25 Problem list: Compactness

25.1 Relating types of compactness

1. (cover compact implies sequentially compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is cover compact then A is sequentially compact.
2. (sequentially compact implies cover compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is sequentially compact then A is cover compact.
3. (sequentially compact implies Cauchy compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is sequentially compact then A is Cauchy compact.
4. (cover compact implies ball compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is cover compact then A is ball compact.
5. (ball compact implies bounded) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is ball compact then A is bounded.
6. (sequentially compact implies Cauchy compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is Cauchy compact then A is closed.
7. (ball compact does not imply closed) Let $A=(0,1) \subseteq \mathbb{R}$ with the standard metric on \mathbb{R}. Show that A is ball compact and not closed.
8. (ball compact does not imply cover compact) Let $A=(0,1) \subseteq \mathbb{R}$ with the standard metric on \mathbb{R}. Show that A is ball compact and not cover compact.
9. (ball compact does not imply Cauchy compact) Let $A=(0,1) \subseteq \mathbb{R}$ with the standard metric on \mathbb{R}. Show that A is ball compact and not Cauchy compact.
10. (bounded does not imply ball compact) Let $X=\mathbb{R}$ with metric given by $d(x, y)=\min \{|x-y|, 1\}$ and let $A=X$. Show that A is bounded but not ball compact.
11. (closed does not imply Cauchy compact) Let $X=\mathbb{R}_{(0,1)}=\{x \in \mathbb{R} \mid 0<x<1\}$ with metric given by $d(x, y)=|x-y|$ and let $A=X$. Show that A is closed in X but not Cauchy compact.
12. (Cauchy compact does not imply bounded) Let $X=\mathbb{R}$ with metric given by $d(x, y)=|x-y|$ and let $A=X$. Show that A is Cauchy compact but not bounded.
13. (Cauchy compact does not imply cover compact) Let $X=\mathbb{R}$ with metric given by $d(x, y)=|x-y|$ and let $A=X$. Show that A is Cauchy compact but not cover compact.
14. (Cauchy compact does not imply ball compact) Let $X=\mathbb{R}$ with metric given by $d(x, y)=|x-y|$ and let $A=X$. Show that A is Cauchy compact but not ball compact.
15. (ball compact+Cauchy compact implies cover compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is ball compact and Cauchy compact if and only if A is cover compact.
16. (In \mathbb{R}^{n} closed and bounded implies cover compact) Let $X=\mathbb{R}^{n}$ with the standard metric and let $A \subseteq X$. Show that A closed and bounded if and only if A is cover compact.
17. (In \mathbb{R}^{n} closed implies Cauchy compact) Let $X=\mathbb{R}^{n}$ with the standard metric and let $A \subseteq X$. Show that if A is closed in X then A is Cauchy compact.
18. (closed subsets of Cauchy compact spaces are Cauchy compact) Let (X, d) be a Cauchy compact metric space and let $A \subseteq X$. Show that if A is closed in X then A is Cauchy compact.
19. (bounded subsets of ball compact spaces are ball compact) Let (X, d) be a ball compact metric space and let $A \subseteq X$. Show that if A is bounded then A is ball compact.
20. (closed subsets of cover compact spaces are cover compact) Let (X, d) be a cover compact metric space and let $A \subseteq X$. Show that if A is closed in X then A is cover compact.
21. (compact subsets of Hausdorff topological spaces are closed) Let (X, \mathcal{T}) be a Hausdorff topological space and let K be a compact subset of X. Let $x \in K^{c}$. Since X is Hausdorff, for each $y \in K$ there exist $U_{x y} \in \mathcal{T}$ and $V_{x y} \in \mathcal{T}$ such that

$$
U_{x y} \cap V_{x y}=\emptyset \quad \text { and then } \quad\left\{V_{x y} \mid y \in K\right\} \quad \text { is an open cover of } K .
$$

Since K is compact there exists a finite subcover $\left\{V_{x y_{1}}, V_{x y_{2}}, \ldots, V_{x y_{\ell}}\right\}$ of K. If $U=U_{x y_{1}} \cap \cdots U_{x y_{\ell}}$ then

$$
x \in U \quad \text { and } \quad U \cap K \subseteq\left(U_{x y_{1}} \cap \cdots \cap U_{x y_{\ell}}\right) \cap\left(V_{x y_{1}} \cup \cdots \cup V_{x y_{\ell}}\right)=\emptyset .
$$

So $x \in U$ and $U \subseteq K^{c}$, and thus x is an interior point of K^{c}. So K^{c} is open and K is closed.
22. (compact subsets of topological spaces are not necessarily closed) Let X be a set with more than one point with topology $\mathcal{T}=\{\emptyset, X\}$. Show that every subset $A \subseteq X$ is compact but the only closed subsets of X are \emptyset and X. Note that X is not Hausdorff.
23. (boundedness and completeness are not topological properties) Show that $(0,1)$ is homeomorphic to \mathbb{R}.

Show that

$$
\begin{array}{ll}
(0,1) \text { is bounded, } & (0,1) \text { is not complete, } \\
\mathbb{R} \text { is not bounded, } & \mathbb{R} \text { is complete. }
\end{array}
$$

Conclude that boundedness and completeness are not topological properties.

25.2 Separability and compactness for metric spaces

1. (cover compact metric spaces have a countable base) [BR, Ch. 2 Ex. 25] Assume X is cover compact. If $n \in \mathbb{Z}_{>0}$ then $\mathcal{S}_{\frac{1}{n}}=\left\{\left.B_{\frac{1}{n}}(x) \right\rvert\, x \in X\right\}$ contains a finite subcover $\mathcal{B}_{\frac{1}{n}}$ of X. Show that the union of the $\mathcal{B}_{\frac{1}{n}}$ is a countable base of X.
2. (sequentially compact metric spaces have a countable dense set) $\left[\mathrm{BR}, \mathrm{Ch} .2\right.$ Ex. 24] Let $\delta \in \mathbb{R}_{>0}$ and $x_{1} \in X$. For $i \in \mathbb{Z}_{>0}$ let

$$
x_{i} \in X \quad \text { such that } \quad d\left(x_{j}, x_{i}\right) \geq \delta \text { for } j=1,2, \ldots, i-1 .
$$

Use the fact that X is sequentially compact to show that this process must stop after a finite number of steps and conclude that X can be covered by a finite number of open balls of radius δ. Do this for $\delta \in\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ to obtain a countable collection of open balls whose centers form a countable dense subset of X.
3. (metric spaces with a countable base have countable open subcovers) (This exercise is one part of [BR, Ch. 2 Ex. 26].) Let (X, d) be a metric space with a countable base. Show that every open cover of X has a countable subcover.

25.3 The one point compactification

1. (The one point compactification) A locally compact space is a topological space (X, \mathcal{T}) such that X is Hausdorff and

$$
\text { if } x \in X \text { then there exists a neighborhood } N \text { of } x \text { such that } N \text { is cover compact. }
$$

Let (X, \mathcal{T}) be a locally compact space and let ∞ be a symbol. The one-point compactification of X is

$$
X^{+}=X \cup\{\infty\}
$$

with topology

$$
\mathcal{U}=\mathcal{T} \cup\left\{X^{+}-K \mid K \text { is a cover compact subset of } X\right\} .
$$

(a) Show that \mathcal{U} is a topology on X^{+}and that X^{+}is cover compact.
(b) Show that $\mathbb{R}_{\geq 0}$ is locally compact and $\left(\mathbb{R}_{\geq 0}\right)^{+}$is homeomorphic to $[0,1]=\{x \in \mathbb{R} \mid 0 \leq$ $x \leq 1\}$.
(c) Show that \mathbb{R} is locally compact and that \mathbb{R}^{+}is homeomorphic to $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+\right.$ $\left.y^{2}=1\right\}$.

