = {e1, e2, . . .} and ✏ 2 R>0 with ✏ <
p
2 then there do not exist a finite number of balls

of radius ✏ which cover A. Thus A is not ball compact.
(c) Show that e1, e2, e3, . . . is a sequence in `

2 with no cluster point.

9. (`2 is Cauchy compact) Show that `2 is Cauchy compact.

322



MAST30026 Resources, Arun Ram, July 24, 2022

25.6 Existence and uniqueness of completions

1. (isometries are injective) Show that if ' : X ! Y is an isometry then ' is injective.

2. (isometries are not necessarily surjective) Show that if ' : Q ! R given by '(x) = x is an
isometry that is not surjective.

3. (uniqueness of the completion of a uniform space) Let (X,X ) be a uniform space. Show that if
( bX, bX , ◆ : X ! bX) and (bY , bY, j : X ! bY ) are completions of X then there exists a bijective uni-
formly continuous function f : bX ! bY such that the inverse function f

�1 : Y ! X is uniformly
continuous and j = f � ◆.

X

bX

bY

◆
77

j ''

f

✏✏

4. (uniqueness of the completion of a metric space) Let (X, d) be a metric space. Show that if
( bX1, d̂1) with '1 : X ! bX1 and ( bX2, d̂2) with '2 : X ! bX2 are completions of (X, d) then there
exists

f : bX1 !
bX2 such that f is an isometry, f is a bijection, and f � '1 = '2.

X

bX

bY

'1
77

'2 ''

f

✏✏

5. (existence of the completion of a metric space) Let (X, d) be a metric space. Let ( bX, d̂, ◆) be the
metric space

bX = {Cauchy sequences ~x in X} with the function
◆ : X �! bX

x 7�! (x, x, x, . . .)

where bX has the metric

d : bX ⇥ bX ! R�0 defined by d(~x, ~y) = lim
n!1

d(xn, yn),

and Cauchy sequences ~x = (x1, x2, . . .) and ~y = (y1, y2, . . .) are equal in bX,

~x = ~y if lim
n!1

d(xn, yn) = 0.

Show that ( bX, d̂) with an isometry ◆ : X ! bX such that

( bX, d̂) is a complete complete metric space and '(X) = bX,

where '(X) is the closure of the image of '.
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6. (another construction of the completion of a metric space) Let (X, d) be a metric space. The
space of bounded functions on X is

B(X) = {f : X ! R | f(X) is bounded}

with metric d1 : B(X)⇥B(X)! R�0 given by

d1(f, g) = sup{|f(x)� g(x)|
�� x 2 X}.

Fix a 2 X. Let ( bX, d̂, ◆) be the metric space

bX = ◆(X) where
◆ : X ! B(X)

x 7! fx

with
fx : X ! R given by fx(y) = d(y, x)� d(y, a).

Show that ◆ is well defined and ( bX, d1, ◆) is a completion of X.

7. (existence of the completion of a uniform space) Let (X,X ) be a uniform space. A minimal
Cauchy filter on X is a Cauchy filter on X which is minimal with respect to inclusion of filters.
The completion of X is the uniform space

bX = {minimal Cauchy filters x̂ on X} with the function
◆ : X �! bX

x 7�! N (x)

where N (x) is the neighborhood filter of x, and bX has the uniformity bX generated by the sets

V̂ = {(x̂, ŷ) | there exists N 2 x̂ \ ŷ such that N ⇥N ✓ V },

for V 2 X such that if (x, y) 2 V then (y, x) 2 V .

Show that ( bX, bX ) is a complete Hausdor↵ uniform space and ◆ : X ! bX is a uniformly continuous
function such that

if Y is a complete Hausdor↵ uniform space and f : X ! Y is a uniformly continuous map
then there exists a unique uniformly continuous function g : bX ! Y such that f = g � ◆.

25.7 Completions and inverse limits

1. (Completions and inverse limits)

A topological abelian group is a topological space (G, T ) with a function

G⇥G �! G

(g1, g2) 7�! g1 + g2
such that

(a) If g1, g2, g3 2 G then (g1 + g2) + g3 = g1 + (g2 + g3),

(b) There exists 0 2 G such that if g 2 G then g + 0 = g and 0 + g = g,

(c) If g 2 G then there exists �g 2 G such that g + (�g) = 0 and (�g) + g = 0,

(d) If g1, g2 2 G then g1 + g2 = g2 + g1,
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(e) The function
G⇥G �! G

(g1, g2) 7�! g1 + g2
is continuous, and

(f) The function
G �! G

g 7�! �g
is continuous.

Assume that N (0), the neighborhood filter of 0 in G is countably generated (i.e. there exist
U1, U2, . . . 2 N (0) such that if P 2 N (0) then there exists j 2 Z>0 such that P ◆ Uj).

A Cauchy sequence in G is a sequence x1, x2, . . . 2 G such that

if P 2 N (0) then there exists N 2 Z>0 such that
if r, s 2 Z�N then xr � xs 2 P .

