25 Problem list: Compactness

25.1 Relating types of compactness

- 1. (cover compact implies sequentially compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is cover compact then A is sequentially compact.
- 2. (sequentially compact implies cover compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is sequentially compact then A is cover compact.
- 3. (sequentially compact implies Cauchy compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is sequentially compact then A is Cauchy compact.
- 4. (cover compact implies ball compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is cover compact then A is ball compact.
- 5. (ball compact implies bounded) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is ball compact then A is bounded.
- 6. (sequentially compact implies Cauchy compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is Cauchy compact then A is closed.
- 7. (ball compact does not imply closed) Let $A = (0, 1) \subseteq \mathbb{R}$ with the standard metric on \mathbb{R} . Show that A is ball compact and not closed.
- 8. (ball compact does not imply cover compact) Let $A = (0, 1) \subseteq \mathbb{R}$ with the standard metric on \mathbb{R} . Show that A is ball compact and not cover compact.
- 9. (ball compact does not imply Cauchy compact) Let $A = (0, 1) \subseteq \mathbb{R}$ with the standard metric on \mathbb{R} . Show that A is ball compact and not Cauchy compact.
- 10. (bounded does not imply ball compact) Let $X = \mathbb{R}$ with metric given by $d(x, y) = \min\{|x-y|, 1\}$ and let A = X. Show that A is bounded but not ball compact.
- 11. (closed does not imply Cauchy compact) Let $X = \mathbb{R}_{(0,1)} = \{x \in \mathbb{R} \mid 0 < x < 1\}$ with metric given by d(x, y) = |x y| and let A = X. Show that A is closed in X but not Cauchy compact.
- 12. (Cauchy compact does not imply bounded) Let $X = \mathbb{R}$ with metric given by d(x, y) = |x y|and let A = X. Show that A is Cauchy compact but not bounded.
- 13. (Cauchy compact does not imply cover compact) Let $X = \mathbb{R}$ with metric given by d(x, y) = |x-y| and let A = X. Show that A is Cauchy compact but not cover compact.

- 14. (Cauchy compact does not imply ball compact) Let $X = \mathbb{R}$ with metric given by d(x, y) = |x y|and let A = X. Show that A is Cauchy compact but not ball compact.
- 15. (ball compact+Cauchy compact implies cover compact) Let (X, d) be a metric space and let $A \subseteq X$. Show that if A is ball compact and Cauchy compact if and only if A is cover compact.
- 16. (In \mathbb{R}^n closed and bounded implies cover compact) Let $X = \mathbb{R}^n$ with the standard metric and let $A \subseteq X$. Show that A closed and bounded if and only if A is cover compact.
- 17. (In \mathbb{R}^n closed implies Cauchy compact) Let $X = \mathbb{R}^n$ with the standard metric and let $A \subseteq X$. Show that if A is closed in X then A is Cauchy compact.
- 18. (closed subsets of Cauchy compact spaces are Cauchy compact) Let (X, d) be a Cauchy compact metric space and let $A \subseteq X$. Show that if A is closed in X then A is Cauchy compact.
- 19. (bounded subsets of ball compact spaces are ball compact) Let (X, d) be a ball compact metric space and let $A \subseteq X$. Show that if A is bounded then A is ball compact.
- 20. (closed subsets of cover compact spaces are cover compact) Let (X, d) be a cover compact metric space and let $A \subseteq X$. Show that if A is closed in X then A is cover compact.
- 21. (compact subsets of Hausdorff topological spaces are closed) Let (X, \mathcal{T}) be a Hausdorff topological space and let K be a compact subset of X. Let $x \in K^c$. Since X is Hausdorff, for each $y \in K$ there exist $U_{xy} \in \mathcal{T}$ and $V_{xy} \in \mathcal{T}$ such that

$$U_{xy} \cap V_{xy} = \emptyset$$
 and then $\{V_{xy} \mid y \in K\}$ is an open cover of K.

Since K is compact there exists a finite subcover $\{V_{xy_1}, V_{xy_2}, \ldots, V_{xy_\ell}\}$ of K. If $U = U_{xy_1} \cap \cdots \cup U_{xy_\ell}$ then

$$x \in U$$
 and $U \cap K \subseteq (U_{xy_1} \cap \dots \cap U_{xy_\ell}) \cap (V_{xy_1} \cup \dots \cup V_{xy_\ell}) = \emptyset$.

So $x \in U$ and $U \subseteq K^c$, and thus x is an interior point of K^c . So K^c is open and K is closed.

- 22. (compact subsets of topological spaces are not necessarily closed) Let X be a set with more than one point with topology $\mathcal{T} = \{\emptyset, X\}$. Show that every subset $A \subseteq X$ is compact but the only closed subsets of X are \emptyset and X. Note that X is not Hausdorff.
- 23. (boundedness and completeness are not topological properties) Show that (0, 1) is homeomorphic to \mathbb{R} .

Show that

(0,1) is bounded, \mathbb{R} is not bounded,

(0,1) is not complete,R is complete.

Conclude that boundedness and completeness are not topological properties.

25.2 Separability and compactness for metric spaces

- 1. (cover compact metric spaces have a countable base) [BR, Ch. 2 Ex. 25] Assume X is cover compact. If $n \in \mathbb{Z}_{>0}$ then $S_{\frac{1}{n}} = \{B_{\frac{1}{n}}(x) \mid x \in X\}$ contains a finite subcover $\mathcal{B}_{\frac{1}{n}}$ of X. Show that the union of the $\mathcal{B}_{\frac{1}{n}}$ is a countable base of X.
- 2. (sequentially compact metric spaces have a countable dense set) [BR, Ch. 2 Ex. 24] Let $\delta \in \mathbb{R}_{>0}$ and $x_1 \in X$. For $i \in \mathbb{Z}_{>0}$ let

 $x_i \in X$ such that $d(x_i, x_i) \geq \delta$ for $j = 1, 2, \dots, i - 1$.

Use the fact that X is sequentially compact to show that this process must stop after a finite number of steps and conclude that X can be covered by a finite number of open balls of radius δ . Do this for $\delta \in \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$ to obtain a countable collection of open balls whose centers form a countable dense subset of X.

3. (metric spaces with a countable base have countable open subcovers) (This exercise is one part of [BR, Ch. 2 Ex. 26].) Let (X, d) be a metric space with a countable base. Show that every open cover of X has a countable subcover.

25.3 The one point compactification

1. (The one point compactification) A locally compact space is a topological space (X, \mathcal{T}) such that X is Hausdorff and

if $x \in X$ then there exists a neighborhood N of x such that N is cover compact.

Let (X, \mathcal{T}) be a locally compact space and let ∞ be a symbol. The *one-point compactification* of X is

$$X^+ = X \cup \{\infty\}$$

with topology

 $\mathcal{U} = \mathcal{T} \cup \{X^+ - K \mid K \text{ is a cover compact subset of } X\}.$

- (a) Show that \mathcal{U} is a topology on X^+ and that X^+ is cover compact.
- (b) Show that $\mathbb{R}_{\geq 0}$ is locally compact and $(\mathbb{R}_{\geq 0})^+$ is homeomorphic to $[0,1] = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$.
- (c) Show that \mathbb{R} is locally compact and that \mathbb{R}^+ is homeomorphic to $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$

25.4 Cauchy sequences and convergent sequences

1. (convergent sequences are Cauchy) Let (X, d) be a metric space and let $(x_1, x_2, ...)$ be a a sequence in X. Show that if there exists $x \in X$ with $\lim_{n \to \infty} x_n = x$ then $(x_1, x_2, ...)$ is a Cauchy sequence in X.