25.4 Cauchy sequences and convergent sequences

1. (convergent sequences are Cauchy) Let (X, d) be a metric space and let $\left(x_{1}, x_{2}, \ldots\right)$ be a a sequence in X. Show that if there exists $x \in X$ with $\lim _{n \rightarrow \infty} x_{n}=x$ then $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence in X.
2. (convergent sequences are bounded) Let (X, d) be a metric space and let $\left(x_{1}, x_{2}, \ldots\right)$ be a a sequence in X. Show that if $\left(x_{1}, x_{2}, \ldots\right)$ converges in X then the set $\left\{x_{1}, x_{2}, \ldots\right\}$ is bounded.
3. (Cauchy sequences provide Cauchy filters) Let (X, \mathcal{X}) be a uniform space and let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in X. Let \mathcal{F} be the filter consisting of all subsets of X which contain all but a finite number of points of $\left\{x_{1}, x_{2}, \ldots\right\}$. Show that \mathcal{F} is a Cauchy filter if and only if $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence.
4. (Convergent filters are Cauchy) Let (X, \mathcal{X}) be a uniform space and let \mathcal{F} be a filter on X. Show that if \mathcal{F} is convergent then \mathcal{F} is Cauchy.
5. (Convergent sequences are Cauchy) Let (X, \mathcal{X}) be a uniform space and let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in X. Show that if $\left(x_{1}, x_{2}, \ldots\right)$ is convergent then $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence.
6. (Cauchy sequences are not necessarily convergent) Let $X=\mathbb{R}_{(0,1)}=\{x \in \mathbb{R} 0<x<1\}$ with metric given by $d(x, y)=|x-y|$. Show that the sequence $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$ is a Cauchy sequence in X that does not converge in X.
7. (Cauchy filters do not necessarily have limit points) Let (X, \mathcal{X}) be a uniform space and let $\left(x_{1}, x_{2}, \ldots\right)$ be a Cauchy sequence in X which does not have a limit point. Let \mathcal{F} be the filter on X generated by the sets $\vec{x} \geq_{\geq N}=\left\{x_{m} \mid m \in \mathbb{Z}_{\geq N}\right\}$ for $N \in \mathbb{Z}_{>0}$. Show that \mathcal{F} is a Cauchy filter on X which does not have a limit point.

25.5 Favourite examples of complete spaces

1. (\mathbb{R} is complete) Let $X=\mathbb{R}$ with metric given by $d(x, y)=|x-y|$. Show that \mathbb{R} is a complete metric space.
2. (\mathbb{R}^{n} is complete) Let $n \in \mathbb{Z}_{>0}$. Let $X=\mathbb{R}^{n}$ with metric given by $d(x, y)=\|x-y\|$ where $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$. Show that \mathbb{R}^{n} is a complete metric space.
3. (The example $\iota: \mathbb{Q} \rightarrow \mathbb{R}$) The standard metric on \mathbb{R} is

$$
d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad d(x, y)=|y-x|
$$

where the standard absolute value $|\mid: \mathbb{R} \rightarrow \mathbb{R} \geq 0$ is given by

$$
|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x \leq 0\end{cases}
$$

Show that, with respect to the standard metric, \mathbb{R} is the completion of \mathbb{Q}.
4. (The example $\iota: \mathbb{R}[t] \rightarrow \mathbb{R}[[t]])$ The t-adic metric on $\mathbb{R}[[t]]$ is

$$
d: \mathbb{R}[t] \times \mathbb{R}[[t]] \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad d(x, y)=e^{-v(y-x)},
$$

where $e \in \mathbb{R}_{>1}$ and the t-adic valuation $v: \mathbb{R}[[t]] \rightarrow \mathbb{Z}_{\geq 0}$ is given by

$$
v(p)=\max \left\{n \in \mathbb{Z}_{\geq 0} \mid p \in t^{n} \mathbb{R}[[t]]\right\}
$$

Show that, with respect to the t-adic metric, $\mathbb{R}[[t]]$ is the completion of $\mathbb{R}[t]$.
5. (The example $\iota: \mathbb{R}(t) \rightarrow \mathbb{R}((t)))$ The t-adic metric on $\mathbb{R}((t))$ is

$$
d: \mathbb{R}((t)) \times \mathbb{R}((t)) \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad d(x, y)=e^{-v(y-x)},
$$

where $e \in \mathbb{R}_{>1}$ and the t-adic valuation $v: \mathbb{R}((t)) \rightarrow \mathbb{Z}_{\text {ge0 }}$ is given by

$$
v(f)=\max \left\{n \in \mathbb{Z}_{\geq 0} \mid f \in t^{n} \mathbb{R}[[t]]\right\}
$$

Show that, with respect to the t-adic metric, $\mathbb{R}((t))$ is the completion of $\mathbb{R}(t)$.
6. (The example $\iota: \mathbb{Q} \rightarrow \mathbb{Q}_{p}$) Let $p \in \mathbb{Z}_{>1}$ be prime. The p-adic metric on \mathbb{Q}_{p} is

$$
d: \mathbb{Q}_{p} \times \mathbb{Q}_{p} \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad d(x, y)=e^{-v_{p}(y-x)}
$$

where $e \in \mathbb{R}_{>1}$ and the p-adic valuation $v_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{Z}$ is given by

$$
v_{p}(a)=\max \left\{n \in \mathbb{Z} \mid a \in p^{n} \mathbb{Z}_{p}\right\} .
$$

Show that, with respect to the p-adic metric, \mathbb{Q}_{p} is the completion of \mathbb{Q}.
7. (The example $\iota: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$) Let $p \in \mathbb{Z}_{>1}$ be prime. The p-adic metric on \mathbb{Z}_{p} is

$$
d: \mathbb{Z}_{p} \times \mathbb{Z}_{p} \rightarrow \mathbb{R}_{\geq 0} \quad \text { given by } \quad d(x, y)=e^{-v_{p}(y-x)},
$$

where $e \in \mathbb{R}_{>1}$ and the p-adic valuation $v_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{\geq 0}$ is given by

$$
v_{p}(a)=\max \left\{n \in \mathbb{Z}_{\geq 0} \mid a \in p^{n} \mathbb{Z}_{p}\right\} .
$$

Show that, with respect to the p-adic metric, \mathbb{Z}_{p} is the completion of \mathbb{Z}.
8. (ℓ^{2} is not ball compact) Let $e_{1}=(1,0,0, \ldots), e_{2}=(0,1,0,0, \ldots), e_{3}=(0,0,1,0,0, \ldots), \ldots$ in ℓ^{2}. Show that
(a) If $A=\left\{e_{1}, e_{2}, \ldots\right\}$ then $A \subseteq B_{\sqrt{2}+.001}\left(e_{1}\right)$ so that A is bounded.
(b) If $A=\left\{e_{1}, e_{2}, \ldots\right\}$ and $\epsilon \in \mathbb{R}_{>0}$ with $\epsilon<\sqrt{2}$ then there do not exist a finite number of balls of radius ϵ which cover A. Thus A is not ball compact.
(c) Show that $e_{1}, e_{2}, e_{3}, \ldots$ is a sequence in ℓ^{2} with no cluster point.
9. (ℓ^{2} is Cauchy compact) Show that ℓ^{2} is Cauchy compact.

25.6 Existence and uniqueness of completions

1. (isometries are injective) Show that if $\varphi: X \rightarrow Y$ is an isometry then φ is injective.
2. (isometries are not necessarily surjective) Show that if $\varphi: \mathbb{Q} \rightarrow \mathbb{R}$ given by $\varphi(x)=x$ is an isometry that is not surjective.
3. (uniqueness of the completion of a uniform space) Let (X, \mathcal{X}) be a uniform space. Show that if $(\widehat{X}, \widehat{\mathcal{X}}, \iota: X \rightarrow \widehat{X})$ and $(\widehat{Y}, \widehat{\mathcal{Y}}, j: X \rightarrow \widehat{Y})$ are completions of X then there exists a bijective uniformly continuous function $f: \widehat{X} \rightarrow \widehat{Y}$ such that the inverse function $f^{-1}: Y \rightarrow X$ is uniformly continuous and $j=f \circ \iota$.