Two Cauchy sequences (x1, x2, . . .) and (y1, y2, . . .) are equivalent,

(x1, x2, . . .) ⇠ (y1, y2, . . .), if lim
n!1

(xn � yn) = 0.

The completion of G is the set of equivalence classes of Cauchy sequences in G,

bG = {Cauchy sequences (x1, x2, . . .) in G}/ ⇠

with the function
' : G �! Ĝ

x 7�! (x, x, . . .).

Now assume that G1 ◆ G2 ◆ are subgroups which generate N (0) (i.e. G1, G2, . . . 2 N (0) and
if P 2 N (0) then there exists j 2 Z>0 such that P ◆ Gj). A coherent sequence is a sequence
(x̄1, x̄2, . . .) with

x̄n 2 G/Gn and ⇡n(x̄n+1) = x̄n, where
⇡n : G/Gn+1 �! G/Gn

ḡ 7�! ḡ +Gn.

The inverse limit
lim
 �

G/Gn is the set of coherent sequences.

Show that the function

� : Ĝ �! lim
 �

G/Gn

(x1, x2, . . .) 7�! (x1 +G1, x2 +G2, . . .)
is an isomorphism.

25.7.1 Products and function spaces

1. (products of complete metric spaces are complete) Let (X, dX) and (Y, dY ) be complete metric
space spaces. Show that X ⇥ Y with metric given by

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

is a complete metric space.
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2. (products of complete uniform spaces are complete) Let (X,X ) and (X,Y) be complete uniform
spaces. Show that X ⇥ Y with the product uniformity is a complete uniform space. (See [Bou
Ch II §3 no. 5 Proposition 10]).

3. (function spaces with complete targets are complete) Let (X, d) and (Y, ⇢) be metric spaces and
let

Cb(X,Y ) = {f : X ! Y | f is continuous and f(X) is bounded}

with metric d1 : Cb(X,Y )⇥ Cb(X,Y )! R�0 given by

d1(f, g) = sup{⇢(f(x), g(x)) | x 2 X}.

Show that if (Y, ⇢) is a complete metric space then Cb(X,Y ) is a complete metric space.

4. (the metric space of bounded continuous real valued functions is complete) Let (X, d) and (Y, ⇢)
be metric spaces and

Cb(X) = {f : X ! R | f is continuous and f(X) is bounded}

with metric d1 : Cb(X)⇥ Cb(X)! R�0 given by

d1(f, g) = sup{|f(x)� g(x)| | x 2 X}.

Show that Cb(X) is a complete metric space.

5. (If W is complete then B(V,W ) is complete) Let V and W be normed vector spaces and let
B(V,W ) be the vector space of bounded linear operators from V to W with norm given by

kTk = sup

⇢
kTvk

kvk

�� v 2 V

�
, for T 2 B(V,W ).

Show that if W is complete then B(V,W ) is complete.

6. (If Y is complete then bounded continuous functions from X to Y is complete) Let (X, dX) and
(Y, dY ) be metric spaces and let

BC(X,Y ) = {f : X ! Y | f is continuous and f(X) is bounded in Y },

with d1 : BC(X,Y )⇥ BC(X,Y )! R�0 given by

d1(f, g) = sup{dY (f(x), g(x)) | x 2 X}.

(a) Show that BC(X,Y ) is a metric space.
(b) Show that if Y is a complete metric space then BC(X,Y ) is a complete metric space.

7. (bounded real valued functions is a complete metric space) Let (X, d) be a metric space and let

B(X) = {f : X ! R | f(X) is bounded},

with metric d1 : B(X)⇥B(X)! R�0 given by

d1(f, g) = sup{|f(x)� g(x)| | x 2 X}.

Show that B(X) is a complete metric space.

8. (duals of normed vector spaces are complete) Let V with k k : V ! R�0 be a normed vector
space. Show that V ⇤, the dual of V , is complete.
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25.7.2 Banach fixed point theorem and Picard iteration

1. (Banach fixed point theorem) Let (X, d) be a metric space.
A contraction mapping is a function f : X ! X such that there exists ↵ 2 R>0 such that ↵ < 1
and

if x, y 2 X then d(f(x), f(y))  ↵ d(x, y).

A fixed point of f : X ! X is an element x 2 X such that f(x) = x.

Let (X, d) be a complete metric space and let f : X ! X be a contraction mapping. Let x 2 X

and let x1, x2, . . . be the sequence

x1 = f(x), x2 = f(f(x)), x3 = f(f(f(x))), . . . .

Show that the sequence x1, x2, . . . converges and p = limn!1 xn is the unique fixed point of f .

2. (Picard iteration) Picard iteration is a method for solving equations of the the form f(x) = x.
The process is to let

a1 = your choice, a2 = f(a1), a3 = f(a2), . . . .

If the sequence (a1, a2, . . .) converges and a = lim
n!1

an then f(a) = a (because f(an) = an+1 is

very close to an for large n). To apply this technique to find a solution of x3�x�1 = 0 proceed
as follows.