- 2. (convergent sequences are bounded) Let (X, d) be a metric space and let $(x_1, x_2, ...)$ be a a sequence in X. Show that if $(x_1, x_2, ...)$ converges in X then the set $\{x_1, x_2, ...\}$ is bounded.
- 3. (Cauchy sequences provide Cauchy filters) Let (X, \mathcal{X}) be a uniform space and let (x_1, x_2, \ldots) be a sequence in X. Let \mathcal{F} be the filter consisting of all subsets of X which contain all but a finite number of points of $\{x_1, x_2, \ldots\}$. Show that \mathcal{F} is a Cauchy filter if and only if (x_1, x_2, \ldots) is a Cauchy sequence.
- 4. (Convergent filters are Cauchy) Let (X, \mathcal{X}) be a uniform space and let \mathcal{F} be a filter on X. Show that if \mathcal{F} is convergent then \mathcal{F} is Cauchy.
- 5. (Convergent sequences are Cauchy) Let (X, \mathcal{X}) be a uniform space and let (x_1, x_2, \ldots) be a sequence in X. Show that if (x_1, x_2, \ldots) is convergent then (x_1, x_2, \ldots) is a Cauchy sequence.
- 6. (Cauchy sequences are not necessarily convergent) Let $X = \mathbb{R}_{(0,1)} = \{x \in \mathbb{R} \ 0 < x < 1\}$ with metric given by d(x, y) = |x y|. Show that the sequence $(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$ is a Cauchy sequence in X that does not converge in X.
- 7. (Cauchy filters do not necessarily have limit points) Let (X, \mathcal{X}) be a uniform space and let (x_1, x_2, \ldots) be a Cauchy sequence in X which does not have a limit point. Let \mathcal{F} be the filter on X generated by the sets $\vec{x}_{\geq N} = \{x_m \mid m \in \mathbb{Z}_{\geq N}\}$ for $N \in \mathbb{Z}_{>0}$. Show that \mathcal{F} is a Cauchy filter on X which does not have a limit point.

25.5 Favourite examples of complete spaces

- 1. (\mathbb{R} is complete) Let $X = \mathbb{R}$ with metric given by d(x, y) = |x y|. Show that \mathbb{R} is a complete metric space.
- 2. (\mathbb{R}^n is complete) Let $n \in \mathbb{Z}_{>0}$. Let $X = \mathbb{R}^n$ with metric given by d(x, y) = ||x y|| where $||(x_1, \ldots, x_n)|| = \sqrt{x_1^2 + \cdots + x_n^2}$. Show that \mathbb{R}^n is a complete metric space.
- 3. (The example $\iota : \mathbb{Q} \to \mathbb{R}$) The standard metric on \mathbb{R} is

 $d \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \qquad \text{given by} \quad d(x,y) = |y - x|,$

where the standard absolute value $| : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is given by

$$|x| = \begin{cases} x, & \text{if } x \ge 0, \\ -x, & \text{if } x \le 0. \end{cases}$$

Show that, with respect to the standard metric, \mathbb{R} is the completion of \mathbb{Q} .

4. (The example $\iota: \mathbb{R}[t] \to \mathbb{R}[[t]]$) The *t*-adic metric on $\mathbb{R}[[t]]$ is

$$d: \mathbb{R}[t] \times \mathbb{R}[[t]] \to \mathbb{R}_{\geq 0}$$
 given by $d(x, y) = e^{-v(y-x)}$

where $e \in \mathbb{R}_{>1}$ and the *t*-adic valuation $v \colon \mathbb{R}[[t]] \to \mathbb{Z}_{\geq 0}$ is given by

$$v(p) = \max\{n \in \mathbb{Z}_{\geq 0} \mid p \in t^n \mathbb{R}[[t]]\}.$$

Show that, with respect to the *t*-adic metric, $\mathbb{R}[[t]]$ is the completion of $\mathbb{R}[t]$.

5. (The example $\iota: \mathbb{R}(t) \to \mathbb{R}((t))$) The *t*-adic metric on $\mathbb{R}((t))$ is

 $d \colon \mathbb{R}((t)) \times \mathbb{R}((t)) \to \mathbb{R}_{\geq 0}$ given by $d(x, y) = e^{-v(y-x)}$,

where $e \in \mathbb{R}_{>1}$ and the *t*-adic valuation $v \colon \mathbb{R}((t)) \to \mathbb{Z}_{qe0}$ is given by

$$v(f) = \max\{n \in \mathbb{Z}_{\geq 0} \mid f \in t^n \mathbb{R}[[t]]\}$$

Show that, with respect to the t-adic metric, $\mathbb{R}((t))$ is the completion of $\mathbb{R}(t)$.

6. (The example $\iota: \mathbb{Q} \to \mathbb{Q}_p$) Let $p \in \mathbb{Z}_{>1}$ be prime. The *p*-adic metric on \mathbb{Q}_p is

$$d: \mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{R}_{>0}$$
 given by $d(x, y) = e^{-v_p(y-x)}$,

where $e \in \mathbb{R}_{>1}$ and the *p*-adic valuation $v_p \colon \mathbb{Q}_p \to \mathbb{Z}$ is given by

$$v_p(a) = \max\{n \in \mathbb{Z} \mid a \in p^n \mathbb{Z}_p\}.$$

Show that, with respect to the *p*-adic metric, \mathbb{Q}_p is the completion of \mathbb{Q} .

7. (The example $\iota: \mathbb{Z} \to \mathbb{Z}_p$) Let $p \in \mathbb{Z}_{>1}$ be prime. The *p*-adic metric on \mathbb{Z}_p is

 $d: \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{R}_{\geq 0}$ given by $d(x, y) = e^{-v_p(y-x)}$,

where $e \in \mathbb{R}_{>1}$ and the *p*-adic valuation $v_p \colon \mathbb{Z}_p \to \mathbb{Z}_{\geq 0}$ is given by

$$v_p(a) = \max\{n \in \mathbb{Z}_{\geq 0} \mid a \in p^n \mathbb{Z}_p\}.$$

Show that, with respect to the *p*-adic metric, \mathbb{Z}_p is the completion of \mathbb{Z} .

- 8. (ℓ^2 is not ball compact) Let $e_1 = (1, 0, 0, \ldots), e_2 = (0, 1, 0, 0, \ldots), e_3 = (0, 0, 1, 0, 0, \ldots), \ldots$ in ℓ^2 . Show that
 - (a) If $A = \{e_1, e_2, \ldots\}$ then $A \subseteq B_{\sqrt{2}+.001}(e_1)$ so that A is bounded.
 - (b) If $A = \{e_1, e_2, \ldots\}$ and $\epsilon \in \mathbb{R}_{>0}$ with $\epsilon < \sqrt{2}$ then there do not exist a finite number of balls of radius ϵ which cover A. Thus A is not ball compact.
 - (c) Show that e_1, e_2, e_3, \ldots is a sequence in ℓ^2 with no cluster point.
- 9. (ℓ^2 is Cauchy compact) Show that ℓ^2 is Cauchy compact.

25.6 Existence and uniqueness of completions

- 1. (isometries are injective) Show that if $\varphi \colon X \to Y$ is an isometry then φ is injective.
- 2. (isometries are not necessarily surjective) Show that if $\varphi \colon \mathbb{Q} \to \mathbb{R}$ given by $\varphi(x) = x$ is an isometry that is not surjective.
- 3. (uniqueness of the completion of a uniform space) Let (X, \mathcal{X}) be a uniform space. Show that if $(\hat{X}, \hat{\mathcal{X}}, \iota: X \to \hat{X})$ and $(\hat{Y}, \hat{\mathcal{Y}}, j: X \to \hat{Y})$ are completions of X then there exists a bijective uniformly continuous function $f: \hat{X} \to \hat{Y}$ such that the inverse function $f^{-1}: Y \to X$ is uniformly continuous and $j = f \circ \iota$.

4. (uniqueness of the completion of a metric space) Let (X, d) be a metric space. Show that if (\hat{X}_1, \hat{d}_1) with $\varphi_1 \colon X \to \hat{X}_1$ and (\hat{X}_2, \hat{d}_2) with $\varphi_2 \colon X \to \hat{X}_2$ are completions of (X, d) then there exists

 $f: \widehat{X}_1 \to \widehat{X}_2$ such that f is an isometry, f is a bijection, and $f \circ \varphi_1 = \varphi_2$.