4. (uniqueness of the completion of a metric space) Let (X, d) be a metric space. Show that if $\left(\widehat{X}_{1}, \hat{d}_{1}\right)$ with $\varphi_{1}: X \rightarrow \widehat{X}_{1}$ and $\left(\widehat{X}_{2}, \hat{d}_{2}\right)$ with $\varphi_{2}: X \rightarrow \widehat{X}_{2}$ are completions of (X, d) then there exists

$$
f: \widehat{X}_{1} \rightarrow \widehat{X}_{2} \quad \text { such that } \quad f \text { is an isometry, } f \text { is a bijection, and } f \circ \varphi_{1}=\varphi_{2} .
$$

5. (existence of the completion of a metric space) Let (X, d) be a metric space. Let $(\hat{X}, \hat{d}, \iota)$ be the metric space

$$
\widehat{X}=\{\text { Cauchy sequences } \vec{x} \text { in } X\} \quad \text { with the function } \quad \begin{array}{ccccc}
\iota: & X & \longrightarrow & \widehat{X} \\
& x & \longmapsto & (x, x, x, \ldots)
\end{array}
$$

where \widehat{X} has the metric

$$
d: \widehat{X} \times \widehat{X} \rightarrow \mathbb{R}_{\geq 0} \quad \text { defined by } \quad d(\vec{x}, \vec{y})=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right),
$$

and Cauchy sequences $\vec{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots\right)$ are equal in \widehat{X},

$$
\vec{x}=\vec{y} \quad \text { if } \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0 .
$$

Show that (\widehat{X}, \hat{d}) with an isometry $\iota: X \rightarrow \widehat{X}$ such that

$$
(\widehat{X}, \hat{d}) \text { is a complete complete metric space } \quad \text { and } \quad \overline{\varphi(X)}=\widehat{X},
$$

where $\overline{\varphi(X)}$ is the closure of the image of φ.
6. (another construction of the completion of a metric space) Let (X, d) be a metric space. The space of bounded functions on X is

$$
B(X)=\{f: X \rightarrow \mathbb{R} \mid f(X) \text { is bounded }\}
$$

with metric $d_{\infty}: B(X) \times B(X) \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d_{\infty}(f, g)=\sup \{|f(x)-g(x)| \mid x \in X\}
$$

Fix $a \in X$. Let $(\hat{X}, \hat{d}, \iota)$ be the metric space

$$
\begin{array}{llllc}
\widehat{X}=\overline{\iota(X)} \quad \text { where } \quad & \iota: & X & \rightarrow & B(X) \\
& x & \mapsto & f_{x}
\end{array}
$$

with

$$
f_{x}: X \rightarrow \mathbb{R} \quad \text { given by } \quad f_{x}(y)=d(y, x)-d(y, a) .
$$

Show that ι is well defined and $\left(\widehat{X}, d_{\infty}, \iota\right)$ is a completion of X.
7. (existence of the completion of a uniform space) Let (X, \mathcal{X}) be a uniform space. A minimal Cauchy filter on X is a Cauchy filter on X which is minimal with respect to inclusion of filters. The completion of X is the uniform space

$$
\widehat{X}=\{\text { minimal Cauchy filters } \hat{x} \text { on } X\} \quad \text { with the function } \quad \begin{gathered}
\iota:
\end{gathered} \begin{array}{clc}
X & \longrightarrow & \widehat{X} \\
x & \longmapsto & \mathcal{N}(x)
\end{array}
$$

where $\mathcal{N}(x)$ is the neighborhood filter of x, and \widehat{X} has the uniformity $\widehat{\mathcal{X}}$ generated by the sets

$$
\begin{aligned}
\hat{V}= & \{(\hat{x}, \hat{y}) \mid \text { there exists } N \in \hat{x} \cap \hat{y} \text { such that } N \times N \subseteq V\}, \\
& \text { for } V \in \mathcal{X} \text { such that if }(x, y) \in V \text { then }(y, x) \in V .
\end{aligned}
$$

Show that $(\widehat{X}, \widehat{\mathcal{X}})$ is a complete Hausdorff uniform space and $\iota: X \rightarrow \widehat{X}$ is a uniformly continuous function such that
if Y is a complete Hausdorff uniform space and $f: X \rightarrow Y$ is a uniformly continuous map then there exists a unique uniformly continuous function $g: \widehat{X} \rightarrow Y$ such that $f=g \circ \iota$.

25.7 Completions and inverse limits

1. (Completions and inverse limits)

A topological abelian group is a topological space (G, \mathcal{T}) with a function

$$
\begin{array}{clc}
G \times G & \longrightarrow & G \\
\left(g_{1}, g_{2}\right) & \longmapsto & g_{1}+g_{2}
\end{array} \quad \text { such that }
$$

(a) If $g_{1}, g_{2}, g_{3} \in G$ then $\left(g_{1}+g_{2}\right)+g_{3}=g_{1}+\left(g_{2}+g_{3}\right)$,
(b) There exists $0 \in G$ such that if $g \in G$ then $g+0=g$ and $0+g=g$,
(c) If $g \in G$ then there exists $-g \in G$ such that $g+(-g)=0$ and $(-g)+g=0$,
(d) If $g_{1}, g_{2} \in G$ then $g_{1}+g_{2}=g_{2}+g_{1}$,
(e) The function

$$
\begin{array}{rlc}
G \times G & \longrightarrow & G \\
\left(g_{1}, g_{2}\right) & \longmapsto & g_{1}+g_{2}
\end{array} \quad \text { is continuous, and }
$$

(f) The function

$$
\begin{array}{rlc}
G & \longrightarrow & G \\
g & \longmapsto & -g
\end{array} \quad \text { is continuous. }
$$

Assume that $\mathcal{N}(0)$, the neighborhood filter of 0 in G is countably generated (i.e. there exist $U_{1}, U_{2}, \ldots \in \mathcal{N}(0)$ such that if $P \in \mathcal{N}(0)$ then there exists $j \in \mathbb{Z}_{>0}$ such that $\left.P \supseteq U_{j}\right)$.
A Cauchy sequence in G is a sequence $x_{1}, x_{2}, \ldots \in G$ such that

> if $P \in \mathcal{N}(0)$ then there exists $N \in \mathbb{Z}_{>0}$ such that \quad if $r, s \in \mathbb{Z}_{\geq N}$ then $x_{r}-x_{s} \in P$.

Two Cauchy sequences $\left(x_{1}, x_{2}, \ldots\right)$ and (y_{1}, y_{2}, \ldots) are equivalent,

$$
\left(x_{1}, x_{2}, \ldots\right) \sim\left(y_{1}, y_{2}, \ldots\right), \quad \text { if } \quad \lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0
$$

The completion of G is the set of equivalence classes of Cauchy sequences in G,

$$
\widehat{G}=\left\{\text { Cauchy sequences }\left(x_{1}, x_{2}, \ldots\right) \text { in } G\right\} / \sim
$$

with the function

$$
\begin{array}{lclc}
\varphi: \quad & G & \longrightarrow & \hat{G} \\
& x & \longmapsto & (x, x, \ldots) .
\end{array}
$$

Now assume that $G_{1} \supseteq G_{2} \supseteq$ are subgroups which generate $\mathcal{N}(0)$ (i.e. $G_{1}, G_{2}, \ldots \in \mathcal{N}(0)$ and if $P \in \mathcal{N}(0)$ then there exists $j \in \mathbb{Z}_{>0}$ such that $\left.P \supseteq G_{j}\right)$. A coherent sequence is a sequence $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots\right)$ with

$$
\bar{x}_{n} \in G / G_{n} \quad \text { and } \quad \pi_{n}\left(\bar{x}_{n+1}\right)=\bar{x}_{n}, \quad \text { where } \begin{array}{clc}
\pi_{n}: G / G_{n+1} & \longrightarrow G / G_{n} \\
\bar{g} & \longmapsto \bar{g}+G_{n} .
\end{array}
$$

The inverse limit

$$
\varliminf_{\rightleftarrows} G / G_{n} \quad \text { is the set of coherent sequences. }
$$

Show that the function

$$
\Phi: \begin{array}{ccc}
\hat{G} & \longrightarrow & \begin{array}{c}
\lim \\
\hline
\end{array} G_{n} \\
\left(x_{1}, x_{2}, \ldots\right) & \longmapsto & \left(x_{1}+G_{1}, x_{2}+G_{2}, \ldots\right)
\end{array} \quad \text { is an isomorphism. }
$$

25.7.1 Products and function spaces

1. (products of complete metric spaces are complete) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be complete metric space spaces. Show that $X \times Y$ with metric given by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
$$

is a complete metric space.
2. (products of complete uniform spaces are complete) Let (X, \mathcal{X}) and (X, \mathcal{Y}) be complete uniform spaces. Show that $X \times Y$ with the product uniformity is a complete uniform space. (See [Bou Ch II §3 no. 5 Proposition 10]).
3. (function spaces with complete targets are complete) Let (X, d) and (Y, ρ) be metric spaces and let

$$
C_{b}(X, Y)=\{f: X \rightarrow Y \mid f \text { is continuous and } f(X) \text { is bounded }\}
$$

with metric $d_{\infty}: C_{b}(X, Y) \times C_{b}(X, Y) \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d_{\infty}(f, g)=\sup \{\rho(f(x), g(x)) \mid x \in X\}
$$