(a) Transform the equation x
3
� x� 1 = 0 to the form x = f(x), where f(x) = 1

x2+1 .

(b) Let a1 =
1
2 . Show that a2 =

4
5 = 0.8.

(c) Show that a3 =
25
41 ⇡ 0.609760976097....

(d) Show that a4 =
1681
2306 ⇡ 0.728967.

(e) Show that a5 ⇡ 0.6530046.
(f) Show that a6 ⇡ 0.7010582.
(g) Show that a7 ⇡ 0.6704737.
(h) Show that a8 ⇡ 0.68987635.
(i) Show that a9 ⇡ 0.67753918.
(j) Show that a10 ⇡ 0.68537308.
(k) Show that a11 ⇡ 0.680394233.
(l) Show that a12 ⇡ 0.6835567.

(m) Show that a13 ⇡ 0.68154722.
(n) Show that a14 ⇡ 0.68282382.
(o) Show that a15 ⇡ 0.6820126.
(p) Prove that, to 3 decimal places of accuracy,

x = .682 is a solution of x3 + x� 1 = 0.

3. (Picard iteration doesn’t always converge) Picard iteration is a method for solving equations of
the the form f(x) = x. The process is to let

a1 = your choice, a2 = f(a1), a3 = f(a2), . . . .

If the sequence (a1, a2, . . .) converges and a = lim
n!1

an then f(a) = a (because f(an) = an+1 is

very close to an for large n). Another transformation of the equation x
3
� x� 1 = 0 to the form

x = f(x), has f(x) = 1� x
3.
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(a) Let a1 =
1
2 . Show that a2 =

7
8 = 0.875.

(b) Show that a3 ⇡ 0.330078.
(c) Show that a4 ⇡ 0.964037.
(d) Show that a4 ⇡ 0.104055.
(e) Prove that (a1, a2, a3, . . .) does not converge, but is oscillating between close to 1 and close

to 0.

4. Which of the following maps are contractions?

(a) f : R! R, f(x) = e
�x;

(b) f : [0,1)! [0,1), f(x) = e
�x;

(c) f : [0,1)! [0,1), f(x) = e
�e

x

;
(d) f : R! R, f(x) = cosx;
(e) f : R! R, f(x) = cos(cosx).

5. Let X be a complete metric space and let f : X ! X be a contraction. Show that f has a unique
fixed point.

6. Let ↵ 2 R with 0 < ↵ < 1. Let X be a complete metric space and let f : X ! X be a
↵-contraction. Let x 2 X, x0 = x and xn+1 = f(xn), for n 2 Z�0.

(a) Show that the sequence x0, x1, x2, . . . converges in X.

Let p = lim
n!1

xn.

(b) Show that d(x, p) 
d(x, f(x)

1� ↵
.

(c) Show that f(p) = p.

7. Let U be an open subset of R2. Let f : U ! R be a continuous function which satisfies the
Lipschitz condition with respect to the second variable: There exists ↵ 2 R>0 such that

if (x, y1), (x, y2) 2 U then |f(x, y1)� f(x, y2)|  ↵|y1 � y2|.

Show that if (x0, y0) 2 U then there exists � 2 R>0 such that y
0(x) = f(x, y(x)) has a unique

solution y : [x0 � �, x0 + �]! R such that y(x0) = y0.

8. Consider the map f : R2
! R2 given by

f(x, y) =
1

10
(8x+ 8y, x+ y), (x, y) 2 R2

.

Recall metrics d1((x1, y1), (x2, y2)) = |x1 � x2| + |y1 � y2|, d2((x1, y1), (x2, y2)) = [|x1 � x2|
2 +

|y1 � y2|
2]1/2 and d1((x1, y1), (x2, y2)) = max{|x1 � x2|, |y1 � y2|}. Is f a contraction with re-

spect to d1? d2? d1?

9. (a) Consider X = (0, a] with the usual metric and f(x) = x
2 for x 2 X. Find values of a for

which f is a contraction and show that f : X ! X does not have a fixed point.
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(b) Consider X = [1,1) with the usual metric and let f(x) = x + 1
x
for x 2 X. Show that

f : X ! X and d(f(x), f(y)) < d(x, y) for all x 6= y, but f does not have a fixed point.
Reconcile (a) and (b) with Banach fixed point theorem.

10. Let (X, d) be a complete metric space and f : X ! X be a function such that

d(f(x), f(y))  ↵d(x, y)

for all x, y 2 B(x0, r0), where 0 < ↵ < 1 and d(x0, f(x0))  (1 � ↵) · r0. Prove that f has a
unique fixed point p 2 B(x0, r0).

11. (a) Show that there is exactly one continuous function f : [0, 1]! R which satisfies the equation

[f(x)]3 � e
x[f(x)]2 +

f(x)

2
= e

x
.

(Hint: rewrite the equation as f(x) = e
x +

1

2

f(x)

1 + f(x)2
.)