5. (existence of the completion of a metric space) Let (X, d) be a metric space. Let $(\hat{X}, \hat{d}, \iota)$ be the metric space

$$\widehat{X} = \{ \text{Cauchy sequences } \vec{x} \text{ in } X \} \quad \text{with the function} \quad \begin{array}{ccc} \iota \colon & X & \longrightarrow & \widehat{X} \\ & x & \longmapsto & (x, x, x, \ldots) \end{array}$$

where \widehat{X} has the metric

$$d: \widehat{X} \times \widehat{X} \to \mathbb{R}_{\geq 0}$$
 defined by $d(\vec{x}, \vec{y}) = \lim_{n \to \infty} d(x_n, y_n),$

and Cauchy sequences $\vec{x} = (x_1, x_2, ...)$ and $\vec{y} = (y_1, y_2, ...)$ are equal in \hat{X} ,

$$\vec{x} = \vec{y}$$
 if $\lim_{n \to \infty} d(x_n, y_n) = 0.$

Show that (\hat{X}, \hat{d}) with an isometry $\iota \colon X \to \hat{X}$ such that

 (\hat{X}, \hat{d}) is a complete complete metric space and $\overline{\varphi(X)} = \hat{X}$, where $\overline{\varphi(X)}$ is the closure of the image of φ . 6. (another construction of the completion of a metric space) Let (X, d) be a metric space. The space of bounded functions on X is

$$B(X) = \{ f \colon X \to \mathbb{R} \mid f(X) \text{ is bounded} \}$$

with metric $d_{\infty} \colon B(X) \times B(X) \to \mathbb{R}_{>0}$ given by

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| \mid x \in X\}.$$

Fix $a \in X$. Let $(\widehat{X}, \widehat{d}, \iota)$ be the metric space

$$\widehat{X} = \overline{\iota(X)}$$
 where $\iota: X \to B(X)$
 $x \mapsto f_x$

with

$$f_x \colon X \to \mathbb{R}$$
 given by $f_x(y) = d(y, x) - d(y, a).$

Show that ι is well defined and $(\widehat{X}, d_{\infty}, \iota)$ is a completion of X.

7. (existence of the completion of a uniform space) Let (X, \mathcal{X}) be a uniform space. A minimal Cauchy filter on X is a Cauchy filter on X which is minimal with respect to inclusion of filters. The completion of X is the uniform space

$$\widehat{X} = \{ \text{minimal Cauchy filters } \widehat{x} \text{ on } X \} \quad \text{with the function} \quad \begin{array}{ccc} \iota \colon & X & \longrightarrow & X \\ & x & \longmapsto & \mathcal{N}(x) \end{array}$$

where $\mathcal{N}(x)$ is the neighborhood filter of x, and \widehat{X} has the uniformity $\widehat{\mathcal{X}}$ generated by the sets

 $\hat{V} = \{(\hat{x}, \hat{y}) \mid \text{there exists } N \in \hat{x} \cap \hat{y} \text{ such that } N \times N \subseteq V\},\$

for $V \in \mathcal{X}$ such that if $(x, y) \in V$ then $(y, x) \in V$.

Show that $(\hat{X}, \hat{\mathcal{X}})$ is a complete Hausdorff uniform space and $\iota \colon X \to \hat{X}$ is a uniformly continuous function such that

if Y is a complete Hausdorff uniform space and $f: X \to Y$ is a uniformly continuous map then there exists a unique uniformly continuous function $g: \widehat{X} \to Y$ such that $f = g \circ \iota$.

25.7 Completions and inverse limits

1. (Completions and inverse limits)

A topological abelian group is a topological space (G, \mathcal{T}) with a function

$$\begin{array}{cccc} G \times G & \longrightarrow & G \\ (g_1, g_2) & \longmapsto & g_1 + g_2 \end{array} \quad \text{such that} \end{array}$$

- (a) If $g_1, g_2, g_3 \in G$ then $(g_1 + g_2) + g_3 = g_1 + (g_2 + g_3)$,
- (b) There exists $0 \in G$ such that if $g \in G$ then g + 0 = g and 0 + g = g,
- (c) If $g \in G$ then there exists $-g \in G$ such that g + (-g) = 0 and (-g) + g = 0,
- (d) If $g_1, g_2 \in G$ then $g_1 + g_2 = g_2 + g_1$,

(e) The function

$$\begin{array}{cccc} G \times G & \longrightarrow & G \\ (g_1,g_2) & \longmapsto & g_1+g_2 \end{array} \quad \text{is continuous, and} \end{array}$$

(f) The function

$$\begin{array}{cccc} G & \longrightarrow & G \\ g & \longmapsto & -g \end{array} \quad \text{is continuous.} \end{array}$$

Assume that $\mathcal{N}(0)$, the neighborhood filter of 0 in G is countably generated (i.e. there exist $U_1, U_2, \ldots \in \mathcal{N}(0)$ such that if $P \in \mathcal{N}(0)$ then there exists $j \in \mathbb{Z}_{>0}$ such that $P \supseteq U_j$).

A Cauchy sequence in G is a sequence $x_1, x_2, \ldots \in G$ such that

if $P \in \mathcal{N}(0)$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $r, s \in \mathbb{Z}_{\geq N}$ then $x_r - x_s \in P$.

Two Cauchy sequences (x_1, x_2, \ldots) and (y_1, y_2, \ldots) are *equivalent*,

$$(x_1, x_2, ...) \sim (y_1, y_2, ...),$$
 if $\lim_{n \to \infty} (x_n - y_n) = 0.$

The *completion* of G is the set of equivalence classes of Cauchy sequences in G,

 $\widehat{G} = \{ \text{Cauchy sequences } (x_1, x_2, \ldots) \text{ in } G \} / \sim$

with the function

$$\begin{array}{cccc} \varphi \colon & G & \longrightarrow & G \\ & x & \longmapsto & (x, x, \ldots) \end{array}$$

Now assume that $G_1 \supseteq G_2 \supseteq$ are subgroups which generate $\mathcal{N}(0)$ (i.e. $G_1, G_2, \ldots \in \mathcal{N}(0)$ and if $P \in \mathcal{N}(0)$ then there exists $j \in \mathbb{Z}_{>0}$ such that $P \supseteq G_j$). A coherent sequence is a sequence $(\bar{x}_1, \bar{x}_2, \ldots)$ with

$$\bar{x}_n \in G/G_n$$
 and $\pi_n(\bar{x}_{n+1}) = \bar{x}_n$, where $\begin{array}{ccc} \pi_n \colon G/G_{n+1} & \longrightarrow & G/G_n\\ \bar{g} & \longmapsto & \bar{g} + G_n \end{array}$

The inverse limit

 $\underline{\lim} G/G_n$ is the set of coherent sequences.

Show that the function

$$\Phi: \begin{array}{ccc} \hat{G} & \longrightarrow & \varprojlim G/G_n \\ (x_1, x_2, \ldots) & \longmapsto & (x_1 + G_1, x_2 + G_2, \ldots) \end{array}$$
 is an isomorphism.

25.7.1 Products and function spaces

1. (products of complete metric spaces are complete) Let (X, d_X) and (Y, d_Y) be complete metric space spaces. Show that $X \times Y$ with metric given by

$$d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

is a complete metric space.

- 2. (products of complete uniform spaces are complete) Let (X, \mathcal{X}) and (X, \mathcal{Y}) be complete uniform spaces. Show that $X \times Y$ with the product uniformity is a complete uniform space. (See [Bou Ch II §3 no. 5 Proposition 10]).
- 3. (function spaces with complete targets are complete) Let (X, d) and (Y, ρ) be metric spaces and let

$$C_b(X,Y) = \{f \colon X \to Y \mid f \text{ is continuous and } f(X) \text{ is bounded}\}$$

with metric $d_{\infty} \colon C_b(X,Y) \times C_b(X,Y) \to \mathbb{R}_{\geq 0}$ given by

$$d_{\infty}(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}.$$

Show that if (Y, ρ) is a complete metric space then $C_b(X, Y)$ is a complete metric space.