Show that if (Y, ρ) is a complete metric space then $C_{b}(X, Y)$ is a complete metric space.
4. (the metric space of bounded continuous real valued functions is complete) Let (X, d) and (Y, ρ) be metric spaces and

$$
C_{b}(X)=\{f: X \rightarrow \mathbb{R} \mid f \text { is continuous and } f(X) \text { is bounded }\}
$$

with metric $d_{\infty}: C_{b}(X) \times C_{b}(X) \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d_{\infty}(f, g)=\sup \{|f(x)-g(x)| \mid x \in X\}
$$

Show that $C_{b}(X)$ is a complete metric space.
5. (If W is complete then $B(V, W)$ is complete) Let V and W be normed vector spaces and let $B(V, W)$ be the vector space of bounded linear operators from V to W with norm given by

$$
\|T\|=\sup \left\{\left.\frac{\|T v\|}{\|v\|} \right\rvert\, v \in V\right\}, \quad \text { for } T \in B(V, W)
$$

Show that if W is complete then $B(V, W)$ is complete.
6. (If Y is complete then bounded continuous functions from X to Y is complete) Let $\left(X, d_{X}\right)$ and (Y, d_{Y}) be metric spaces and let

$$
\mathcal{B C}(X, Y)=\{f: X \rightarrow Y \mid f \text { is continuous and } f(X) \text { is bounded in } Y\}
$$

with $d_{\infty}: \mathcal{B C}(X, Y) \times \mathcal{B C}(X, Y) \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d_{\infty}(f, g)=\sup \left\{d_{Y}(f(x), g(x)) \mid x \in X\right\}
$$

(a) Show that $\mathcal{B C}(X, Y)$ is a metric space.
(b) Show that if Y is a complete metric space then $\mathcal{B C}(X, Y)$ is a complete metric space.
7. (bounded real valued functions is a complete metric space) Let (X, d) be a metric space and let

$$
B(X)=\{f: X \rightarrow \mathbb{R} \mid f(X) \text { is bounded }\}
$$

with metric $d_{\infty}: B(X) \times B(X) \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
d_{\infty}(f, g)=\sup \{|f(x)-g(x)| \mid x \in X\}
$$

Show that $B(X)$ is a complete metric space.
8. (duals of normed vector spaces are complete) Let V with $\left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ be a normed vector space. Show that V^{*}, the dual of V, is complete.

25.7.2 Banach fixed point theorem and Picard iteration

1. (Banach fixed point theorem) Let (X, d) be a metric space.

A contraction mapping is a function $f: X \rightarrow X$ such that there exists $\alpha \in \mathbb{R}_{>0}$ such that $\alpha<1$ and

$$
\text { if } x, y \in X \quad \text { then } \quad d(f(x), f(y)) \leq \alpha d(x, y) .
$$

A fixed point of $f: X \rightarrow X$ is an element $x \in X$ such that $f(x)=x$.
Let (X, d) be a complete metric space and let $f: X \rightarrow X$ be a contraction mapping. Let $x \in X$ and let x_{1}, x_{2}, \ldots be the sequence

$$
x_{1}=f(x), \quad x_{2}=f(f(x)), \quad x_{3}=f(f(f(x))), \quad \ldots
$$

Show that the sequence x_{1}, x_{2}, \ldots converges and $p=\lim _{n \rightarrow \infty} x_{n}$ is the unique fixed point of f.
2. (Picard iteration) Picard iteration is a method for solving equations of the the form $f(x)=x$. The process is to let

$$
a_{1}=\text { your choice }, \quad a_{2}=f\left(a_{1}\right), \quad a_{3}=f\left(a_{2}\right),
$$

If the sequence $\left(a_{1}, a_{2}, \ldots\right)$ converges and $a=\lim _{n \rightarrow \infty} a_{n}$ then $f(a)=a$ (because $f\left(a_{n}\right)=a_{n+1}$ is very close to a_{n} for large n). To apply this technique to find a solution of $x^{3}-x-1=0$ proceed as follows.
(a) Transform the equation $x^{3}-x-1=0$ to the form $x=f(x)$, where $f(x)=\frac{1}{x^{2}+1}$.
(b) Let $a_{1}=\frac{1}{2}$. Show that $a_{2}=\frac{4}{5}=0.8$.
(c) Show that $a_{3}=\frac{25}{41} \approx 0.609760976097 \ldots$.
(d) Show that $a_{4}=\frac{1681}{2306} \approx 0.728967$.
(e) Show that $a_{5} \approx 0.6530046$.
(f) Show that $a_{6} \approx 0.7010582$.
(g) Show that $a_{7} \approx 0.6704737$.
(h) Show that $a_{8} \approx 0.68987635$.
(i) Show that $a_{9} \approx 0.67753918$.
(j) Show that $a_{10} \approx 0.68537308$.
(k) Show that $a_{11} \approx 0.680394233$.
(1) Show that $a_{12} \approx 0.6835567$.
(m) Show that $a_{13} \approx 0.68154722$.
(n) Show that $a_{14} \approx 0.68282382$.
(o) Show that $a_{15} \approx 0.6820126$.
(p) Prove that, to 3 decimal places of accuracy, $x=.682$ is a solution of $x^{3}+x-1=0$.
3. (Picard iteration doesn't always converge) Picard iteration is a method for solving equations of the the form $f(x)=x$. The process is to let

$$
a_{1}=\text { your choice }, \quad a_{2}=f\left(a_{1}\right), \quad a_{3}=f\left(a_{2}\right), \quad \ldots
$$

If the sequence $\left(a_{1}, a_{2}, \ldots\right.$) converges and $a=\lim _{n \rightarrow \infty} a_{n}$ then $f(a)=a$ (because $f\left(a_{n}\right)=a_{n+1}$ is very close to a_{n} for large n). Another transformation of the equation $x^{3}-x-1=0$ to the form $x=f(x)$, has $f(x)=1-x^{3}$.
(a) Let $a_{1}=\frac{1}{2}$. Show that $a_{2}=\frac{7}{8}=0.875$.
(b) Show that $a_{3} \approx 0.330078$.
(c) Show that $a_{4} \approx 0.964037$.
(d) Show that $a_{4} \approx 0.104055$.
(e) Prove that $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ does not converge, but is oscillating between close to 1 and close to 0 .
4. Which of the following maps are contractions?
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{-x}$;
(b) $f:[0, \infty) \rightarrow[0, \infty), f(x)=e^{-x}$;
(c) $f:[0, \infty) \rightarrow[0, \infty), f(x)=e^{-e^{x}}$;
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\cos x$;
(e) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\cos (\cos x)$.
5. Let X be a complete metric space and let $f: X \rightarrow X$ be a contraction. Show that f has a unique fixed point.
6. Let $\alpha \in \mathbb{R}$ with $0<\alpha<1$. Let X be a complete metric space and let $f: X \rightarrow X$ be a α-contraction. Let $x \in X, x_{0}=x$ and $x_{n+1}=f\left(x_{n}\right)$, for $n \in \mathbb{Z}_{\geq 0}$.
(a) Show that the sequence $x_{0}, x_{1}, x_{2}, \ldots$ converges in X.