(b) Consider C[0, a] with a < 1 and T : C[0, a]! C[0, a] given by

(Tf)(t) = sin t+

Z
t

0
f(s)ds, t 2 [0, a].

Show that T is a contraction. What is the fixed point of T?
(c) Find all f 2 C[0,⇡] which satisfy the equation

3f(t) =

Z
t

0
sin(t� s)f(s)ds.

(d) Let g 2 C[0, 1]. Show that there exists exactly one f 2 C[0, 1] which solves the equation

f(x) +

Z 1

0
e
x�y�1

f(y)dy = g(x), for all x 2 [0, 1].

(Hint: Consider the metric d(f, h) = sup{e�x
|f(x)� h(x)| | x 2 [0, 1]}.)

12. Call a map f : X ! X a weak contraction if d(f(x), f(y)) < d(x, y) for all x 6= y. Prove that
if X is compact and f is a weak contraction, then f has a unique fixed point.

13. Let a > 0, and let

f(x) =
1

2

✓
x+

a

x

◆
for x > 0.

(a) Show that f(x) �
p
a for all x > 0. Hence f defines a function f : X ! X where

X = [
p
a,1).

(b) Show that f is a contraction mapping when X is given the usual metric.
(c) Fix x0 >

p
a and xn+1 = f(xn) for all n � 0. Show that the sequence {xn} converges and

find its limit with respect to the usual metric on R.
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14. (a) State the Banach fixed point theorem.
A mapping f : R! R is defined as a contraction if there exists a constant c with 0  c < 1
such that |f(x)� f(y)|  c|x� y| for all x, y 2 R.

(b) (1) Use (a) to show that the equation x+ f(x) = a has a unique solution for each a 2 R.
(2) Deduce that F : R ! R defined by F (x) = x + f(x) is a bijection. (This should be

easy).
(3) Show that F is continuous.
(4) Show that F�1 is continuous. (Hence F is a homeomorphism.)

15. (a) State the Banach fixed point theorem.
(b) Let X be the interval (0, 1/3) with usual Euclidean metric. Show that f : X ! X defined

by f(x) = x
2 is a contraction, but f does not have a fixed point in X. Why does this not

contradict the Banach fixed point theorem?
(c) Let (X, d) be a complete metric space and f : X ! X. Define g(x) = f(f(x)), that is,

g = f � f . Assume that the map g : X ! X is a contraction. Prove that f has a unique
fixed point.

16. Let f : R�0 ! R�0 be given by

f(x) =
2

2 + x
.

(a) Show that f defines a contraction mapping f : R�0 ! R�0.
(b) Fix x0 � 0 and xn+1 = f(xn) for all n � 0. Show that the sequence {xn} converges and

find its limit with respect to the usual metric on R.

17. Let a 2 R>0. Let

f(x) =
1

2

✓
x+

a

x

◆
, for x 2 R>0.

(a) Show that if x 2 R>0 then f(x) �
p
a. Hence f defines a function f : X ! X where

X = [
p
a,1).

(b) Show that f is a contraction mapping when X is given the usual metric.
(c) Fix x0 >

p
a and xn+1 = f(xn), for n 2 Z�0. Show that the sequence {xn} converges and

find its limit with respect to the usual metric on R.

18. Consider the map f : R2
! R2 given by

f(x, y) = 1
10(8x+ 8y, x+ y).

Recall metrics

d1((x1, y1), (x2, y2) = |x1 � x2|+ |y1 � y2|,

d2((x1, y1), (x2, y2) = (|x1 � x2|
2 + |y1 � y2|

2)1/2,

d1((x1, y1), (x2, y2) = max{|x1 � x2|, |y1 � y2|}

If f a contraction with respect to d1? d2? d1? Prove that your answers are correct.
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19. (a) State the Banach fixed point theorem.
(b) Let X = {(x, y) 2 R2

| x
2 + y

2
 1}.

Verify that the mapping f : X ! X given by

f(x, y) =
�
1
4(x+ y + 1), 14(x� y + 1)

�

satisfies the conditions of the Banach fixed point theorem.
(c) Find directly the unique fixed point for f .

25.8 The space L1

A rectangle in Rk is I1 ⇥ . . .⇥ Ik, where I1, . . . , Ik are intervals in R and

vol(I1 ⇥ · · ·⇥ Ik) = length(I1) · · · length(Ik).

A step function is a function f : Rk
! R such that there exist k 2 Z>0, c 2 R and intervals I1, . . . , Ik ✓

R such that

f(x) =

(
c, if x 2 I1 ⇥ · · ·⇥ Ik,

0, otherwise.

A null set is a subset A ✓ Rk such that

if " 2 R>0 then there exists a sequence R1, R2, . . . of rectangles in Rk

such that A ✓

[

j2Z>0

Rj and
X

j2Z>0

vol(Rj) < ".

A full set is the complement of a null set.

1. Let S be the set of linear combinations of step functions f : Rk
! R. Let

kfk =

Z
|f | and d(f, g) = kf � gk,

for f, g 2 S.