4. (the metric space of bounded continuous real valued functions is complete) Let (X, d) and (Y, ρ) be metric spaces and

 $C_b(X) = \{f \colon X \to \mathbb{R} \mid f \text{ is continuous and } f(X) \text{ is bounded} \}$

with metric $d_{\infty} \colon C_b(X) \times C_b(X) \to \mathbb{R}_{\geq 0}$ given by

$$l_{\infty}(f,g) = \sup\{|f(x) - g(x)| \mid x \in X\}.$$

Show that $C_b(X)$ is a complete metric space.

5. (If W is complete then B(V, W) is complete) Let V and W be normed vector spaces and let B(V, W) be the vector space of bounded linear operators from V to W with norm given by

$$||T|| = \sup\left\{\frac{||Tv||}{||v||} \mid v \in V\right\}, \quad \text{for } T \in B(V, W).$$

Show that if W is complete then B(V, W) is complete.

6. (If Y is complete then bounded continuous functions from X to Y is complete) Let (X, d_X) and (Y, d_Y) be metric spaces and let

 $\mathcal{BC}(X,Y) = \{f \colon X \to Y \mid f \text{ is continuous and } f(X) \text{ is bounded in } Y\},\$

with $d_{\infty} \colon \mathcal{BC}(X,Y) \times \mathcal{BC}(X,Y) \to \mathbb{R}_{\geq 0}$ given by

$$d_{\infty}(f,g) = \sup\{d_Y(f(x),g(x)) \mid x \in X\}$$

- (a) Show that $\mathcal{BC}(X, Y)$ is a metric space.
- (b) Show that if Y is a complete metric space then $\mathcal{BC}(X, Y)$ is a complete metric space.
- 7. (bounded real valued functions is a complete metric space) Let (X, d) be a metric space and let

$$B(X) = \{ f \colon X \to \mathbb{R} \mid f(X) \text{ is bounded} \},\$$

with metric $d_{\infty} \colon B(X) \times B(X) \to \mathbb{R}_{\geq 0}$ given by

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| \mid x \in X\}.$$

Show that B(X) is a complete metric space.

8. (duals of normed vector spaces are complete) Let V with $\| \|: V \to \mathbb{R}_{\geq 0}$ be a normed vector space. Show that V^* , the dual of V, is complete.

25.7.2Banach fixed point theorem and Picard iteration

1. (Banach fixed point theorem) Let (X, d) be a metric space. A contraction mapping is a function $f: X \to X$ such that there exists $\alpha \in \mathbb{R}_{>0}$ such that $\alpha < 1$ and

if
$$x, y \in X$$
 then $d(f(x), f(y)) \le \alpha d(x, y)$.

A fixed point of $f: X \to X$ is an element $x \in X$ such that f(x) = x.

Let (X, d) be a complete metric space and let $f: X \to X$ be a contraction mapping. Let $x \in X$ and let x_1, x_2, \ldots be the sequence

$$x_1 = f(x), \quad x_2 = f(f(x)), \quad x_3 = f(f(f(x))), \quad \dots$$

Show that the sequence x_1, x_2, \ldots converges and $p = \lim_{n \to \infty} x_n$ is the unique fixed point of f.

2. (Picard iteration) Picard iteration is a method for solving equations of the form f(x) = x. The process is to let

 $a_1 =$ your choice, $a_2 = f(a_1), a_3 = f(a_2), \ldots$

If the sequence $(a_1, a_2, ...)$ converges and $a = \lim_{n \to \infty} a_n$ then f(a) = a (because $f(a_n) = a_{n+1}$ is very close to a_n for large n). To apply this technique to find a solution of $x^3 - x - 1 = 0$ proceed as follows.

- (a) Transform the equation $x^3 x 1 = 0$ to the form x = f(x), where $f(x) = \frac{1}{x^2 + 1}$.
- (b) Let $a_1 = \frac{1}{2}$. Show that $a_2 = \frac{4}{5} = 0.8$. (c) Show that $a_3 = \frac{25}{41} \approx 0.609760976097....$ (d) Show that $a_4 = \frac{1681}{2306} \approx 0.728967$.
- (e) Show that $a_5 \approx 0.6530046$.
- (f) Show that $a_6 \approx 0.7010582$.
- (g) Show that $a_7 \approx 0.6704737$.
- (h) Show that $a_8 \approx 0.68987635$.
- (i) Show that $a_9 \approx 0.67753918$.
- (j) Show that $a_{10} \approx 0.68537308$.
- (k) Show that $a_{11} \approx 0.680394233$.
- (l) Show that $a_{12} \approx 0.6835567$.
- (m) Show that $a_{13} \approx 0.68154722$.
- (n) Show that $a_{14} \approx 0.68282382$.
- (o) Show that $a_{15} \approx 0.6820126$.
- (p) Prove that, to 3 decimal places of accuracy, x = .682 is a solution of $x^3 + x - 1 = 0$.
- 3. (Picard iteration doesn't always converge) Picard iteration is a method for solving equations of the form f(x) = x. The process is to let

$$a_1 =$$
 your choice, $a_2 = f(a_1), \quad a_3 = f(a_2), \quad \dots$

If the sequence $(a_1, a_2, ...)$ converges and $a = \lim_{n \to \infty} a_n$ then f(a) = a (because $f(a_n) = a_{n+1}$ is very close to a_n for large n). Another transformation of the equation $x^3 - x - 1 = 0$ to the form x = f(x), has $f(x) = 1 - x^3$.

- (a) Let $a_1 = \frac{1}{2}$. Show that $a_2 = \frac{7}{8} = 0.875$.
- (b) Show that $a_3 \approx 0.330078$.
- (c) Show that $a_4 \approx 0.964037$.
- (d) Show that $a_4 \approx 0.104055$.
- (e) Prove that $(a_1, a_2, a_3, ...)$ does not converge, but is oscillating between close to 1 and close to 0.
- 4. Which of the following maps are contractions?
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = e^{-x};$ (b) $f: [0, \infty) \to [0, \infty), f(x) = e^{-x};$ (c) $f: [0, \infty) \to [0, \infty), f(x) = e^{-e^x};$ (d) $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x;$ (e) $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(\cos x).$
- 5. Let X be a complete metric space and let $f: X \to X$ be a contraction. Show that f has a unique fixed point.
- 6. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$. Let X be a complete metric space and let $f: X \to X$ be a α -contraction. Let $x \in X$, $x_0 = x$ and $x_{n+1} = f(x_n)$, for $n \in \mathbb{Z}_{\geq 0}$.
 - (a) Show that the sequence x_0, x_1, x_2, \ldots converges in X.

Let
$$p = \lim_{n \to \infty} x_n$$
.

(b) Show that
$$d(x,p) \leq \frac{d(x,f(x))}{1-\alpha}$$
.

- (c) Show that f(p) = p.
- 7. Let U be an open subset of \mathbb{R}^2 . Let $f: U \to \mathbb{R}$ be a continuous function which satisfies the Lipschitz condition with respect to the second variable: There exists $\alpha \in \mathbb{R}_{>0}$ such that

if
$$(x, y_1), (x, y_2) \in U$$
 then $|f(x, y_1) - f(x, y_2)| \le \alpha |y_1 - y_2|$.

Show that if $(x_0, y_0) \in U$ then there exists $\delta \in \mathbb{R}_{>0}$ such that y'(x) = f(x, y(x)) has a unique solution $y: [x_0 - \delta, x_0 + \delta] \to \mathbb{R}$ such that $y(x_0) = y_0$.