Let $p=\lim _{n \rightarrow \infty} x_{n}$.
(b) Show that $d(x, p) \leq \frac{d(x, f(x)}{1-\alpha}$.
(c) Show that $f(p)=p$.
7. Let U be an open subset of \mathbb{R}^{2}. Let $f: U \rightarrow \mathbb{R}$ be a continuous function which satisfies the Lipschitz condition with respect to the second variable: There exists $\alpha \in \mathbb{R}_{>0}$ such that

$$
\text { if }\left(x, y_{1}\right),\left(x, y_{2}\right) \in U \quad \text { then } \quad\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq \alpha\left|y_{1}-y_{2}\right| \text {. }
$$

Show that if $\left(x_{0}, y_{0}\right) \in U$ then there exists $\delta \in \mathbb{R}_{>0}$ such that $y^{\prime}(x)=f(x, y(x))$ has a unique solution $y:\left[x_{0}-\delta, x_{0}+\delta\right] \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=y_{0}$.
8. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f(x, y)=\frac{1}{10}(8 x+8 y, x+y),(x, y) \in \mathbb{R}^{2} .
$$

Recall metrics $d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|, d_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left[\left|x_{1}-x_{2}\right|^{2}+\right.$ $\left.\left|y_{1}-y_{2}\right|^{2}\right]^{1 / 2}$ and $d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$. Is f a contraction with respect to $d_{1} ? d_{2} ? d_{\infty}$?
9. (a) Consider $X=(0, a]$ with the usual metric and $f(x)=x^{2}$ for $x \in X$. Find values of a for which f is a contraction and show that $f: X \rightarrow X$ does not have a fixed point.
(b) Consider $X=[1, \infty)$ with the usual metric and let $f(x)=x+\frac{1}{x}$ for $x \in X$. Show that $f: X \rightarrow X$ and $d(f(x), f(y))<d(x, y)$ for all $x \neq y$, but f does not have a fixed point. Reconcile (a) and (b) with Banach fixed point theorem.
10. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a function such that

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

for all $x, y \in \bar{B}\left(x_{0}, r_{0}\right)$, where $0<\alpha<1$ and $d\left(x_{0}, f\left(x_{0}\right)\right) \leq(1-\alpha) \cdot r_{0}$. Prove that f has a unique fixed point $p \in \bar{B}\left(x_{0}, r_{0}\right)$.
11. (a) Show that there is exactly one continuous function $f:[0,1] \rightarrow \mathbb{R}$ which satisfies the equation

$$
[f(x)]^{3}-e^{x}[f(x)]^{2}+\frac{f(x)}{2}=e^{x} .
$$

(Hint: rewrite the equation as $f(x)=e^{x}+\frac{1}{2} \frac{f(x)}{1+f(x)^{2}}$.)
(b) Consider $C[0, a]$ with $a<1$ and $T: C[0, a] \rightarrow C[0, a]$ given by

$$
(T f)(t)=\sin t+\int_{0}^{t} f(s) d s, t \in[0, a] .
$$

Show that T is a contraction. What is the fixed point of T ?
(c) Find all $f \in C[0, \pi]$ which satisfy the equation

$$
3 f(t)=\int_{0}^{t} \sin (t-s) f(s) d s
$$

(d) Let $g \in C[0,1]$. Show that there exists exactly one $f \in C[0,1]$ which solves the equation

$$
f(x)+\int_{0}^{1} e^{x-y-1} f(y) d y=g(x), \quad \text { for all } x \in[0,1]
$$

(Hint: Consider the metric $d(f, h)=\sup \left\{e^{-x}|f(x)-h(x)| \mid x \in[0,1]\right\}$.)
12. Call a map $f: X \rightarrow X$ a weak contraction if $d(f(x), f(y))<d(x, y)$ for all $x \neq y$. Prove that if X is compact and f is a weak contraction, then f has a unique fixed point.
13. Let $a>0$, and let

$$
f(x)=\frac{1}{2}\left(x+\frac{a}{x}\right) \quad \text { for } x>0 .
$$

(a) Show that $f(x) \geq \sqrt{a}$ for all $x>0$. Hence f defines a function $f: X \rightarrow X$ where $X=[\sqrt{a}, \infty)$.
(b) Show that f is a contraction mapping when X is given the usual metric.
(c) Fix $x_{0}>\sqrt{a}$ and $x_{n+1}=f\left(x_{n}\right)$ for all $n \geq 0$. Show that the sequence $\left\{x_{n}\right\}$ converges and find its limit with respect to the usual metric on \mathbb{R}.
14. (a) State the Banach fixed point theorem.

A mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as a contraction if there exists a constant c with $0 \leq c<1$ such that $|f(x)-f(y)| \leq c|x-y|$ for all $x, y \in \mathbb{R}$.
(b) (1) Use (a) to show that the equation $x+f(x)=a$ has a unique solution for each $a \in \mathbb{R}$.
(2) Deduce that $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by $F(x)=x+f(x)$ is a bijection. (This should be easy).
(3) Show that F is continuous.
(4) Show that F^{-1} is continuous. (Hence F is a homeomorphism.)
15. (a) State the Banach fixed point theorem.
(b) Let X be the interval $(0,1 / 3)$ with usual Euclidean metric. Show that $f: X \rightarrow X$ defined by $f(x)=x^{2}$ is a contraction, but f does not have a fixed point in X. Why does this not contradict the Banach fixed point theorem?
(c) Let (X, d) be a complete metric space and $f: X \rightarrow X$. Define $g(x)=f(f(x))$, that is, $g=f \circ f$. Assume that the map $g: X \rightarrow X$ is a contraction. Prove that f has a unique fixed point.
16. Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be given by

$$
f(x)=\frac{2}{2+x} .
$$

(a) Show that f defines a contraction mapping $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$.
(b) Fix $x_{0} \geq 0$ and $x_{n+1}=f\left(x_{n}\right)$ for all $n \geq 0$. Show that the sequence $\left\{x_{n}\right\}$ converges and find its limit with respect to the usual metric on \mathbb{R}.
17. Let $a \in \mathbb{R}_{>0}$. Let

$$
f(x)=\frac{1}{2}\left(x+\frac{a}{x}\right), \quad \text { for } x \in \mathbb{R}_{>0} .
$$

(a) Show that if $x \in \mathbb{R}_{>0}$ then $f(x) \geq \sqrt{a}$. Hence f defines a function $f: X \rightarrow X$ where $X=[\sqrt{a}, \infty)$.
(b) Show that f is a contraction mapping when X is given the usual metric.
(c) Fix $x_{0}>\sqrt{a}$ and $x_{n+1}=f\left(x_{n}\right)$, for $n \in \mathbb{Z}_{\geq 0}$. Show that the sequence $\left\{x_{n}\right\}$ converges and find its limit with respect to the usual metric on \mathbb{R}.
18. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f(x, y)=\frac{1}{10}(8 x+8 y, x+y) .
$$

Recall metrics

$$
\begin{aligned}
d_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right. & =\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|, \\
d_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right. & =\left(\left|x_{1}-x_{2}\right|^{2}+\left|y_{1}-y_{2}\right|^{2}\right)^{1 / 2}, \\
d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right. & =\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}
\end{aligned}
$$

If f a contraction with respect to $d_{1} ? d_{2}$? d_{∞} ? Prove that your answers are correct.
19. (a) State the Banach fixed point theorem.
(b) Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.

Verify that the mapping $f: X \rightarrow X$ given by

$$
f(x, y)=\left(\frac{1}{4}(x+y+1), \frac{1}{4}(x-y+1)\right)
$$

satisfies the conditions of the Banach fixed point theorem.
(c) Find directly the unique fixed point for f.

25.8 The space L^{1}

A rectangle in \mathbb{R}^{k} is $I_{1} \times \ldots \times I_{k}$, where I_{1}, \ldots, I_{k} are intervals in \mathbb{R} and

$$
\operatorname{vol}\left(I_{1} \times \cdots \times I_{k}\right)=\operatorname{length}\left(I_{1}\right) \cdots \text { length }\left(I_{k}\right)
$$

A step function is a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that there exist $k \in \mathbb{Z}_{>0}, c \in \mathbb{R}$ and intervals $I_{1}, \ldots, I_{k} \subseteq$ \mathbb{R} such that

$$
f(x)= \begin{cases}c, & \text { if } x \in I_{1} \times \cdots \times I_{k} \\ 0, & \text { otherwise }\end{cases}
$$

A null set is a subset $A \subseteq \mathbb{R}^{k}$ such that

$$
\begin{aligned}
& \text { if } \varepsilon \in \mathbb{R}_{>0} \text { then there exists a sequence } R_{1}, R_{2}, \ldots \text { of rectangles in } \mathbb{R}^{k} \\
& \text { such that } \quad A \subseteq \bigcup_{j \in \mathbb{Z}_{>0}} R_{j} \quad \text { and } \sum_{j \in \mathbb{Z}_{>0}} \operatorname{vol}\left(R_{j}\right)<\varepsilon .
\end{aligned}
$$

A full set is the complement of a null set.