(a) Show that k k : S ! R�0 is not a norm on S.
(b) Show that d : S ⇥ S ! R�0 is not a metric on S.

2. Let S be the set of linear combinations of step functions f : Rk
! R. Let

P
i2Z>0

fi be a series

in S which is norm absolutely convergent. Show that there exists a full set in Rk on whichP
i2Z>0

fi converges.

3. Let S be the set of linear combinations of step functions f : Rk
! R. Let

P
n2Z>0

fk be a series
in S which is norm absolutely convergent. Show that

P
n2Z>0

fn = 0 almost everywhere if and
only if the limit of the norms of the partial sums of fn converge to 0.

4. Let L
1 be the set of functions which are equal almost everywhere to limits of norm absolutely

convergent series in S, where S is the set of linear combinations of step functions f : Rk
! R.

Define

kfk =

Z
f and d(f, g) = kf � gk, for f, g 2 L

1.

(a) Show that k k : L1
! R�0 is a norm on L

1.
(b) Show that d : L1

⇥ L
1
! R�0 is a metric on L

1.
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25.9 Additional sample exam questions

1. Let (X, d) be a metric space and let x1, x2, . . . be a sequence in X. Show that if (x1, x2, . . .) is
a Cauchy sequence then {x1, x2, . . .} is bounded.

2. Let (X, d) be a metric space and let (x1, x2, . . .) be a sequence in X. Show that if (x1, x2, . . .)
converges then (x1, x2, . . .) is a Cauchy sequence.

3. Let (X, d) be a metric space and let (x1, x2, . . .) be a sequence in X. Show that if (x1, x2, . . .) is
a Cauchy sequence and contains a convergent subsequence then (x1, x2, . . .) converges.

4. Give an example of a metric space (X, d) and a Cauchy sequence (x1, x2, . . .) in X that does not
converge.

5. Give an example of a metric space (X, d) that is not complete.

6. Show that R with the usual metric is a complete metric space.

7. Let (X, d) be a complete metric space. Let Y ✓ X be a subspace of X. Show that if Y is closed
then (Y, d) is complete.

8. Give an example of a metric space (X, d) and a subspace Y ✓ X such that (X, d) is a complete
metric space and (Y, d) is not complete.

9. Let (X, d) be a metric space and let Y ✓ X be a subspace of X. Show that if (Y, d) is complete
then Y is a closed subset of X.

10. Let (X1, d1), . . . , (X`, d`) be metric spaces and let (X1⇥ · · ·⇥X`, d) be the product metric space.
Show that if (X1, d1), . . . , (X`, d`) are complete then (X1 ⇥ · · ·⇥X`, d) is complete.

11. Let (X, d) and (Y, d0) be metric spaces and let Cb(X,Y ) be the set of bounded continuous
functions f : X ! Y with the metric ⇢ : Cb(X,Y )⇥ Cb(X,Y )! R�0 given by

⇢(f, g) = sup{d0(f(x), g(x)) | x 2 X}.

Show that if (Y, d0) is complete then (Cb(X,Y ), ⇢) is a complete metric space.

12. Show that the completion of (0, 1) with the usual metric is [0, 1] with the usual metric.

13. Let (X, d) and (Y, ⇢) be metric spaces and let f : X ! Y be an isometry. Show that f is injective.
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14. Give an example of an isometry f : X ! Y that is not surjective.

15. Let (X, d) be a metric space. Show that a completion of (X, d) exists.

16. Let (X, d) be a metric space. Show that the completion of (X, d) is unique (if it exists).

17. Let (X, d) be a metric space. Let ((X1, d1),'1) and ((X2, d2),'2) be completions of (X, d). Show
that there is a surjective isometry f : X1 ! X2 such that f � '1 = '2.

18. Let (X, k k) be a normed vector space. Show that (X, k k) is complete if and only if every norm
absolutely convergent series is convergent in X.

19. Let I be a closed and bounded interval in R. Let x1, x2, x3, . . . be a sequence in I. Show that
there exists a subsequence xn1 , xn2 , xn3 , . . . of x1, x2, x3, . . . such that xn1 , xn2 , xn3 , . . . converges
in I.

20. Let X be a compact topological space. Let C be a closed subset of X. Show that C is compact.

21. Let X be a metric space and let E be a compact subset of X. Show that E is closed and
bounded.

22. Let C([0, 1],R) = {f : [0, 1]! R | f is continuous} and let d(f, g) = sup{|f(x)�g(x)| | x 2 [0, 1]}.

(a) Show that d : C([0, 1],R)⇥ C([0, 1],R) is a metric on C([0, 1,R).
(b) Let A = B1(0) = {f 2 C([0, 1],R)] | d(f, 0)  1}. Show that A is closed and bounded.
(c) Show that A is not compact.

23. Let K ✓ R. Show that K is compact if and only if K is closed and bounded.

24. Let (X, d) and (Y, d0) be metric spaces and let f : X ! Y be a continuous function. Let K be a
compact subset of X. Show that f(K) is compact in Y .