8. Consider the map $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = \frac{1}{10}(8x + 8y, x + y), \ (x,y) \in \mathbb{R}^2.$$

Recall metrics $d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|, d_2((x_1, y_1), (x_2, y_2)) = [|x_1 - x_2|^2 + |y_1 - y_2|^2]^{1/2}$ and $d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$. Is f a contraction with respect to d_1 ? d_2 ? d_{∞} ?

9. (a) Consider X = (0, a] with the usual metric and $f(x) = x^2$ for $x \in X$. Find values of a for which f is a contraction and show that $f : X \to X$ does not have a fixed point.

- (b) Consider $X = [1, \infty)$ with the usual metric and let $f(x) = x + \frac{1}{x}$ for $x \in X$. Show that $f: X \to X$ and d(f(x), f(y)) < d(x, y) for all $x \neq y$, but f does not have a fixed point. Reconcile (a) and (b) with Banach fixed point theorem.
- 10. Let (X, d) be a complete metric space and $f: X \to X$ be a function such that

$$d(f(x), f(y)) \le \alpha d(x, y)$$

for all $x, y \in \overline{B}(x_0, r_0)$, where $0 < \alpha < 1$ and $d(x_0, f(x_0)) \leq (1 - \alpha) \cdot r_0$. Prove that f has a unique fixed point $p \in \overline{B}(x_0, r_0)$.

11. (a) Show that there is exactly one continuous function $f:[0,1] \to \mathbb{R}$ which satisfies the equation

$$[f(x)]^3 - e^x [f(x)]^2 + \frac{f(x)}{2} = e^x$$

(Hint: rewrite the equation as $f(x) = e^x + \frac{1}{2} \frac{f(x)}{1 + f(x)^2}$.) (b) Consider C[0, a] with a < 1 and $T : C[0, a] \to C[0, a]$ given by

$$(Tf)(t) = \sin t + \int_0^t f(s)ds, \ t \in [0, a].$$

Show that T is a contraction. What is the fixed point of T?

(c) Find all $f \in C[0, \pi]$ which satisfy the equation

$$3f(t) = \int_0^t \sin(t-s)f(s)ds$$

(d) Let $g \in C[0,1]$. Show that there exists exactly one $f \in C[0,1]$ which solves the equation

$$f(x) + \int_0^1 e^{x-y-1} f(y) dy = g(x), \text{ for all } x \in [0,1].$$

(Hint: Consider the metric $d(f,h) = \sup\{e^{-x}|f(x) - h(x)| \mid x \in [0,1]\}$.)

- 12. Call a map $f: X \to X$ a weak contraction if d(f(x), f(y)) < d(x, y) for all $x \neq y$. Prove that if X is compact and f is a weak contraction, then f has a unique fixed point.
- 13. Let a > 0, and let

$$f(x) = \frac{1}{2}\left(x + \frac{a}{x}\right) \quad \text{for } x > 0.$$

- (a) Show that $f(x) \ge \sqrt{a}$ for all x > 0. Hence f defines a function $f : X \to X$ where $X = [\sqrt{a}, \infty)$.
- (b) Show that f is a contraction mapping when X is given the usual metric.
- (c) Fix $x_0 > \sqrt{a}$ and $x_{n+1} = f(x_n)$ for all $n \ge 0$. Show that the sequence $\{x_n\}$ converges and find its limit with respect to the usual metric on \mathbb{R} .

- 14. (a) State the Banach fixed point theorem. A mapping $f : \mathbb{R} \to \mathbb{R}$ is defined as a *contraction* if there exists a constant c with $0 \le c < 1$ such that $|f(x) - f(y)| \le c|x - y|$ for all $x, y \in \mathbb{R}$.
 - (b) (1) Use (a) to show that the equation x + f(x) = a has a unique solution for each a ∈ ℝ.
 (2) Deduce that F : ℝ → ℝ defined by F(x) = x + f(x) is a bijection. (This should be easy).
 - (3) Show that F is continuous.
 - (4) Show that F^{-1} is continuous. (Hence F is a homeomorphism.)
- 15. (a) State the Banach fixed point theorem.
 - (b) Let X be the interval (0, 1/3) with usual Euclidean metric. Show that $f : X \to X$ defined by $f(x) = x^2$ is a contraction, but f does not have a fixed point in X. Why does this not contradict the Banach fixed point theorem?
 - (c) Let (X, d) be a complete metric space and $f : X \to X$. Define g(x) = f(f(x)), that is, $g = f \circ f$. Assume that the map $g : X \to X$ is a contraction. Prove that f has a unique fixed point.
- 16. Let $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be given by

$$f(x) = \frac{2}{2+x}$$

- (a) Show that f defines a contraction mapping $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$.
- (b) Fix $x_0 \ge 0$ and $x_{n+1} = f(x_n)$ for all $n \ge 0$. Show that the sequence $\{x_n\}$ converges and find its limit with respect to the usual metric on \mathbb{R} .
- 17. Let $a \in \mathbb{R}_{>0}$. Let

$$f(x) = \frac{1}{2}\left(x + \frac{a}{x}\right), \quad \text{for } x \in \mathbb{R}_{>0}.$$

- (a) Show that if $x \in \mathbb{R}_{>0}$ then $f(x) \ge \sqrt{a}$. Hence f defines a function $f: X \to X$ where $X = [\sqrt{a}, \infty)$.
- (b) Show that f is a contraction mapping when X is given the usual metric.
- (c) Fix $x_0 > \sqrt{a}$ and $x_{n+1} = f(x_n)$, for $n \in \mathbb{Z}_{\geq 0}$. Show that the sequence $\{x_n\}$ converges and find its limit with respect to the usual metric on \mathbb{R} .
- 18. Consider the map $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = \frac{1}{10}(8x + 8y, x + y).$$

Recall metrics

$$d_1((x_1, y_1), (x_2, y_2) = |x_1 - x_2| + |y_1 - y_2|,$$

$$d_2((x_1, y_1), (x_2, y_2) = (|x_1 - x_2|^2 + |y_1 - y_2|^2)^{1/2},$$

$$d_{\infty}((x_1, y_1), (x_2, y_2) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

If f a contraction with respect to d_1 ? d_2 ? d_∞ ? Prove that your answers are correct.

19. (a) State the Banach fixed point theorem. (b) Let $X = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$ Verify that the mapping $f: X \to X$ given by

$$f(x,y) = \left(\frac{1}{4}(x+y+1), \frac{1}{4}(x-y+1)\right)$$

satisfies the conditions of the Banach fixed point theorem.

(c) Find directly the unique fixed point for f.

25.8The space L^1

A rectangle in \mathbb{R}^k is $I_1 \times \ldots \times I_k$, where I_1, \ldots, I_k are intervals in \mathbb{R} and

$$\operatorname{vol}(I_1 \times \cdots \times I_k) = \operatorname{length}(I_1) \cdots \operatorname{length}(I_k).$$

A step function is a function $f : \mathbb{R}^k \to \mathbb{R}$ such that there exist $k \in \mathbb{Z}_{>0}, c \in \mathbb{R}$ and intervals $I_1, \ldots, I_k \subseteq$ \mathbb{R} such that

$$f(x) = \begin{cases} c, & \text{if } x \in I_1 \times \dots \times I_k; \\ 0, & \text{otherwise.} \end{cases}$$

A null set is a subset $A \subseteq \mathbb{R}^k$ such that

if $\varepsilon \in \mathbb{R}_{>0}$ then there exists a sequence R_1, R_2, \ldots of rectangles in \mathbb{R}^k

such that
$$A \subseteq \bigcup_{j \in \mathbb{Z}_{>0}} R_j$$
 and $\sum_{j \in \mathbb{Z}_{>0}} \operatorname{vol}(R_j) < \varepsilon$.

A *full set* is the complement of a null set.

1. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let

$$||f|| = \int |f|$$
 and $d(f,g) = ||f - g||,$

for $f, g \in S$.