1. Let S be the set of linear combinations of step functions $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$. Let

$$
\|f\|=\int|f| \quad \text { and } \quad d(f, g)=\|f-g\|,
$$

for $f, g \in S$.
(a) Show that $\left\|\|: S \rightarrow \mathbb{R}_{\geq 0}\right.$ is not a norm on S.
(b) Show that $d: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is not a metric on S.
2. Let S be the set of linear combinations of step functions $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$. Let $\sum_{i \in \mathbb{Z}}{ }_{>0} f_{i}$ be a series in S which is norm absolutely convergent. Show that there exists a full set in \mathbb{R}^{k} on which $\sum_{i \in \mathbb{Z}_{>0}} f_{i}$ converges.
3. Let S be the set of linear combinations of step functions $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$. Let $\sum_{n \in \mathbb{Z}_{>0}} f_{k}$ be a series in S which is norm absolutely convergent. Show that $\sum_{n \in \mathbb{Z}_{>0}} f_{n}=0$ almost everywhere if and only if the limit of the norms of the partial sums of f_{n} converge to 0 .
4. Let L^{1} be the set of functions which are equal almost everywhere to limits of norm absolutely convergent series in S, where S is the set of linear combinations of step functions $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$. Define

$$
\|f\|=\int f \quad \text { and } \quad d(f, g)=\|f-g\|, \quad \text { for } f, g \in L^{1} .
$$

(a) Show that $\left\|\|: L^{1} \rightarrow \mathbb{R}_{\geq 0}\right.$ is a norm on L^{1}.
(b) Show that $d: L^{1} \times L^{1} \rightarrow \mathbb{R}_{\geq 0}$ is a metric on L^{1}.

25.9 Additional sample exam questions

1. Let (X, d) be a metric space and let x_{1}, x_{2}, \ldots be a sequence in X. Show that if $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence then $\left\{x_{1}, x_{2}, \ldots\right\}$ is bounded.
2. Let (X, d) be a metric space and let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in X. Show that if $\left(x_{1}, x_{2}, \ldots\right)$ converges then $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence.
3. Let (X, d) be a metric space and let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in X. Show that if $\left(x_{1}, x_{2}, \ldots\right)$ is a Cauchy sequence and contains a convergent subsequence then $\left(x_{1}, x_{2}, \ldots\right)$ converges.
4. Give an example of a metric space (X, d) and a Cauchy sequence $\left(x_{1}, x_{2}, \ldots\right)$ in X that does not converge.
5. Give an example of a metric space (X, d) that is not complete.
6. Show that \mathbb{R} with the usual metric is a complete metric space.
7. Let (X, d) be a complete metric space. Let $Y \subseteq X$ be a subspace of X. Show that if Y is closed then (Y, d) is complete.
8. Give an example of a metric space (X, d) and a subspace $Y \subseteq X$ such that (X, d) is a complete metric space and (Y, d) is not complete.
9. Let (X, d) be a metric space and let $Y \subseteq X$ be a subspace of X. Show that if (Y, d) is complete then Y is a closed subset of X.
10. Let $\left(X_{1}, d_{1}\right), \ldots,\left(X_{\ell}, d_{\ell}\right)$ be metric spaces and let $\left(X_{1} \times \cdots \times X_{\ell}, d\right)$ be the product metric space. Show that if $\left(X_{1}, d_{1}\right), \ldots,\left(X_{\ell}, d_{\ell}\right)$ are complete then $\left(X_{1} \times \cdots \times X_{\ell}, d\right)$ is complete.
11. Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces and let $C_{b}(X, Y)$ be the set of bounded continuous functions $f: X \rightarrow Y$ with the metric $\rho: C_{b}(X, Y) \times C_{b}(X, Y) \rightarrow \mathbb{R}_{\geq 0}$ given by

$$
\rho(f, g)=\sup \left\{d^{\prime}(f(x), g(x)) \mid x \in X\right\} .
$$

Show that if $\left(Y, d^{\prime}\right)$ is complete then $\left(C_{b}(X, Y), \rho\right)$ is a complete metric space.
12. Show that the completion of $(0,1)$ with the usual metric is $[0,1]$ with the usual metric.
13. Let (X, d) and (Y, ρ) be metric spaces and let $f: X \rightarrow Y$ be an isometry. Show that f is injective.
14. Give an example of an isometry $f: X \rightarrow Y$ that is not surjective.
15. Let (X, d) be a metric space. Show that a completion of (X, d) exists.
16. Let (X, d) be a metric space. Show that the completion of (X, d) is unique (if it exists).
17. Let (X, d) be a metric space. Let $\left(\left(X_{1}, d_{1}\right), \varphi_{1}\right)$ and $\left(\left(X_{2}, d_{2}\right), \varphi_{2}\right)$ be completions of (X, d). Show that there is a surjective isometry $f: X_{1} \rightarrow X_{2}$ such that $f \circ \varphi_{1}=\varphi_{2}$.
18. Let $(X,\| \|)$ be a normed vector space. Show that $(X,\| \|)$ is complete if and only if every norm absolutely convergent series is convergent in X.
19. Let I be a closed and bounded interval in \mathbb{R}. Let $x_{1}, x_{2}, x_{3}, \ldots$ be a sequence in I. Show that there exists a subsequence $x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots$ of $x_{1}, x_{2}, x_{3}, \ldots$ such that $x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots$ converges in I.
20. Let X be a compact topological space. Let C be a closed subset of X. Show that C is compact.
21. Let X be a metric space and let E be a compact subset of X. Show that E is closed and bounded.
22. Let $C([0,1], \mathbb{R})=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous $\}$ and let $d(f, g)=\sup \{|f(x)-g(x)| \mid x \in[0,1]\}$.
(a) Show that d : $C([0,1], \mathbb{R}) \times C([0,1], \mathbb{R})$ is a metric on $C([0,1, \mathbb{R})$.
(b) Let $\left.A=\bar{B}_{1}(0)=\{f \in C([0,1], \mathbb{R})] \mid d(f, 0) \leq 1\right\}$. Show that A is closed and bounded.
(c) Show that A is not compact.
23. Let $K \subseteq \mathbb{R}$. Show that K is compact if and only if K is closed and bounded.
24. Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces and let $f: X \rightarrow Y$ be a continuous function. Let K be a compact subset of X. Show that $f(K)$ is compact in Y.
25. Let X be a compact metric space. Let $f: X \rightarrow \mathbb{R}$ be a continuous function. Show that f attains a maximum and a minimum value.
26. Let X be a compact metric space. Let $f: X \rightarrow Y$ be a continuous function. Show that f is uniformly continuous.
27. Let X be a set with the discrete metric. Show that X is compact if and only if X is finite.
28. Let X be a metric space and let $A \subseteq X$. Show that if A is totally bounded then A is bounded.
29. Let $X=\mathbb{R}$ with metric given by $d(x, y)=\min \{|x-y|, 1\}$.
(a) Show that X is bounded.
(b) Show that X is not totally bounded.
30. Let X be a metric space and let $A \subseteq X$. Show that the following are equivalent:
(a) Every sequence in A has a convergent subsequence.
(b) A is complete and totally bounded.
(c) Every open cover of A has a finite subcover.
31. Let X be a topological space. Show that X is compact if and only if X satisfies if \mathcal{C} is a collection of closed sets such that

$$
\text { if } \ell \in \mathbb{Z}_{>0} \text { and } C_{1}, \ldots, C_{\ell} \in \mathcal{C} \text { then } C_{1} \cap \cdots \cap C_{\ell} \neq \emptyset
$$