25. Let X be a compact metric space. Let f : X ! R be a continuous function. Show that f attains
a maximum and a minimum value.

26. Let X be a compact metric space. Let f : X ! Y be a continuous function. Show that f is
uniformly continuous.

27. Let X be a set with the discrete metric. Show that X is compact if and only if X is finite.
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28. Let X be a metric space and let A ✓ X. Show that if A is totally bounded then A is bounded.

29. Let X = R with metric given by d(x, y) = min{|x� y|, 1}.

(a) Show that X is bounded.
(b) Show that X is not totally bounded.

30. Let X be a metric space and let A ✓ X. Show that the following are equivalent:

(a) Every sequence in A has a convergent subsequence.
(b) A is complete and totally bounded.
(c) Every open cover of A has a finite subcover.

31. Let X be a topological space. Show that X is compact if and only if X satisfies if C is a collection
of closed sets such that

if ` 2 Z>0 and C1, . . . , C` 2 C then C1 \ · · · \ C` 6= ;

then
\

C2C
C 6= ;.

32. Let X be a topological space and let K ✓ X. Assume X is compact. Show that if K is closed
then K is compact.

33. Let X be a topological space and let K ✓ X. Assume X is Hausdor↵. Show that if K is compact
then K is closed.

34. Show that a compact Hausdor↵ space is normal.

35. Let X and Y be topological spaces and let f : X ! Y be a continuous function. Let ✓ X. Show
that if K is compact then f(K) is compact.

36. Let X and Y be topological spaces and let f : X ! Y be a continuous function. Assume f is
a bijection, X is compact and Y is Hausdor↵. Show that the inverse function f

�1 : Y ! X is
continuous.

37. Let X = [0, 2⇡) and Y = S
1 = {(x, y) 2 R2

| x
2 + y

2 = 1}. Let f : [0, 2⇡) ! §
1 be given by

f(x) = (cosx, sinx).

(a) Show that f is continuous.
(b) Show that f is a bijection.
(c) Show that f�1 : S1

! [0, 2⇡) is not continuous.
(d) Why does this not contradict the previous problem? FIX THIS.
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38. Suppose that {xn} and {yn} are Cauchy sequences in a metric space (X, d). Prove that the
sequence of real numbers {d(xn, yn)} converges.

39. Suppose that {xn} is a sequence in a metric space (X, d) such that d(xn, xn+1)  2�n for all
n 2 Z>0. Prove that {xn} is a Cauchy sequence.

40. Decide if the following metric spaces are complete:

(a) ((0,1), d), where d(x, y) = |x
2
� y

2
| for x, y 2 (0,1).

(b) ((�⇡/2,⇡/2), d), where d(x, y) = | tanx� tan y| for x, y 2 (�⇡/2,⇡/2).

41. Let X = (0, 1] be equipped with the usual metric d(x, y) = |x � y|. Show that (X, d) is not

complete. Let d̃(x, y) = k
1

x
�

1

y
k for x, y 2 X. Show that d̃ is a metric on X that is equivalent

to d, and that (X, d̃) is complete.

42. Suppose that (X, d) and (Y, ed) are metric spaces and that f : X ! Y is a bijection such that
both f and f

�1 are uniformly continuous. Show that (X, d) is complete if and only if (Y, ed) is
complete.

43. (Cantor’s Intersection Theorem) Let (X, d) be a metric space and let {Fn} be a “decreasing”
sequence of non-empty subsets of X satisfying Fn+1 ✓ Fn for all n.

(a) Prove that if

(i) (X, d) is complete, (ii) each Fn is closed, (iii) diam(Fn)! 0,

then
T

n2Z>0
Fn consists of exactly one point.

(b) Show that, if any of (i)-(iii) is omitted, then
T

n2Z>0
Fn may be empty.

(c) Conversely, prove that if for every decreasing sequence {Fn} of non-empty subsets satisfying
(ii) and (iii), the intersection

T
n2Z>0

Fn is non-empty, then X is complete.

44. Let (X, d) be a complete metric space and let f : X ! (0,1) be a continuous function. Prove
that there exists a point x⇤ such that f(y)  2f(x⇤) for all y 2 B(x⇤, 1p

f(x⇤)
).

(Hint: Arguing by contradiction show that there exists a sequence {xn} with the following
properties: f(x1) > 0, f(xn+1) > 2f(xn) for all n � 1 and d(xn+1, xn) 

1p
f(xn)

. Then show

that {xn} is Cauchy.)

45. Let (X, d) be a complete metric space and let (Y, d̃) be a metric space. Let {fn} be a sequence
of continuous functions from X to Y such that {fn(x)} converges for every x 2 X. Prove
that for every " > 0 there exist k 2 Z>0 and a non-empty open subset U of X such that
d̃(fn(x), fm(x)) < " for all x 2 U and all n,m � k.
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46. On R consider the metrics:
d1(x, y) = | arctanx� arctan y|,

d2(x, y) =
��x3 � y

3
�� .

With which of these metrics is R complete? If (R, di) is not complete find its completion.