- (a) Show that $\| \|: S \to \mathbb{R}_{\geq 0}$ is not a norm on S.
- (b) Show that $d: S \times S \to \mathbb{R}_{\geq 0}$ is not a metric on S.
- 2. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let $\sum_{i \in \mathbb{Z}_{>0}} f_i$ be a series in S which is norm absolutely convergent. Show that there exists a full set in \mathbb{R}^k on which $\sum_{i \in \mathbb{Z}_{>0}} f_i$ converges.
- 3. Let S be the set of linear combinations of step functions $f: \mathbb{R}^k \to \mathbb{R}$. Let $\sum_{n \in \mathbb{Z}_{>0}} f_k$ be a series in S which is norm absolutely convergent. Show that $\sum_{n \in \mathbb{Z}_{>0}} f_n = 0$ almost everywhere if and only if the limit of the norms of the partial sums of f_n converge to 0.
- 4. Let L^1 be the set of functions which are equal almost everywhere to limits of norm absolutely convergent series in S, where S is the set of linear combinations of step functions $f \colon \mathbb{R}^k \to \mathbb{R}$. Define

$$||f|| = \int f$$
 and $d(f,g) = ||f-g||$, for $f,g \in L^1$

- (a) Show that $\| \|: L^1 \to \mathbb{R}_{\geq 0}$ is a norm on L^1 . (b) Show that $d: L^1 \times L^1 \to \mathbb{R}_{\geq 0}$ is a metric on L^1 .

25.9 Additional sample exam questions

- 1. Let (X, d) be a metric space and let x_1, x_2, \ldots be a sequence in X. Show that if (x_1, x_2, \ldots) is a Cauchy sequence then $\{x_1, x_2, \ldots\}$ is bounded.
- 2. Let (X, d) be a metric space and let (x_1, x_2, \ldots) be a sequence in X. Show that if (x_1, x_2, \ldots) converges then (x_1, x_2, \ldots) is a Cauchy sequence.
- 3. Let (X, d) be a metric space and let (x_1, x_2, \ldots) be a sequence in X. Show that if (x_1, x_2, \ldots) is a Cauchy sequence and contains a convergent subsequence then (x_1, x_2, \ldots) converges.
- 4. Give an example of a metric space (X, d) and a Cauchy sequence $(x_1, x_2, ...)$ in X that does not converge.
- 5. Give an example of a metric space (X, d) that is not complete.
- 6. Show that \mathbb{R} with the usual metric is a complete metric space.
- 7. Let (X, d) be a complete metric space. Let $Y \subseteq X$ be a subspace of X. Show that if Y is closed then (Y, d) is complete.
- 8. Give an example of a metric space (X, d) and a subspace $Y \subseteq X$ such that (X, d) is a complete metric space and (Y, d) is not complete.
- 9. Let (X, d) be a metric space and let $Y \subseteq X$ be a subspace of X. Show that if (Y, d) is complete then Y is a closed subset of X.
- 10. Let $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ be metric spaces and let $(X_1 \times \cdots \times X_\ell, d)$ be the product metric space. Show that if $(X_1, d_1), \ldots, (X_\ell, d_\ell)$ are complete then $(X_1 \times \cdots \times X_\ell, d)$ is complete.
- 11. Let (X, d) and (Y, d') be metric spaces and let $C_b(X, Y)$ be the set of bounded continuous functions $f: X \to Y$ with the metric $\rho: C_b(X, Y) \times C_b(X, Y) \to \mathbb{R}_{\geq 0}$ given by

$$\rho(f,g) = \sup\{d'(f(x),g(x)) \mid x \in X\}.$$

Show that if (Y, d') is complete then $(C_b(X, Y), \rho)$ is a complete metric space.

- 12. Show that the completion of (0,1) with the usual metric is [0,1] with the usual metric.
- 13. Let (X, d) and (Y, ρ) be metric spaces and let $f: X \to Y$ be an isometry. Show that f is injective.

- 14. Give an example of an isometry $f: X \to Y$ that is not surjective.
- 15. Let (X, d) be a metric space. Show that a completion of (X, d) exists.
- 16. Let (X, d) be a metric space. Show that the completion of (X, d) is unique (if it exists).
- 17. Let (X, d) be a metric space. Let $((X_1, d_1), \varphi_1)$ and $((X_2, d_2), \varphi_2)$ be completions of (X, d). Show that there is a surjective isometry $f: X_1 \to X_2$ such that $f \circ \varphi_1 = \varphi_2$.
- 18. Let (X, || ||) be a normed vector space. Show that (X, || ||) is complete if and only if every norm absolutely convergent series is convergent in X.
- 19. Let I be a closed and bounded interval in \mathbb{R} . Let x_1, x_2, x_3, \ldots be a sequence in I. Show that there exists a subsequence $x_{n_1}, x_{n_2}, x_{n_3}, \ldots$ of x_1, x_2, x_3, \ldots such that $x_{n_1}, x_{n_2}, x_{n_3}, \ldots$ converges in I.
- 20. Let X be a compact topological space. Let C be a closed subset of X. Show that C is compact.
- 21. Let X be a metric space and let E be a compact subset of X. Show that E is closed and bounded.
- 22. Let $C([0,1],\mathbb{R}) = \{f: [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$ and let $d(f,g) = \sup\{|f(x)-g(x)| \mid x \in [0,1]\}.$
 - (a) Show that $d: C([0,1],\mathbb{R}) \times C([0,1],\mathbb{R})$ is a metric on $C([0,1,\mathbb{R})$.
 - (b) Let $A = \overline{B}_1(0) = \{f \in C([0,1],\mathbb{R}) \mid d(f,0) \leq 1\}$. Show that A is closed and bounded.
 - (c) Show that A is not compact.
- 23. Let $K \subseteq \mathbb{R}$. Show that K is compact if and only if K is closed and bounded.
- 24. Let (X, d) and (Y, d') be metric spaces and let $f: X \to Y$ be a continuous function. Let K be a compact subset of X. Show that f(K) is compact in Y.
- 25. Let X be a compact metric space. Let $f: X \to \mathbb{R}$ be a continuous function. Show that f attains a maximum and a minimum value.
- 26. Let X be a compact metric space. Let $f: X \to Y$ be a continuous function. Show that f is uniformly continuous.
- 27. Let X be a set with the discrete metric. Show that X is compact if and only if X is finite.

28. Let X be a metric space and let $A \subseteq X$. Show that if A is totally bounded then A is bounded.

29. Let $X = \mathbb{R}$ with metric given by $d(x, y) = \min\{|x - y|, 1\}$.

- (a) Show that X is bounded.
- (b) Show that X is not totally bounded.
- 30. Let X be a metric space and let $A \subseteq X$. Show that the following are equivalent:
 - (a) Every sequence in A has a convergent subsequence.
 - (b) A is complete and totally bounded.
 - (c) Every open cover of A has a finite subcover.
- 31. Let X be a topological space. Show that X is compact if and only if X satisfies if C is a collection of closed sets such that

if $\ell \in \mathbb{Z}_{>0}$ and $C_1, \ldots, C_\ell \in \mathcal{C}$ then $C_1 \cap \cdots \cap C_\ell \neq \emptyset$

then $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.

- 32. Let X be a topological space and let $K \subseteq X$. Assume X is compact. Show that if K is closed then K is compact.
- 33. Let X be a topological space and let $K \subseteq X$. Assume X is Hausdorff. Show that if K is compact then K is closed.
- 34. Show that a compact Hausdorff space is normal.
- 35. Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Let $\subseteq X$. Show that if K is compact then f(K) is compact.
- 36. Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Assume f is a bijection, X is compact and Y is Hausdorff. Show that the inverse function $f^{-1}: Y \to X$ is continuous.
- 37. Let $X = [0, 2\pi)$ and $Y = S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Let $f : [0, 2\pi) \to \S^1$ be given by $f(x) = (\cos x, \sin x)$.
 - (a) Show that f is continuous.
 - (b) Show that f is a bijection.
 - (c) Show that $f^{-1}: S^1 \to [0, 2\pi)$ is not continuous.
 - (d) Why does this not contradict the previous problem? FIX THIS.