then $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.
32. Let X be a topological space and let $K \subseteq X$. Assume X is compact. Show that if K is closed then K is compact.
33. Let X be a topological space and let $K \subseteq X$. Assume X is Hausdorff. Show that if K is compact then K is closed.
34. Show that a compact Hausdorff space is normal.
35. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function. Let $\subseteq X$. Show that if K is compact then $f(K)$ is compact.
36. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function. Assume f is a bijection, X is compact and Y is Hausdorff. Show that the inverse function $f^{-1}: Y \rightarrow X$ is continuous.
37. Let $X=[0,2 \pi)$ and $Y=S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. Let $f:[0,2 \pi) \rightarrow \S^{1}$ be given by $f(x)=(\cos x, \sin x)$.
(a) Show that f is continuous.
(b) Show that f is a bijection.
(c) Show that $f^{-1}: S^{1} \rightarrow[0,2 \pi)$ is not continuous.
(d) Why does this not contradict the previous problem? FIX THIS.
38. Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences in a metric space (X, d). Prove that the sequence of real numbers $\left\{d\left(x_{n}, y_{n}\right)\right\}$ converges.
39. Suppose that $\left\{x_{n}\right\}$ is a sequence in a metric space (X, d) such that $d\left(x_{n}, x_{n+1}\right) \leq 2^{-n}$ for all $n \in \mathbb{Z}_{>0}$. Prove that $\left\{x_{n}\right\}$ is a Cauchy sequence.
40. Decide if the following metric spaces are complete:
(a) $((0, \infty), d)$, where $d(x, y)=\left|x^{2}-y^{2}\right|$ for $x, y \in(0, \infty)$.
(b) $((-\pi / 2, \pi / 2), d)$, where $d(x, y)=|\tan x-\tan y|$ for $x, y \in(-\pi / 2, \pi / 2)$.
41. Let $X=(0,1]$ be equipped with the usual metric $d(x, y)=|x-y|$. Show that (X, d) is not complete. Let $\tilde{d}(x, y)=\left\|\frac{1}{x}-\frac{1}{y}\right\|$ for $x, y \in X$. Show that \tilde{d} is a metric on X that is equivalent to d, and that (X, \tilde{d}) is complete.
42. Suppose that (X, d) and (Y, \widetilde{d}) are metric spaces and that $f: X \rightarrow Y$ is a bijection such that both f and f^{-1} are uniformly continuous. Show that (X, d) is complete if and only if (Y, \widetilde{d}) is complete.
43. (Cantor's Intersection Theorem) Let (X, d) be a metric space and let $\left\{F_{n}\right\}$ be a "decreasing" sequence of non-empty subsets of X satisfying $F_{n+1} \subseteq F_{n}$ for all n.
(a) Prove that if
(i) (X, d) is complete, (ii) each F_{n} is closed, (iii) $\operatorname{diam}\left(F_{n}\right) \rightarrow 0$,
then $\bigcap_{n \in \mathbb{Z}_{>0}} F_{n}$ consists of exactly one point.
(b) Show that, if any of (i)-(iii) is omitted, then $\bigcap_{n \in \mathbb{Z}}^{>0} 0$
(c) Conversely, prove that if for every decreasing sequence $\left\{F_{n}\right\}$ of non-empty subsets satisfying (ii) and (iii), the intersection $\bigcap_{n \in \mathbb{Z}_{>0}} F_{n}$ is non-empty, then X is complete.
44. Let (X, d) be a complete metric space and let $f: X \rightarrow(0, \infty)$ be a continuous function. Prove that there exists a point x^{*} such that $f(y) \leq 2 f\left(x^{*}\right)$ for all $y \in B\left(x^{*}, \frac{1}{\sqrt{f\left(x^{*}\right)}}\right)$.
(Hint: Arguing by contradiction show that there exists a sequence $\left\{x_{n}\right\}$ with the following properties: $f\left(x_{1}\right)>0, f\left(x_{n+1}\right)>2 f\left(x_{n}\right)$ for all $n \geq 1$ and $d\left(x_{n+1}, x_{n}\right) \leq \frac{1}{\sqrt{f\left(x_{n}\right)}}$. Then show that $\left\{x_{n}\right\}$ is Cauchy.)
45. Let (X, d) be a complete metric space and let (Y, \tilde{d}) be a metric space. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions from X to Y such that $\left\{f_{n}(x)\right\}$ converges for every $x \in X$. Prove that for every $\varepsilon>0$ there exist $k \in \mathbb{Z}_{>0}$ and a non-empty open subset U of X such that $\tilde{d}\left(f_{n}(x), f_{m}(x)\right)<\varepsilon$ for all $x \in U$ and all $n, m \geq k$.
46. On \mathbb{R} consider the metrics:

$$
\begin{aligned}
& d_{1}(x, y)=|\arctan x-\arctan y|, \\
& d_{2}(x, y)=\left|x^{3}-y^{3}\right| .
\end{aligned}
$$

With which of these metrics is \mathbb{R} complete? If $\left(\mathbb{R}, d_{i}\right)$ is not complete find its completion.
47. Which of the following subsets of \mathbb{R} and \mathbb{R}^{2} are compact? $\left(\mathbb{R}\right.$ and \mathbb{R}^{2} are considered with the usual metrics).
(a) $A=\mathbb{Q} \cap[0,1]$
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$
(c) $\left.C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}\right\}$
(d) $D=\{(x, y):|x|+|y| \leq 1\}$
(e) $E=\{(x, y): x \geq 1$ and $0 \leq y \leq 1 / x\}$
48. Prove that if A_{1}, \ldots, A_{k} are compact subsets of a metric space (X, d), then $\bigcup_{i=1}^{k} A_{i}$ is compact.
49. Prove that if A_{i} is a compact subset of the metric space (X_{i}, d_{i}) for $i=1, \ldots, k$, then $A_{1} \times \cdots \times A_{k}$ is a compact subset of $X=X_{1} \times \cdots X_{k}$ with the product metric d.

50 . Let A be a non-empty compact subset of a metric space (X, d). Prove:
(a) If $x \in X$, then there exists $a \in A$ such that $d(x, a)=d(x, A)$;
(b) If $A \subseteq U$ and U is open, then there is $\varepsilon>0$ such that $\{x \in X: d(x, A)<\varepsilon\} \subset U$.
(c) If B is closed and $A \cap B=\emptyset$, then $d(A, B)>0$.

Hint: Recall that $(x, y) \mapsto d(x, y)$ is continuous from $X \times X \rightarrow[0, \infty)$.
51. Let $f: X \rightarrow \mathbb{R}$. Call a function f upper semicontinuous, abbreviated u.s.c., if for every $r \in \mathbb{R},\{x \in X \mid f(x)<r\}$ is open. Similarly, f is lower semicontinuous, abbreviated 1.s.c., if for every $r \in \mathbb{R},\{x \in X \mid f(x)>r\}$ is open. Assume that X is compact. Show that every u.s.c. function assumes a maximum value and every l.s.c. function assumes a minimum value.
52. (a different construction of the completion of a metric space) An equivalence relation on a set X is a relation \sim having the following three properties:
(a) (Reflexivity) $x \sim x$ for every $x \in X$.
(b) (Symmetry) If $x \sim y$, then $y \sim x$.
(c) (Transitivity) If $x \sim y$ and $y \sim z$, then $x \sim z$.

The equivalence class determined by x, and denoted by $[x]$, is defined by $[x]=\{y \in X: y \sim x\}$. We have $[x]=[y]$ if and only if $x \sim y$, and X is a disjoint union of these equivalence classes.

Let (X, d) be a metric space and let X^{*} be the set of Cauchy sequences $\mathbf{x}=\left\{x_{n}\right\}$ in (X, d). Define a relation \sim in X^{*} by declaring $\mathbf{x}=\left\{x_{n}\right\} \sim \mathbf{y}=\left\{y_{n}\right\}$ to mean $d\left(x_{n}, y_{n}\right) \rightarrow 0$.
(a) Show that \sim is an equivalence relation.

Denote by $[\mathbf{x}]$ the equivalence class of $\mathbf{x} \in X^{*}$, and let \widetilde{X} denote the set of these equivalence classes.
(b) Show that if $\mathbf{x}=\left\{x_{n}\right\}$ and $\mathbf{y}=\left\{y_{n}\right\} \in X^{*}$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$ exists. Show that if $\mathbf{x}^{\prime}=\left\{x_{n}^{\prime}\right\} \in[\mathbf{x}]$ and $\mathbf{y}^{\prime}=\left\{y_{n}^{\prime}\right\} \in[\mathbf{y}]$, then

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}^{\prime}, y_{n}^{\prime}\right) .
$$

For $[\mathbf{x}],[\mathbf{y}] \in \widetilde{X}$, define

$$
D([\mathbf{x}],[\mathbf{y}])=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) .
$$

Note that the definition of D is unambiguous in view of the above equality.
(c) Show that (\widetilde{X}, D) is a complete metric space.

Hint: Let $\left[\mathbf{x}^{n}\right]$ be Cauchy in (\widetilde{X}, D). Then $\mathbf{x}^{n}=\left\{x_{1}^{n}, x_{2}^{n}, x_{3}^{n}, \ldots\right\}$ is Cauchy in (X, d). So for every $n \in \mathbb{Z}_{>0}$, there exists $k_{n} \in \mathbb{Z}_{>0}$ such that

$$
d\left(x_{m}^{n}, x_{k_{n}}^{n}\right)<1 / n
$$

for all $m \geq k_{n}$.
Set $\mathbf{x}=\left\{x_{k_{1}}^{1}, x_{k_{2}}^{2}, x_{k_{3}}^{3}, \ldots\right\}$. Then show that \mathbf{x} is Cauchy in (X, d) and $D\left(\left[\mathbf{x}^{n}\right],[\mathbf{x}]\right) \rightarrow 0$.
(d) If $x \in X$, let $\varphi(x)$ be the equivalence class of the constant sequence $\mathbf{x}=(x, x, x, \ldots)$. That is, $\varphi(x)=[\mathrm{x}]=[\{x, x, x, \ldots\}]$. Show that
$\varphi: X \rightarrow \varphi(X)$ is an isometry.
(e) Show that $\varphi(X)$ is dense in ($\widetilde{X}, D)$.