47. Which of the following subsets of R and R2 are compact? (R and R2 are considered with the
usual metrics).

(a) A = Q \ [0, 1]
(b) B = {(x, y) 2 R2 : x2 + y

2 = 1}
(c) C = {(x, y) 2 R2 : x2 + y

2
< 1}}

(d) D = {(x, y) : |x|+ |y|  1}
(e) E = {(x, y) : x � 1 and 0  y  1/x}

48. Prove that if A1, . . . , Ak are compact subsets of a metric space (X, d), then
S

k

i=1Ai is compact.

49. Prove that if Ai is a compact subset of the metric space (Xi, di) for i = 1, . . . , k, then A1⇥· · ·⇥Ak

is a compact subset of X = X1 ⇥ · · ·Xk with the product metric d.

50. Let A be a non-empty compact subset of a metric space (X, d). Prove:

(a) If x 2 X, then there exists a 2 A such that d(x, a) = d(x,A);
(b) If A ✓ U and U is open, then there is " > 0 such that

{x 2 X : d(x,A) < "} ⇢ U .
(c) If B is closed and A \B = ;, then d(A,B) > 0.

Hint: Recall that (x, y) 7! d(x, y) is continuous from X ⇥X ! [0,1).

51. Let f : X ! R. Call a function f upper semicontinuous, abbreviated u.s.c., if for every
r 2 R, {x 2 X | f(x) < r} is open. Similarly, f is lower semicontinuous, abbreviated l.s.c., if
for every r 2 R, {x 2 X | f(x) > r} is open. Assume that X is compact. Show that every u.s.c.
function assumes a maximum value and every l.s.c. function assumes a minimum value.

52. (a di↵erent construction of the completion of a metric space) An equivalence relation on a
set X is a relation ⇠ having the following three properties:

(a) (Reflexivity) x ⇠ x for every x 2 X.
(b) (Symmetry) If x ⇠ y, then y ⇠ x.
(c) (Transitivity) If x ⇠ y and y ⇠ z, then x ⇠ z.

The equivalence class determined by x, and denoted by [x], is defined by [x] = {y 2 X : y ⇠ x}.
We have [x] = [y] if and only if x ⇠ y, and X is a disjoint union of these equivalence classes.

Let (X, d) be a metric space and let X
⇤ be the set of Cauchy sequences x = {xn} in (X, d).

Define a relation ⇠ in X
⇤ by declaring x = {xn} ⇠ y = {yn} to mean d(xn, yn)! 0.
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(a) Show that ⇠ is an equivalence relation.

Denote by [x] the equivalence class of x 2 X
⇤, and let eX denote the set of these equivalence

classes.
(b) Show that if x = {xn} and y = {yn} 2 X

⇤, then limn!1 d(xn, yn) exists. Show that if
x0 = {x

0
n} 2 [x] and y0 = {y

0
n} 2 [y], then

lim
n!1

d(xn, yn) = lim
n!1

d(x0n, y
0
n).

For [x], [y] 2 eX, define
D([x], [y]) = lim

n!1
d(xn, yn).

Note that the definition of D is unambiguous in view of the above equality.
(c) Show that ( eX,D) is a complete metric space.

Hint: Let [xn] be Cauchy in ( eX,D). Then xn = {x
n

1 , x
n

2 , x
n

3 , . . .} is Cauchy in (X, d). So
for every n 2 Z>0, there exists kn 2 Z>0 such that

d(xnm, x
n

kn
) < 1/n

for all m � kn.

Set x = {x
1
k1
, x

2
k2
, x

3
k3
, . . .}. Then show that x is Cauchy in (X, d) and D([xn], [x])! 0.

(d) If x 2 X, let '(x) be the equivalence class of the constant sequence x = (x, x, x, . . .). That
is, '(x) = [x] = [{x, x, x, . . .}]. Show that
' : X ! '(X) is an isometry.

(e) Show that '(X) is dense in ( eX,D).
Hint: Let [x] 2 eX with x = {x1, x2, x3, . . .}. Denote by xn the constant sequence
{xn, xn, xn, . . .} and show that D([xn], [x])! 0.

53. Consider the following spaces:

(a) R with the metric d1(x, y) =
|x� y|

1 + |x� y|
;

(b) R with the metric d2(x, y) = | arctanx� arctan y|;
(c) R with the metric d3(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y.

Is (R, di) compact?

54. Use the Heine-Borel property to prove that if f : X ! Y is a continuous mapping between metric
spaces and X is compact then f is uniformly continuous.

55. A family {Fi}i2I is said to have the finite intersection property if for every finite subset J of
I,

T
i2J Fi 6= ;. Show that X is compact if and only if for every family {Fi}i2I of closed subsets

of X having the finite intersection property, the intersection
T

i2I Fi 6= ;.

56. Consider C[0, 1] with the usual d1 metric. Let

A = {f 2 C[0, 1] | 0 = f(0)  f(t)  f(1) = 1 for all t 2 [0, 1]}.