- 38. Suppose that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in a metric space (X, d). Prove that the sequence of real numbers $\{d(x_n, y_n)\}$ converges.
- 39. Suppose that $\{x_n\}$ is a sequence in a metric space (X,d) such that $d(x_n,x_{n+1}) \leq 2^{-n}$ for all $n \in \mathbb{Z}_{>0}$. Prove that $\{x_n\}$ is a Cauchy sequence.
- 40. Decide if the following metric spaces are complete:
 - (a) $((0,\infty), d)$, where $d(x,y) = |x^2 y^2|$ for $x, y \in (0,\infty)$.
 - (b) $((-\pi/2, \pi/2), d)$, where $d(x, y) = |\tan x \tan y|$ for $x, y \in (-\pi/2, \pi/2)$.
- 41. Let X = (0,1] be equipped with the usual metric d(x,y) = |x-y|. Show that (X,d) is not complete. Let $\tilde{d}(x,y) = \|\frac{1}{x} - \frac{1}{y}\|$ for $x, y \in X$. Show that \tilde{d} is a metric on X that is equivalent to d, and that (X, \tilde{d}) is complete.
- 42. Suppose that (X,d) and (Y,\tilde{d}) are metric spaces and that $f: X \to Y$ is a bijection such that both f and f^{-1} are uniformly continuous. Show that (X, d) is complete if and only if (Y, d) is complete.
- 43. (Cantor's Intersection Theorem) Let (X, d) be a metric space and let $\{F_n\}$ be a "decreasing" sequence of non-empty subsets of X satisfying $F_{n+1} \subseteq F_n$ for all n.
 - (a) Prove that if

(i) (X, d) is complete, (ii) each F_n is closed, (iii) diam $(F_n) \to 0$,

- then $\bigcap_{n \in \mathbb{Z}_{>0}} F_n$ consists of exactly one point. (b) Show that, if any of (i)-(iii) is omitted, then $\bigcap_{n \in \mathbb{Z}_{>0}} F_n$ may be empty.
- (c) Conversely, prove that if for every decreasing sequence $\{F_n\}$ of non-empty subsets satisfying (ii) and (iii), the intersection $\bigcap_{n \in \mathbb{Z}_{>0}} F_n$ is non-empty, then X is complete.
- 44. Let (X, d) be a complete metric space and let $f: X \to (0, \infty)$ be a continuous function. Prove that there exists a point x^* such that $f(y) \leq 2f(x^*)$ for all $y \in B(x^*, \frac{1}{\sqrt{f(x^*)}})$. (*Hint:* Arguing by contradiction show that there exists a sequence $\{x_n\}$ with the following properties: $f(x_1) > 0$, $f(x_{n+1}) > 2f(x_n)$ for all $n \ge 1$ and $d(x_{n+1}, x_n) \le \frac{1}{\sqrt{f(x_n)}}$. Then show

that $\{x_n\}$ is Cauchy.)

45. Let (X, d) be a complete metric space and let (Y, \tilde{d}) be a metric space. Let $\{f_n\}$ be a sequence of continuous functions from X to Y such that $\{f_n(x)\}$ converges for every $x \in X$. Prove that for every $\varepsilon > 0$ there exist $k \in \mathbb{Z}_{>0}$ and a non-empty open subset U of X such that $\tilde{d}(f_n(x), f_m(x)) < \varepsilon$ for all $x \in U$ and all $n, m \ge k$.

46. On \mathbb{R} consider the metrics:

$$d_1(x, y) = |\arctan x - \arctan y|,$$

$$d_2(x, y) = |x^3 - y^3|.$$

With which of these metrics is \mathbb{R} complete? If (\mathbb{R}, d_i) is not complete find its completion.

47. Which of the following subsets of \mathbb{R} and \mathbb{R}^2 are compact? (\mathbb{R} and \mathbb{R}^2 are considered with the usual metrics).

(a) $A = \mathbb{Q} \cap [0, 1]$ (b) $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (c) $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}\}$ (d) $D = \{(x, y) : |x| + |y| \le 1\}$ (e) $E = \{(x, y) : x \ge 1 \text{ and } 0 \le y \le 1/x\}$

- 48. Prove that if A_1, \ldots, A_k are compact subsets of a metric space (X, d), then $\bigcup_{i=1}^k A_i$ is compact.
- 49. Prove that if A_i is a compact subset of the metric space (X_i, d_i) for i = 1, ..., k, then $A_1 \times \cdots \times A_k$ is a compact subset of $X = X_1 \times \cdots \times X_k$ with the product metric d.
- 50. Let A be a non-empty compact subset of a metric space (X, d). Prove:
 - (a) If $x \in X$, then there exists $a \in A$ such that d(x, a) = d(x, A);
 - (b) If $A \subseteq U$ and U is open, then there is $\varepsilon > 0$ such that $\{x \in X : d(x, A) < \varepsilon\} \subset U$.
 - (c) If B is closed and $A \cap B = \emptyset$, then d(A, B) > 0.

Hint: Recall that $(x, y) \mapsto d(x, y)$ is continuous from $X \times X \to [0, \infty)$.

- 51. Let $f : X \to \mathbb{R}$. Call a function f upper semicontinuous, abbreviated u.s.c., if for every $r \in \mathbb{R}$, $\{x \in X \mid f(x) < r\}$ is open. Similarly, f is lower semicontinuous, abbreviated l.s.c., if for every $r \in \mathbb{R}$, $\{x \in X \mid f(x) > r\}$ is open. Assume that X is compact. Show that every u.s.c. function assumes a maximum value and every l.s.c. function assumes a minimum value.
- 52. (a different construction of the completion of a metric space) An equivalence relation on a set X is a relation \sim having the following three properties:
 - (a) (Reflexivity) $x \sim x$ for every $x \in X$.
 - (b) (Symmetry) If $x \sim y$, then $y \sim x$.
 - (c) (Transitivity) If $x \sim y$ and $y \sim z$, then $x \sim z$.

The **equivalence class** determined by x, and denoted by [x], is defined by $[x] = \{y \in X : y \sim x\}$. We have [x] = [y] if and only if $x \sim y$, and X is a disjoint union of these equivalence classes.

Let (X, d) be a metric space and let X^* be the set of Cauchy sequences $\mathbf{x} = \{x_n\}$ in (X, d). Define a relation \sim in X^* by declaring $\mathbf{x} = \{x_n\} \sim \mathbf{y} = \{y_n\}$ to mean $d(x_n, y_n) \to 0$.

- (a) Show that ~ is an equivalence relation.
 Denote by [x] the equivalence class of x ∈ X*, and let X̃ denote the set of these equivalence classes.
- (b) Show that if $\mathbf{x} = \{x_n\}$ and $\mathbf{y} = \{y_n\} \in X^*$, then $\lim_{n\to\infty} d(x_n, y_n)$ exists. Show that if $\mathbf{x}' = \{x'_n\} \in [\mathbf{x}]$ and $\mathbf{y}' = \{y'_n\} \in [\mathbf{y}]$, then

$$\lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(x'_n, y'_n)$$

For $[\mathbf{x}], [\mathbf{y}] \in \widetilde{X}$, define

$$D([\mathbf{x}], [\mathbf{y}]) = \lim_{n \to \infty} d(x_n, y_n).$$

Note that the definition of D is unambiguous in view of the above equality.

(c) Show that (X, D) is a complete metric space. *Hint:* Let $[\mathbf{x}^n]$ be Cauchy in (\widetilde{X}, D) . Then $\mathbf{x}^n = \{x_1^n, x_2^n, x_3^n, \ldots\}$ is Cauchy in (X, d). So for every $n \in \mathbb{Z}_{>0}$, there exists $k_n \in \mathbb{Z}_{>0}$ such that

$$d(x_m^n, x_{k_n}^n) < 1/n$$

for all $m \geq k_n$.