Hint: Let $[\mathbf{x}] \in \widetilde{X}$ with $\mathbf{x}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. Denote by \mathbf{x}^{n} the constant sequence $\left\{x_{n}, x_{n}, x_{n}, \ldots\right\}$ and show that $D\left(\left[\mathbf{x}^{n}\right],[\mathbf{x}]\right) \rightarrow 0$.
53. Consider the following spaces:
(a) \mathbb{R} with the metric $d_{1}(x, y)=\frac{|x-y|}{1+|x-y|}$;
(b) \mathbb{R} with the metric $d_{2}(x, y)=|\arctan x-\arctan y|$;
(c) \mathbb{R} with the metric $d_{3}(x, y)=0$ if $x=y$ and $d(x, y)=1$ if $x \neq y$.

Is $\left(\mathbb{R}, d_{i}\right)$ compact?
54. Use the Heine-Borel property to prove that if $f: X \rightarrow Y$ is a continuous mapping between metric spaces and X is compact then f is uniformly continuous.
55. A family $\left\{F_{i}\right\}_{i \in I}$ is said to have the finite intersection property if for every finite subset J of $I, \bigcap_{i \in J} F_{i} \neq \emptyset$. Show that X is compact if and only if for every family $\left\{F_{i}\right\}_{i \in I}$ of closed subsets of X having the finite intersection property, the intersection $\bigcap_{i \in I} F_{i} \neq \emptyset$.
56. Consider $C[0,1]$ with the usual d_{∞} metric. Let

$$
A=\{f \in C[0,1] \mid 0=f(0) \leq f(t) \leq f(1)=1 \text { for all } t \in[0,1]\} .
$$

Show that there is no finite $1 / 2$-net for A.
57. Show that if $A \subseteq X$ is totally bounded, then \bar{A} is also totally bounded.
58. Show that a metric space (X, d) is totally bounded if and only if every sequence $\left\{x_{n}\right\} \subseteq X$ contains a Cauchy subsequence.
59. Let X be a totally bounded metric space and Y a metric space. Assume that $f: X \rightarrow Y$ is a bijection. Show that if f and f^{-1} are uniformly continuous, then Y is totally bounded.
60. (Lebesgue number lemma) Let (X, d) be a compact metric space and let $\left\{U_{i}\right\}_{i \in I}$ be an open covering of X. Prove that there exists $\delta>0$ such that for every subset $A \subseteq X$ with $\operatorname{diam}(A)<\delta$ there exists $i \in I$ such that $A \subseteq U_{i}$. (δ is called a "Lebesgue number" for the covering.)
61. Let (X, d) be a compact metric space. Assume that $f: X \rightarrow X$ preserves distance, that is,

$$
d(f(x), f(y))=d(x, y)
$$

for every $x, y \in X$. Show that f is a bijection. Hint: Assume that $f(X) \neq X$. So there exists $a \in X \backslash f(X)$. Since f is continuous and X is compact, $f(X)$ is compact. So $d(a, f(X))=r>0$. Consider a sequence $x_{n}=f^{n}(a)$.
62. Let X be the set of all real sequences with finitely many non-zero terms with the supremum metric: if $\mathbf{x}=\left(x_{i}\right)$ and $\mathbf{y}=\left(y_{i}\right)$ then $d(\mathbf{x}, \mathbf{y})=\sup \left\{\left|x_{i}-y_{i}\right|: i \in \mathbb{Z}_{>0}\right\}$.
For each $n \in \mathbb{Z}_{>0}$, let $\mathbf{x}^{n}=(1,1 / 2,1 / 3, \ldots, 1 / n, 0,0, \ldots)$.
(a) Show that $\left\{\mathbf{x}^{n}\right\}$ is a Cauchy sequence in X.
(b) Show that $\left\{\mathbf{x}^{n}\right\}$ does not converge to a point in X.
(c) Show that the completion of X is the space of all real sequences which converge to zero, with the supremum metric.
63. Let X be a nonempty set and let (Y, d) be a complete metric space. Let $f: X \rightarrow Y$ be an injective function and define

$$
d_{f}(x, y)=d(f(x), f(y))
$$

for $x, y \in X$.
(a) Explain briefly why d_{f} is a metric on X.
(b) Show that $\left(X, d_{f}\right)$ is a complete metric space if $f(X)$ is a closed subset of Y.
64. (a) Define compactness for a metric space (X, d).
(a) Let ℓ^{∞} be the set of bounded real sequences with the supremum metric.
(b) Consider the following metric spaces. Which of these spaces are compact? Give brief explanations.
(1) The circle $\left\{(x, y): x^{2}+y^{2}=1\right\}$ with the metric induced from \mathbb{R}^{2};
(2) The open disk $\left\{(x, y): x^{2}+y^{2}<1\right\}$ with the metric induced from \mathbb{R}^{2}.
(3) The closed unit ball in the space ℓ^{∞}.
65. (a) State the definitions of a Cauchy sequence and a complete metric space.
(b) Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces, and let $f: X \rightarrow Y$ be continuous with $f(X)=Y$. Show that if (X, d) is complete and $d(x, y) \leq d^{\prime}(f(x), f(y))$ for all $x, y, \in X$, then $\left(Y, d^{\prime}\right)$ is complete.
66. Let X be a complete normed vector space over \mathbb{R}. A sphere in X is a set

$$
S(a, r)=\{x \in X: d(x, a)=\|x-a\|=r\}, \quad \text { for } a \in X \text { and } r \in \mathbb{R}_{>0} .
$$

(a) Show that each sphere in X is nowhere dense.
(b) Show that there is no sequence of spheres $\left\{S_{n}\right\}$ in X whose union is X.
(c) Give a geometric interpretation of the result in (b) when $X=\mathbb{R}^{2}$ with the Euclidean norm.
(d) Show that the result of (b) does not hold in every complete metric space X.
67. Let $X=\mathbb{R}$ with metric given by $d(x, y)=|x-y|$.
(a) Let $A=X$. Show that A is Cauchy compact but not bounded.
(b) Let $A=X$. Show that A is Cauchy compact but not cover compact.
(c) Let $A=X$. Show that A is Cauchy compact but not ball compact.
(d) Let $A=(0,1) \subseteq X$. Show that A is ball compact and not closed in X.
(e) Let $A=(0,1) \subseteq X$. Show that A is ball compact and not cover compact.
(f) Let $A=(0,1) \subseteq X$. Show that A is ball compact and not Cauchy compact.
(h) Let $A=(0,1) \subseteq X$ and let $B=A$. Show that B is closed in A but B is not Cauchy compact.
(g) Let $Y=\mathbb{R}$ with metric given by $\rho(x, y)=\min \{|x-y|, 1\}$ and let $A=Y$. Show that A is bounded but not ball compact.
68. A family $\left\{F_{i}\right\}_{i \in I}$ is said to have the finite intersection property if for every finite subset J of $I, \bigcap_{i \in J} F_{i}=\emptyset$. Show that X is compact if and only if for every family $\left\{F_{i}\right\}_{i \in I}$ of closed subsets of X having the finite intersection property, the intersection $\bigcap_{i \in I} F_{i} \neq \emptyset$.
69. Let $(0,1)=\{x \in \mathbb{R} \mid 0<x<1\}$ with the standard metric. Show that X is not complete, is totally bounded and is not cover compact.
70. Let (X, d) be a metric space and let $\left(a_{1}, a_{2}, \ldots\right)$ be a sequence in X.
(a) Carefully define cluster point and limit point of $\left(a_{1}, a_{2}, \ldots\right)$.
(b) Prove that if z is a limit point of $\left(a_{1}, a_{2}, \ldots\right)$ then z is a cluster point of $\left(a_{1}, a_{2}, \ldots\right)$.
(c) Carefully define Cauchy sequence and convergent sequence.
(d) Prove that if $\left(a_{1}, a_{2}, \ldots\right)$ converges then $\left(a_{1}, a_{2}, \ldots\right)$ is Cauchy.
(e) Carefully define complete metric space.