Show that there is no finite 1/2-net for A.
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57. Show that if A ✓ X is totally bounded, then A is also totally bounded.

58. Show that a metric space (X, d) is totally bounded if and only if every sequence {xn} ✓ X

contains a Cauchy subsequence.

59. Let X be a totally bounded metric space and Y a metric space. Assume that f : X ! Y is a
bijection. Show that if f and f

�1 are uniformly continuous, then Y is totally bounded.

60. (Lebesgue number lemma) Let (X, d) be a compact metric space and let {Ui}i2I be an open
covering of X. Prove that there exists � > 0 such that for every subset A ✓ X with diam(A) < �

there exists i 2 I such that A ✓ Ui. (� is called a “Lebesgue number” for the covering.)

61. Let (X, d) be a compact metric space. Assume that f : X ! X preserves distance, that is,

d(f(x), f(y)) = d(x, y)

for every x, y 2 X. Show that f is a bijection. Hint: Assume that f(X) 6= X. So there exists
a 2 X \f(X). Since f is continuous and X is compact, f(X) is compact. So d(a, f(X)) = r > 0.
Consider a sequence xn = f

n(a).

62. Let X be the set of all real sequences with finitely many non-zero terms with the supremum
metric: if x = (xi) and y = (yi) then d(x,y) = sup{|xi � yi| : i 2 Z>0}.
For each n 2 Z>0, let xn = (1, 1/2, 1/3, . . . , 1/n, 0, 0, . . .).

(a) Show that {xn
} is a Cauchy sequence in X.

(b) Show that {xn
} does not converge to a point in X.

(c) Show that the completion of X is the space of all real sequences which converge to zero,
with the supremum metric.

63. Let X be a nonempty set and let (Y, d) be a complete metric space. Let f : X ! Y be an
injective function and define

df (x, y) = d(f(x), f(y))

for x, y 2 X.

(a) Explain briefly why df is a metric on X.
(b) Show that (X, df ) is a complete metric space if f(X) is a closed subset of Y .

64. (a) Define compactness for a metric space (X, d).
(a) Let `1 be the set of bounded real sequences with the supremum metric.
(b) Consider the following metric spaces. Which of these spaces are compact? Give brief

explanations.

(1) The circle {(x, y) : x2 + y
2 = 1} with the metric induced from R2;

(2) The open disk {(x, y) : x2 + y
2
< 1} with the metric induced from R2.

(3) The closed unit ball in the space `
1.
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65. (a) State the definitions of a Cauchy sequence and a complete metric space.
(b) Let (X, d) and (Y, d0) be metric spaces, and let f : X ! Y be continuous with f(X) = Y .

Show that if (X, d) is complete and d(x, y)  d
0(f(x), f(y)) for all x, y,2 X, then (Y, d0) is

complete.

66. Let X be a complete normed vector space over R. A sphere in X is a set

S(a, r) = {x 2 X : d(x, a) = kx� ak = r}, for a 2 X and r 2 R>0.

(a) Show that each sphere in X is nowhere dense.
(b) Show that there is no sequence of spheres {Sn} in X whose union is X.
(c) Give a geometric interpretation of the result in (b) when X = R2 with the Euclidean norm.
(d) Show that the result of (b) does not hold in every complete metric space X.

67. Let X = R with metric given by d(x, y) = |x� y|.

(a) Let A = X. Show that A is Cauchy compact but not bounded.
(b) Let A = X. Show that A is Cauchy compact but not cover compact.
(c) Let A = X. Show that A is Cauchy compact but not ball compact.
(d) Let A = (0, 1) ✓ X. Show that A is ball compact and not closed in X.
(e) Let A = (0, 1) ✓ X. Show that A is ball compact and not cover compact.
(f) Let A = (0, 1) ✓ X. Show that A is ball compact and not Cauchy compact.
(h) Let A = (0, 1) ✓ X and let B = A. Show that B is closed in A but B is not Cauchy

compact.
(g) Let Y = R with metric given by ⇢(x, y) = min{|x � y|, 1} and let A = Y . Show that A is

bounded but not ball compact.

68. A family {Fi}i2I is said to have the finite intersection property if for every finite subset J of
I,

T
i2J Fi = ;. Show that X is compact if and only if for every family {Fi}i2I of closed subsets

of X having the finite intersection property, the intersection
T

i2I Fi 6= ;.

69. Let (0, 1) = {x 2 R | 0 < x < 1} with the standard metric. Show that X is not complete, is
totally bounded and is not cover compact.

70. Let (X, d) be a metric space and let (a1, a2, . . .) be a sequence in X.

(a) Carefully define cluster point and limit point of (a1, a2, . . .).
(b) Prove that if z is a limit point of (a1, a2, . . .) then z is a cluster point of (a1, a2, . . .).
(c) Carefully define Cauchy sequence and convergent sequence.
(d) Prove that if (a1, a2, . . .) converges then (a1, a2, . . .) is Cauchy.
(e) Carefully define complete metric space.
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