- Set $\mathbf{x} = \{x_{k_1}^1, x_{k_2}^2, x_{k_3}^3, \ldots\}$. Then show that \mathbf{x} is Cauchy in (X, d) and $D([\mathbf{x}^n], [\mathbf{x}]) \to 0$. (d) If $x \in X$, let $\varphi(x)$ be the equivalence class of the constant sequence $\mathbf{x} = (x, x, x, \ldots)$. That is, $\varphi(x) = [\mathbf{x}] = [\{x, x, x, \ldots\}]$. Show that
- $\varphi: X \to \varphi(X)$ is an isometry. (e) Show that $\varphi(X)$ is dense in (\tilde{X}, D) . *Hint:* Let $[\mathbf{x}] \in \tilde{X}$ with $\mathbf{x} = \{x_1, x_2, x_3, \ldots\}$. Denote by \mathbf{x}^n the constant sequence
- 53. Consider the following spaces:
 - (a) \mathbb{R} with the metric $d_1(x,y) = \frac{|x-y|}{1+|x-y|};$
 - (b) \mathbb{R} with the metric $d_2(x, y) = |\arctan x \arctan y|;$

 $\{x_n, x_n, x_n, \ldots\}$ and show that $D([\mathbf{x}^n], [\mathbf{x}]) \to 0$.

(c) \mathbb{R} with the metric $d_3(x, y) = 0$ if x = y and d(x, y) = 1 if $x \neq y$.

Is (\mathbb{R}, d_i) compact?

- 54. Use the Heine-Borel property to prove that if $f: X \to Y$ is a continuous mapping between metric spaces and X is compact then f is uniformly continuous.
- 55. A family $\{F_i\}_{i \in I}$ is said to have the **finite intersection property** if for every finite subset J of I, $\bigcap_{i \in J} F_i \neq \emptyset$. Show that X is compact if and only if for every family $\{F_i\}_{i \in I}$ of closed subsets of X having the finite intersection property, the intersection $\bigcap_{i \in I} F_i \neq \emptyset$.
- 56. Consider C[0,1] with the usual d_{∞} metric. Let

$$A = \{ f \in C[0,1] \mid 0 = f(0) \le f(t) \le f(1) = 1 \text{ for all } t \in [0,1] \}.$$

Show that there is no finite 1/2-net for A.

- 57. Show that if $A \subseteq X$ is totally bounded, then \overline{A} is also totally bounded.
- 58. Show that a metric space (X, d) is totally bounded if and only if every sequence $\{x_n\} \subseteq X$ contains a Cauchy subsequence.
- 59. Let X be a totally bounded metric space and Y a metric space. Assume that $f: X \to Y$ is a bijection. Show that if f and f^{-1} are uniformly continuous, then Y is totally bounded.
- 60. (Lebesgue number lemma) Let (X, d) be a compact metric space and let $\{U_i\}_{i \in I}$ be an open covering of X. Prove that there exists $\delta > 0$ such that for every subset $A \subseteq X$ with diam $(A) < \delta$ there exists $i \in I$ such that $A \subseteq U_i$. (δ is called a "Lebesgue number" for the covering.)
- 61. Let (X, d) be a compact metric space. Assume that $f: X \to X$ preserves distance, that is,

$$d(f(x), f(y)) = d(x, y)$$

for every $x, y \in X$. Show that f is a bijection. *Hint:* Assume that $f(X) \neq X$. So there exists $a \in X \setminus f(X)$. Since f is continuous and X is compact, f(X) is compact. So d(a, f(X)) = r > 0. Consider a sequence $x_n = f^n(a)$.

- 62. Let X be the set of all real sequences with finitely many non-zero terms with the supremum metric: if $\mathbf{x} = (x_i)$ and $\mathbf{y} = (y_i)$ then $d(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i| : i \in \mathbb{Z}_{>0}\}.$ For each $n \in \mathbb{Z}_{>0}$, let $\mathbf{x}^n = (1, 1/2, 1/3, \dots, 1/n, 0, 0, \dots)$.
 - (a) Show that $\{\mathbf{x}^n\}$ is a Cauchy sequence in X.
 - (b) Show that $\{\mathbf{x}^n\}$ does not converge to a point in X.
 - (c) Show that the completion of X is the space of all real sequences which converge to zero, with the supremum metric.
- 63. Let X be a nonempty set and let (Y, d) be a complete metric space. Let $f: X \to Y$ be an injective function and define

$$d_f(x,y) = d(f(x), f(y))$$

for $x, y \in X$.

- (a) Explain briefly why d_f is a metric on X.
- (b) Show that (X, d_f) is a complete metric space if f(X) is a closed subset of Y.
- 64. (a) Define compactness for a metric space (X, d).
 - (a) Let ℓ^{∞} be the set of bounded real sequences with the supremum metric.
 - (b) Consider the following metric spaces. Which of these spaces are compact? Give brief explanations.

 - The circle {(x, y) : x² + y² = 1} with the metric induced from ℝ²;
 The open disk {(x, y) : x² + y² < 1} with the metric induced from ℝ².
 The closed unit ball in the space ℓ[∞].

- 65. (a) State the definitions of a *Cauchy sequence* and a *complete* metric space.
 - (b) Let (X, d) and (Y, d') be metric spaces, and let $f : X \to Y$ be continuous with f(X) = Y. Show that if (X, d) is complete and $d(x, y) \leq d'(f(x), f(y))$ for all $x, y \in X$, then (Y, d') is complete.
- 66. Let X be a complete normed vector space over \mathbb{R} . A sphere in X is a set

 $S(a,r) = \{ x \in X : d(x,a) = ||x-a|| = r \}, \quad \text{for } a \in X \text{ and } r \in \mathbb{R}_{>0}.$

- (a) Show that each sphere in X is nowhere dense.
- (b) Show that there is no sequence of spheres $\{S_n\}$ in X whose union is X.
- (c) Give a geometric interpretation of the result in (b) when $X = \mathbb{R}^2$ with the Euclidean norm.
- (d) Show that the result of (b) does not hold in every complete metric space X.

67. Let $X = \mathbb{R}$ with metric given by d(x, y) = |x - y|.

- (a) Let A = X. Show that A is Cauchy compact but not bounded.
- (b) Let A = X. Show that A is Cauchy compact but not cover compact.
- (c) Let A = X. Show that A is Cauchy compact but not ball compact.
- (d) Let $A = (0, 1) \subseteq X$. Show that A is ball compact and not closed in X.
- (e) Let $A = (0, 1) \subseteq X$. Show that A is ball compact and not cover compact.
- (f) Let $A = (0, 1) \subseteq X$. Show that A is ball compact and not Cauchy compact.
- (h) Let $A = (0,1) \subseteq X$ and let B = A. Show that B is closed in A but B is not Cauchy compact.
- (g) Let $Y = \mathbb{R}$ with metric given by $\rho(x, y) = \min\{|x y|, 1\}$ and let A = Y. Show that A is bounded but not ball compact.
- 68. A family $\{F_i\}_{i\in I}$ is said to have the **finite intersection property** if for every finite subset J of I, $\bigcap_{i\in J} F_i = \emptyset$. Show that X is compact if and only if for every family $\{F_i\}_{i\in I}$ of closed subsets of X having the finite intersection property, the intersection $\bigcap_{i\in I} F_i \neq \emptyset$.
- 69. Let $(0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}$ with the standard metric. Show that X is not complete, is totally bounded and is not cover compact.
- 70. Let (X, d) be a metric space and let (a_1, a_2, \ldots) be a sequence in X.
 - (a) Carefully define cluster point and limit point of (a_1, a_2, \ldots) .
 - (b) Prove that if z is a limit point of $(a_1, a_2, ...)$ then z is a cluster point of $(a_1, a_2, ...)$.
 - (c) Carefully define Cauchy sequence and convergent sequence.
 - (d) Prove that if (a_1, a_2, \ldots) converges then (a_1, a_2, \ldots) is Cauchy.
 - (e) Carefully define complete metric space.